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Parameterised patient-specific models of the heart enable quantitative analysis of cardiac

function as well as estimation of regional stress and intrinsic tissue stiffness. However, the

development of personalised models and subsequent simulations have often required

lengthy manual setup, from image labelling through to generating the finite element

model and assigning boundary conditions. Recently, rapid patient-specific finite element

modelling has been made possible through the use of machine learning techniques.

In this paper, utilising multiple neural networks for image labelling and detection of

valve landmarks, together with streamlined data integration, a pipeline for generating

patient-specific biventricular models is applied to clinically-acquired data from a diverse

cohort of individuals, including hypertrophic and dilated cardiomyopathy patients and

healthy volunteers. Valve motion from tracked landmarks as well as cavity volumes

measured from labelled images are used to drive realistic motion and estimate passive

tissue stiffness values. The neural networks are shown to accurately label cardiac

regions and features for these diverse morphologies. Furthermore, differences in global

intrinsic parameters, such as tissue anisotropy and normalised active tension, between

groups illustrate respective underlying changes in tissue composition and/or structure

as a result of pathology. This study shows the successful application of a generic

pipeline for biventricular modelling, incorporating artificial intelligence solutions, within a

diverse cohort.

Keywords: personalised modelling, biventricular mechanics, parameter identification, automatic segmentation,

valve landmark identification

1. INTRODUCTION

Cardiovascular disease causes changes in cardiac anatomy, structure, and function—all resulting
in changes to the active and passive biomechanics of the myocardium. However, it is difficult to
assess intrinsic properties from imaging data alone. Patient-specific computational models can be
used to simulate cardiac mechanics and measure quantities such as stress and strain and have
the potential to augment current steps in therapy planning, allowing clinicians to test devices,
such as left ventricular assist devices (Sack et al., 2018b), and therapies, such as septal myectomy
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(Huang et al., 2021). Personalised models can also be used
to create “virtual cohorts,” running large-scale trials on large
numbers of realistic heart models in concert with animal and
human studies (Peirlinck et al., 2021).

Personalised models have been used to estimate both passive
(e.g., Augenstein et al., 2006) and active (e.g., Marchesseau
et al., 2013) parameters. Differences between global stiffness
parameters have been identified between healthy and diseased
cohorts through the use of patient-specific modelling
(Hadjicharalambous et al., 2017; Wang et al., 2018). These
passive parameters could be used as an additional diagnostic
tool or to track disease progression. Additionally, estimation of
heterogeneous stiffness parameters demonstrate the feasibility
to identify local differences in tissue properties (Balaban et al.,
2018), which can give an indication of regional changes. The
optimisation of material parameters has been formulated as a
nonlinear optimisation problem which aims to minimise an
objective function based on the observation error, typically using
displacement (Wang et al., 2018), strain (Augenstein et al., 2005;
Wang et al., 2009), or geometric metrics (Nasopoulou et al.,
2017). Filtering approaches, such as the use of Kalman filters,
have also demonstrated robust and accurate estimation of passive
parameters in the presence of noise (Xi et al., 2011). Regional
contractility parameters estimated in personalised models have
been shown to decrease in infarcted regions (Chabiniok et al.,
2012). Although personalised modelling has been demonstrated
to offer insights into intrinsic properties of the heart in health and
disease, key challenges remain including automation of many
cumbersome steps in model development as well as integration
of key biomechanical information. For example, most studies
have utilised manual segmentation for model development.
Additionally, many studies developing personalised models have
relied on data which is not typically acquired in a clinical scan
(e.g., tagged MRI or intraventricular pressure measurements),
thus limiting the size of their cohorts.

The process of generating patient-specific models was once
a time-consuming task, requiring manual annotation and
segmentation of images to construct an accurate geometric
model (Heijman et al., 2008). The advent of and advances in
machine learning have enabled automation of many of these
tasks, with results ranging in accuracy and reliability (Henglin
et al., 2017; Leiner et al., 2019). Deep learning is a subset of
the machine learning field of techniques focusing on artificial
neural networks which are constructed as deeply interconnected
neural structures (Zhang et al., 2018). Neural networks have
greater capacity to learn more complex problems than other
machine learning methods with a greater ability to generalise
to unseen data. These can be applied directly to the labelling of
anatomical structures by assigning each pixel/voxel of an image
a category probability which associates them with one or more
structures. This allows the automation of cardiac segmentation
such that an entire short-axis cine dataset can be labelled in
seconds without manual initialisation or intervention, rather
than hours (e.g., Bai et al., 2018; Chen et al., 2020). Cardiac
segmentations can then be used to automatically calculate clinical
metrics such as ejection fraction and long-axis strain (Ruijsink
et al., 2019), and can be combined with other networks to

perform disease classification (Martin-Isla et al., 2020) and
feature detection (Bizopoulos and Koutsouris, 2018). In addition
to expediting segmentation, trained neural networks can also
lead to consistent and standardised results improving reliability
and reproducibility. Neural network segmentations can then
be used to automate the process of generating patient-specific
geometric models.

In order to extend personalised modelling into the clinical
domain, there is a need to develop a robust pipeline to not
only generate models for diverse cardiac morphologies, but
also to run biomechanical simulations using data acquired
within a clinical scan. This study presents an AI-driven
pipeline for the development of personalised biventricular
mechanical models which were used to simulate passive and
active mechanics. Novel boundary conditions, driven by neural
network derived landmarks, were used to constrain valve motion
and cavity volumes. The pipeline was tested in a diverse cohort
which included healthy volunteers, patients with DCM and
hypertrophic cardiomyopathy (HCM), using only a short-axis
cine stack and three long-axis image planes, equivalent to images
that would be collected in a standard clinical MR scan.

2. MATERIALS AND METHODS

For all cases in this study, a balanced steady-state free precession
sequence was used to collect cine images at short-axis slice
locations and three long-axis imaging planes including two
(2CH), three (3CH), and four-chamber (4CH) views. Between
20 and 40 images were acquired per cardiac cycle depending
on the individual’s heart rate. All images were acquired on a
Philips Achieva 1.5 T scanner at St. Thomas’ Hospital in London.
Written informed consent was obtained from all participants
prior to scanning. The study protocols for the DCM patients
and healthy volunteers (study number 12/LO/1456) and HCM
patients (study number 15/NS/0030) were approved by the
London Bridge National Research Ethics Service. This initial
study includes a cohort of patients with HCM (n = 4), DCM
(n = 4), and healthy volunteers (n = 4). Patients with HCM
demonstrated heterogeneous patterns of wall thickening, in
keeping with the underlying diagnosis. The entire processing
pipeline for each case is shown in Figure 3. Each block within the
figure will be discussed in greater detail in the following sections.

2.1. Neural Network Image Labelling
Cine images were passed to two neural networks. The first
of which labelled the left ventricular (LV) blood pool, LV
myocardium and right ventricular (RV) blood pool in all short
and long-axis images, whereas the second returned labels of 10
valve landmarks identifying leaflet insertion points in all long-
axis images.

2.1.1. Cine Image Labelling
Full-cycle three-label segmentation was accomplished using
a UNet-derived (Ronneberger et al., 2015; Kerfoot et al.,
2018, 2019) neural network. Left-ventricular blood pool, left-
ventricular myocardium, and right-ventricular blood pool were
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FIGURE 1 | The segmentation network is implemented as a stack of blocks illustrated here. The encode and decode paths along with the skip connection are defined

in the same block. The “Next Layer” is either another such block or the bottom encoding block comprised of convolution/normalisation/activation sequences. The

overall structure of the network is shown on the right, with the dimensions of tensors passing between layers given relative to an input of shape (1, N, W).

identified by this network by analysing each two-dimensional
slice from a full short-axis stack individually.

The network architecture is composed of a stack of blocks
incorporating the encode and decode paths of the UNet structure
(Figure 1). Data flows through the encode side on the left
where it passes through a residual unit (He et al., 2016) of
convolution/normalisation/activation layers. The output from
this unit passes to the next layer in the stack, which is either a
further layer of such encode/decode pathways or a final residual
unit. The data from the encode path is concatenated with the
output from the layer below before being passed through another
residual unit in the decode side.

The dataset used for training consisted of 9,095 segmented
MR short-axis images (Kerfoot et al., 2019). These were derived
from the ACDC challenge dataset (Bernard et al., 2018) of
100 cases and 175 UK Biobank healthy cases. Of the latter, an
expert clinician at St. Thomas’ Hospital in London segmented
100 healthy cases, 50 cardiomyopathy cases, and 25 randomly
selected cases that exhibited sufficient image quality for use as
input. Additionally, 215 cases were acquired on a 1.5 T Philips
Ingenia scanner at St. Thomas’ Hospital in London, and 116
cases from a Siemens Trio 3T scanner (Siemens Healthineers,
Erlangen, Germany), and were also segmented by an expert
clinician at St. Thomas’ Hospital. These cases consisted of
healthy volunteers, HCM patients, and patients with cardiac
resynchronisation therapy (CRT).

The network was trained for 10,000 iterations. For each
iteration, a mini-batch was created by selecting 250 randomly
selected images from the dataset. A random selection of
flip, transpose, 90◦ rotation, shift and non-rigid deformation

operations were applied to the image and segmentation pairs. The
loss function used was a simple Dice loss (Dice, 1945).

2.1.2. Valve Landmark Identification
Landmark coordinates in the three long-axis views were used
to identify the locations of the leaflet insertions into the
myocardium. Ten landmark locations in total were estimated: six
mitral valve locations (two from each view), two aortic locations
in the three-chamber view, and two tricuspid locations in the
four-chamber view. These landmarks were estimated using a
convolutional neural network implemented as a regression from
two-dimensional images to a landmark coordinate array (Kerfoot
et al., 2021). See Figure 3: Valve Landmark Identification. Briefly,
the network was trained on 8,574 long-axis images collected from
HCM (n = 3,069) and myocardial infarction (MI, n = 5,505)
patients. Further details of the dataset used for training can be
found in Kerfoot et al. (2021).

Figure 2C illustrates the general architecture of the network
composed of a sequence of densely-connected blocks of
convolutions. The output data from these blocks is then passed
to a series of small neural networks trained to recognise
the 10 different landmark coordinates. Having condensed the
information from the input image to a deep representation,
each sub-network learns to recognise which view is represented
and determine a location from this representation. From each
long-axis image, all ten landmarks are identified. However, the
landmarks which do not occur in the input image are inferred to
be in the top-left corner at coordinate [0,0].

Figures 2A,B illustrates the architecture of the
densely-connected blocks (Huang et al., 2017). Within
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FIGURE 2 | The valve estimation network is composed primarily of a series of densely-connected convolutional layers. Each dense block is composed of three

residual units containing 2D convolutions using progressively larger dilation rates. A final convolution reduces the spatial dimension of the volume by 2. The regression

network is implemented as a sequence of densely-connected blocks followed by a series of small fully-connected networks relating the final output volume to each

landmark coordinate. (A) Residual unit, (B) dilated dense block, (C) network definition.

each block is a residual unit composed of two sets of
convolution/normalisation/regularisation layers. The dilation
value for the convolutions increments for each succeeding unit,
which allows convolutions to recognise features of different
scales in the input volume. The output from each unit is
concatenated with outputs from previous units. This combined
volume is used as the input to the next unit. All such outputs, plus
the original input, are concatenated into the final output volume.
A final convolution/normalisation/regularisation reduces the
output volume in the spatial dimensions by a factor of two.

During training, data augmentation was applied to the
images from the manually-annotated dataset. A randomised
combination of flip, transpose, zoom, rotate, shift, and non-rigid
deformation operations were applied to the image and ground-
truth landmark pairs to be fed into the network during training.
The images were further augmented with added noise, smooth
image intensity variation and k-space dropout to simulate a poor-
quality acquisition. The objective of these augmentations was to
vary the data the network is trained with to reduce overfitting and
improve its generalisation to unseen image types.

2.1.3. Label Quality Control
For the short and long-axis segmentations, labels were cleaned
(a) by removing labelled regions with fewer than 50 pixels,
disregarding improperly labelled “islands” far from the heart

as well as (b) filling holes in the labelled regions. Since
valve landmarks were identified for each 2D long-axis image
independently (not incorporating temporal continuity), an
additional step was implemented to automatically identify
landmarks which were incorrectly labelled in order to omit
these points. Then, a linear interpolation step was used to
interpolate missing points before applying a low-pass filter to
temporally smooth landmark displacements. Valve landmarks
were used both as input to the model fitting step as well
as boundary conditions to constrain valve annuli motion
throughout simulations of the cardiac cycle.

2.2. Segmentations to Models
Short-axis alignment was performed using the IRTK
toolbox (Schnabel et al., 2001) which applies a rigid
transformation to individual short-axis planes in order
to optimise the overlap between short-axis masks and a
model template. Starting with the rigid registration tool’s
default initialisation, the short-axis images are rigidly moved
in the in-plane dimension to account for misalignment
during acquisition.

Subsequently, long-axis images were rigidly registered to the
short-axis aligned images using the rigid registration algorithm
in the IRTK package, also using the tool’s default initialisation.
Dice scores along the line of intersection between each short and
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long-axis mask were used to (a) automatically determine which
short-axis slices would be used for the model fitting by omitting
slices with a dice score <0.5 and (b) to assign weights to each
contour point based on their overlap with other data. In this
way, long-axis slices which were poorly registered to the short-
axis data, even after running the registration step, did not skew
or greatly impact the final fitted model.

A biventricular template was then fitted to the segmentations
using the two-step iterative method developed in Mauger et al.
(2018). In order to do this, contours were automatically generated
from the short and long-axis labels (i.e., LV endocardium, RV
septum, RV free wall, epicardium, RV insertion points, apex, etc.)
in order to fit model surfaces to the contour points. Locations of
the mitral, tricuspid, and aortic valve annuli were obtained from
the annotated valve landmarks. Due to a lack of segmentation of
the RV myocardium, RV epicardial contours were automatically
generated by projecting the RV free wall contours in the normal
direction at a distance of 3 mm. Briefly, a series of stiff linear
least squares fits with a high D-affine regularisation weight
was performed to provide an adequate first solution. For each
iteration, the Jacobians on 4 × 4 × 4 Gaussian quadrature
points were calculated. If all were positive, the model was
updated, the regularisation weight was decreased and another
iteration was performed. If not, the model was not updated and
another optimisation step was performed using diffeomorphic
constraints based on the magnitude of the displacement. Models
were fit to segmentations at all frames of the cardiac cycle. Surface
meshes were used to construct cavity volume curves throughout
the cardiac cycle as well as quantify metrics such as wall thickness
and ejection fraction.

From the fitted surface meshes, tetrahedral meshes were
generated for the end-systolic time point using SimModeler
(Simmetrix1). Mesh metrics, including number of nodes and
element quality, can be found in Supplementary Table 1.
Biventricular fibre fields were created using a rule-based method
adapted from Doste et al. (2019) and Bayer et al. (2012). Fibre
angles varied from −60 to 60◦ and −25 to 90◦ from the
epicardium to endocardium in the LV and RV, respectively.
Fibre angles at the valve annuli were determined based
on high-resolution DTI measurements from ex-vivo porcine
hearts. Specific angles at each boundary can be found in
Supplementary Table 1. An example fibre field can be seen in
Figure 3, Rule-based Fibres.

2.3. Biventricular Modelling
The personalised mechanical models were solved using
energy potential minimisation, following (Asner et al., 2017;
Hadjicharalambous et al., 2017). In brief, the myocardium
is defined by the reference domain �0 ⊂ R

3 with initial
coordinates X ∈ �0. The biventricular domain, �0, consists of
boundaries on the endocardial sides of the LV and RV (denoted
Ŵlv
0 and Ŵrv

0 ), the wall marking the rings for the mitral (Ŵmv
0 ),

aortic (Ŵav
0 ), tricuspid (Ŵtv

0 ), and pulmonary valves (Ŵ
pv
0 ), as

well as the epicardium (Ŵ
epi
0 ). The orientation of local tissue

microstructure across the myocardial wall is given by the fibre,

1http://www.simmetrix.com/.

sheet and sheet normal vector fields, (f0, s0,n0). Similarly, at each
valve boundary, a circumferential vector field is defined (denoted
fk0 for Ŵk

0 , k ∈ V = {mv, av, tv, pv}) which describes the local
orientation of connective tissue that comprises each valve orifice.
Finally, to enable variations between the LV/septum and the RV,
we define a labelling field, φ, where φ = 1 in the LV/LV septum
and φ = 0 in the RV/RV septum.

For simulating myocardial function, imaging data is extracted
to describe functional changes through time. The change in
LV and RV luminal volumes is extracted from images and
interpolated to provide {Vk(t)}k∈E describing the mean volume
trace as computed over a truncated region of each endocardial
lumen, E = {lv, rv}. The truncation planes are similarly defined
by normal vectors {nk(t)}k∈E across both LV and RV lumens.
The pressure is given over the cardiac cycle by {Pk(t)}k∈E
and can be defined either via invasive measures, coupled via
a full-circulation model (Arts et al., 2005), or estimated from
noninvasive data (Asner et al., 2015). Finally, the motion of each
valve plane is encapsulated by the estimated motion of the centre
of mass, {ukcom(t)}k∈V , interpolated over time for each valve,
V = {mv, av, tv, pv}.

As the biventricular model deforms, the physical domain
at time t, �(t), is described using coordinates of its current
position x = X + u(t), where u denotes displacement. Typically
the displacement is used to describe the deformation gradient
tensor F = ∇0u + I, its determinant J = det F > 0, as
well as the material stretch described by the right Cauchy-Green
strain tensor C = FTF. The displacement of the heart is solved
by considering either the quasi-static (Asner et al., 2017) or
dynamic (Chabiniok et al., 2012; Sermesant et al., 2012) principle
of virtual work, with the additional state variables of pressure
(p), activation state in LV / RV (αlv,αrv), and the forces present
at each valve plane ({λk}k∈V ). In this study, at each time point,
t ∈ [0,T], we seek to find the state variables u(t) ∈ U , p(t) ∈ P ,
αlv(t),αrv(t) ∈ R, and λ

mv(t), . . . λpv(t) ∈ R
3 satisfying the

quasi-static virtual work equation,

∫

�0

Pmyo :∇0w+ q(K[J − 1+ k ln J]− p(t))d�0

+
∑

k∈V

∫

Ŵk
0

Pkvalve :∇0wdŴ0

+
∑

k∈E

∫

Ŵk
0

Pk(t)JF
−TN · wdŴ0

+
∑

k∈V

qk

(

∫

Ŵk
0

Ikb(t)(u(t)+ X) · JF−TNdŴ0 − Vk(t)

)

+
∑

k∈V

∫

Ŵk
0

λ
k(t) · w− qk · (ukcom(t)− u(t))dŴ0 = 0,

∀ w ∈ U , q ∈ P , qlv, qrv ∈ R
2, and qmv, . . . qpv ∈ R

3.
(1)

The virtual work equation describes the internal myocardial
stresses and balance of volumetric/pressure change (blue term),
the stresses induced by the collagenous valve tissue (red term), the
internal pressure exerted by the blood (gold term), the constraint
on chamber volumes (purple term), and the added forces required
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FIGURE 3 | Short and long-axis cine MR images are simultaneously fed into two neural networks, one for labelling the LV blood pool (red), LV myocardium (green),

and RV blood pool (blue) and the second labelling ten valve landmarks throughout the cardiac cycle. The segmentations are converted to labelled contours and a

biventricular template surface mesh is fitted to the labelled contours. Volumes, derived from the network generated cavity labels, as well as valve annuli motion are

used as boundary conditions in the biomechanical simulations. Passive parameters are optimised by minimising the difference between the model and imaged

geometries at end-diastole.

to ensure motion of the valve orifices (green). The specifics of
these terms are detailed below.

The internal stresses (blue term) are given by the first Piola-
Kirchhoff tensor, Pmyo, which is described by the hyperelastic-
strain energy,9 , that can be broken into passive, volumetric, and
active strain energy components,

Pmyo(C, p,αlv,αrv) =
∂9

∂F
=

∂9p(C)

∂F
+

∂9vol(J, p)

∂F

+
∂9act(αlv,αrv, If )

∂F
, (2)

where

∂9p

∂F
= a0

exp{b0(I1 − 3)}

J2/3

(

F−
I1

3
F−T

)

+ 2af (If − 1)+ exp{bf (If − 1)2
+
}f⊗ f0, (3a)

∂9vol

∂F
= pJF−T , (3b)

∂9act

∂F
= (αlvφ + αrv[1− φ]) tanh

{

2
(√

If − 0.8
)

+

}(

f⊗ f0 +
1

3
F

)

,

(3c)

and f = Ff0 describes the deformed fibre direction. Here
the passive component (Equation 3a) follows the reduced form
of the Holzapfel-Ogden model (Holzapfel and Ogden, 2009;
Hadjicharalambous et al., 2014a, 2017; Asner et al., 2015)
adapted for appropriate use within a nearly-incompressible
framework (Nolan et al., 2014) (though numerous alternative
models exist, see Chabiniok et al., 2016). The parameters a0 and
af linearly scale the stiffness of the ground substrate and fibre
direction, respectively, and have units of stress whereas b0 and
bf scale the exponential behaviour of the isotropic and fibre

components and are unitless. I1 is the isochoric form of the first
invariant of the right Cauchy-Green strain tensor (I1 = C : I)
and If is the fibre pseudo-invariant If = C :(f0 ⊗ f0). To ensure
unique parameters, the number of personalised parameters was
reduced to two: a and af . The values of b0 and bf were each
set to 5.0 to ensure physiological pressure-volume response
(Hadjicharalambous et al., 2014a).

The resulting stress from volumetric effects (Equation 3b)
results from the nearly-incompressible strain energy,

9vol(J, p) = p(J − 1)−
1

2K
p2,
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which also governs the relation between volume change and
hydrostatic pressure (second part of the blue term). The
parameter, K, denotes the bulk modulus of the tissue (in this
study K = 1, 000 kPa).

The active stress, given in Equation (3c), defines the
amount of contraction as well as the length dependent
mechanisms (Kerckhoffs et al., 2003). Here, stresses were also
applied both along fibres as well as across fibres based on
knownmyofibre dispersion (Tangney et al., 2013; Krishnamurthy
et al., 2016). Note that the active scalings, αlv,αrv, are dotted
with the region identifier, φ, in order to selectively activate LV
and RV chambers. While regional activation can be defined
based on eikonal activation times (Tomlinson et al., 2002) or
monodomain/bidomain simulations (Potse et al., 2006); here,
the contraction of the chambers was approximated by uniform
contraction parameters, αlv and αrv.

Additional stresses were added along the surface of each
valve orifice (red term), reflecting the fact that each valve
annulus is comprised of thin cartilaginous tissue (Hamdan et al.,
2012; Gunning and Murphy, 2014). This tissue, comprised of
circumferential collagen fibres, is extremely flexible but exhibits
strong resistance to annular dilation (e.g., stretch of the collagen
fibres). This was incorporated into the model by adding stresses,
Pk
valve

, applied over each annular plane, Ŵk
0 , where

Pkvalve(C) =
∂9k

valve

∂F
= c1

(

exp{c2(I
k
f − 1)} − 1

)

fk ⊗ fk0. (4)

Here, fk = Ffk0 describes the deformed circumferential direction

of collagen fibres in the kth−annulus and Ik
f
= C :(fk0 ⊗ fk0) is the

pseudo-invariant along collagen fibres. As the stresses induced
are exerted along an extremely thin area, and were principally
oriented along fibres, the added stresses were incorporated over
the annular surfaces. The parameter c1 accounts for the collagen
stiffness scaled by the thickness while the parameter c2 allows for
exponential growth in the fibre stresses. Here, a value of c1 = 0.1
kPa and c2 = 0.5 were selected for all valves based on achieving
a consistent qualitative annular dilation as typically found in vivo
and were unchanged across patients (assuming the collagenous
structures around the valves was consistent).

Instead of using parameter estimation techniques (Chabiniok
et al., 2012; Marchesseau et al., 2013; Asner et al., 2015)
to determine the activation of the myocardium, the LV/RV
activation was solved for as part of the forward model problem.
In this context, the active parameters αlv,αrv act as Lagrange
multipliers with the constraint held being that both chambers
follow the volume trends observed in the data (purple term).
Here, the first term provides the model predicted volumes which
must be equal to the volumes prescribed by Vk(t) (where I

k
b
(t) =

(1/2)β(X)(I − nk ⊗ nk) and β(X) is a binary variable taking the
value of 1 below and 0 above the truncation plane) (Asner et al.,
2017). As the pressure at each time point is given (gold term), the
active tension scalings are found which enable matching between
the model/data. Note, for consistency and stability, the applied
pressure Pk(t) must be greater or equal to the passive pressure at
the specified volume Vk(t).

Valve plane motion was prescribed (green terms) using the
valve landmark displacements, ukcom, extracted from the points
predicted by the neural network (discussed in section 2.1). For
each valve, the average position over the cardiac cycle was
enforced using Lagrange multipliers, λk. The pulmonary annulus
is not visible in any of the long-axis images acquired in this
study. It can be viewed in a right ventricular outflow tract
(RVOT) view, which is not always acquired in clinical scans.
Therefore, in this study, an average displacement, computed
from the displacements of the other three valves, was applied to
the pulmonary valve. The green terms introduce the multipliers
(that can be thought of as reference tractions) which constrain
the motion of the centre of mass to move as observed in
the data.

Since the unloaded state of myocardium is unknown, the
end-systolic geometry was used as the reference geometry.
Some studies have used inverse methods to estimate the
reference geometry (Krishnamurthy et al., 2013; Wang Y.
et al., 2020). These methods are dependent on the choice
of material law, constitutive parameters and boundary
conditions. An analysis illustrating the impact of these choices
and ramifications of boundary conditions is presented in
Hadjicharalambous et al. (2021).

Personalised models were solved in a finite element
framework with displacements and pressure defined using
linear P

1 elements, see Supplementary Material for further
details. Endocardial and valve Lagrange multipliers were scalars.
All problems were solved in CHeart, a multi-physics finite
element solver (Lee et al., 2016).

2.4. Diastolic Inflation and Passive
Parameter Estimation
Estimation of both a0 and af is not feasible using displacements
alone when driving simulations with cavity volumes. However,
due to the linear parameter dependence of a0 and af in the
reduced Holzapfel-Ogden law, both passive parameters scale
linearly with pressure. Therefore, each model was personalised
by estimating, γ = a0/af , describing the anisotropy of the
tissue from displacements and then using an end-diastolic
pressure value to obtain a0 and af . To do this, simulations of
diastolic inflation were first run starting from the end-systolic
geometry, prescribing cavity volumes, and valve motion. This
was done by solving Equation (1), assuming αlv,αrv were zero,
and considering Plv, Prv as state variables (Asner et al., 2017). In
this first phase, the LV/RV volumes were inflated to their end
diastolic state, after which the volume was kept constant and
values of γ were swept between 1.0 and 0.1. Practically, this was
done by setting asim0 and asim

f
to 1.0 kPa during inflation. Then,

during the sweep, asim
f

was kept constant and asim was varied.

Absolute values of a0 and af were then retrieved by scaling them
by the ratio between an end-diastolic pressure value appropriate
for each patient group (EDP

g

lv
) and the simulated end-diastolic

pressure (pED
lv

). The EDPirv for each individual case was then
found by using the values of a0 since the stiffness scales with both
EDP in the left and right ventricles.
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a0 = asim0
EDP

g

lv

pED
lv

= γ asimf
EDP

g

lv

pED
lv

, af = asimf
EDP

g

lv

pED
lv

,

EDPirv = pEDrv
a0

asim0
. (5)

For each value of γ , the objective function, J was calculated
as the root mean square of the distance between contour points
obtained from the neural network labels and the deformedmodel
surface, Ŵlv (see Equation 6). The objective function utilised only
contour points from the LV epicardium, LV endocardium and RV
septal wall, omitting RV free wall points.

J =

√

√

√

√

1

N

N
∑

n=1

min
x∈Ŵlv

‖xn − x‖2 (6)

Since all data used were acquired from a standard clinical
scan, no catheter pressure measurements were acquired. Filling
pressures have previously been estimated from the E/A ratio
measured from echocardiography (Nagueh et al., 1997) which
requires blood flow measurements through the mitral valve. In
the absence of echo and 4D flow MRI data, end-diastolic and
end-systolic pressure values were found from literature in studies
which obtained invasive catheter pressure measurements from
within the LV in each patient group (see Table 1). Additionally,
normal end-diastolic and end-systolic pressures were taken from
Klingensmith et al. (2012). Taking the mean (weighted by sample
size) of pressure values from literature, LV end-diastolic pressures
(EDP

g

lv
) were assigned to be 8 mmHg (1.1 kPa), 20.2 mmHg

(2.7 kPa), and 24.2 mmHg (3.2 kPa) for the healthy volunteers,
DCM patients and HCM patients, respectively. Similarly, ESP

g

lv
values were set to 120.0 mmHg (16.0 kPa), 120.0 mmHg (16.0
kPa), and 183.1 mmHg (24.4 kPa) for each group, respectively.
A representative pressure trace (Russell et al., 2012) was scaled
to group pressure values at end-diastole and end-systole for both
the LV and RV. Then, each segment of the pressure trace (i.e., ED
to eIVC, eIVC to ES, ES to eIVR, eIVR to diastasis, and diastasis
to ED) was temporally scaled for each individual based on valve
opening and closing times in the cine images.

3. RESULTS

3.1. Neural Network Segmentation and
Landmark Labelling
All short and long-axis images were manually segmented at the
end-diastolic state in order to measure accuracy of the network.
Boxplots in Figure 4 plot dice scores measuring similarity
betweenmanual and neural network segmentations for each label
and group. Results show that the largest errors occur in the
segmentation of the myocardium, with HCM cases having the
lowest dice scores for this label.

Errors (in mm) between predicted and manually annotated
valve landmarks are shown in Figure 5 and were generally
within 3 mm of the manually annotated position (∼2
pixels). Six landmarks are labelled for the mitral valve
(in the 2CH, 3CH, and 4CH images) whereas only two
landmarks are labelled for the aortic and tricuspid valves

TABLE 1 | Left ventricular pressure measurements from literature denoting mean

pressure ± one standard deviation as well as sample sizes in each study.

References Group Mean ± Std

(mmHg)

Sample

size (n)

End-diastolic pressures

Opherk et al. (1983) Idiopathic DCM 18.6 ± 11.4 12

Kass et al. (1999) DCM 24.8 ± 7.8 18

Hayashida et al. (1990) DCM 14.0 ± 10.0 17

Nagueh et al. (2005) HCM 23.0 ± 6.0 35

Nishimura et al. (1996a) HCM 25.0 ± 9.0 54

End-systolic pressures

Romeo et al. (1989) Idiopathic DCM 120.0 ± 20.0 69

Nishimura et al. (1996a) HCM 183.0 ± 42.0 54

Nishimura et al. (1996b) Obstructive HCM 196.0 ± 43.0 21

Nishimura et al. (1996b) Non-obstructive HCM 150.0 ± 29.0 8

FIGURE 4 | Boxplots illustrate dice scores for each label: LV blood pool (LV),

LV myocardium (Myo), and RV blood pool are shown for the healthy volunteers

(V), DCM patients (D), and HCM patients (H). The centre line of each boxplot

represents the median and the whiskers denote the 25th and 75th percentiles.

each. Generally, landmarks were more accurately identified in
the HCM group.

3.2. Model Fitting and Geometric
Measurements
The model fitting algorithm was able to accurately represent
the various morphologies within the diverse cohort. Figure 6
illustrates models fit to a healthy volunteer, a DCM patient and
an HCM patient with septal hypertrophy at the end-systolic
time point. Clinical metrics, such as end-diastolic volumes, end-
systolic volumes and wall thickness are reported for each case
in Table 2. Compared to the healthy volunteers, the DCM cases
have a higher mean LV end-diastolic (EDV) and end-systolic
volume (ESV). Conversely, HCM patients have both reduced
EDV and ESV in the left ventricle. Healthy volunteers and HCM
patients demonstrate LV ejection fractions (EF) in a normal
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FIGURE 5 | Boxplots of valve annotation errors for all 10 valve landmarks are shown for selected healthy volunteers (V), DCM patients (D), and HCM patients (H) in

which valve landmarks were manually identified over the entire cardiac cycle. Each boxplot represents errors throughout the cardiac cycle. The centre line of each

boxplot represents the median and the whiskers denote the 25th and 75th percentiles. The 10 valve landmarks correspond to those shown in Figure 3, Valve

Landmark Identification.

FIGURE 6 | Three representative cases for the healthy volunteer, DCM and HCM groups are shown below with models fit to the neural network segmentations. Model

surfaces at end-systole (purple) are overlayed on a single long-axis and short-axis image.

range (50% < EF < 70%) whereas DCM patients exhibit a
depressed EF by definition. In all groups, RVEF values fell
between (37.9% < EF < 55.9%) without discernible differences
between group means. Wall thickness was greatest in the HCM
cohort and showed minimal changes in the DCM group between
ED and ES.

3.3. Passive and Active Parameterisation
The fibre stiffness ratio, γ , was estimated for all cases using
parameter sweeps and the optimal values are listed in Table 3,

along with the end-diastolic pressure values used to scale a0
and af to meaningful stiffness estimates. Values of γ close to 1
indicate that the material is more isotropic whereas a value of 0.1
would indicate a highly anisotropic material. The value of γ also
influences the final inflated geometry where larger values result in
a more spherical shape. The mean value of γ for the volunteers is
less than that for the DCM (p= 0.2) and HCM (p= 0.05) patient
groups, indicating that healthymyocardiummay be slightly more
anisotropic in this small cohort. Additionally, larger γ values are
in line with more spherical shapes observed in DCM hearts.

Frontiers in Physiology | www.frontiersin.org 9 September 2021 | Volume 12 | Article 716597

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Miller et al. Patient-Specific Biventricular Mechanics

TABLE 2 | Functional and geometric indices: end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), wall thickness (WT).

Left ventricle Right ventricle

Case EDV (mL) ESV (mL) EF (%) WTED (mm) WTES (mm) EDV (mL) ESV (mL) EF (%)

Healthy volunteers

v1 172.7 80.8 53.2 7.2 8.7 104.2 64.2 38.4

v2 169.9 79.4 53.3 6.3 8.3 114.4 48.9 57.3

v3 170.1 76.7 54.9 7.2 8.8 104.9 47.6 54.6

v4 123.7 48.6 60.7 6.4 7.9 81.1 42.0 48.2

Mean 159.1 71.4 55.5 6.8 8.4 101.1 50.7 49.6

Std 23.7 15.3 3.5 0.5 0.4 14.2 9.5 8.4

DCM patients

d1 124.4 73.7 40.8 7.4 8.9 57.9 36.4 37.1

d2 231.8 130.0 44.0 8.8 9.0 106.8 57.8 45.9

d3 172.7 90.1 47.8 7.7 9.1 126.5 58.4 53.8

d4 171.0 99.9 41.5 10.0 9.6 87.8 46.4 47.2

Mean 175.0 98.4 43.5 8.4 9.1 94.7 49.8 46.0

Std 44.0 23.6 3.2 1.2 0.3 29.2 10.5 6.9

HCM patients

h1 125.8 59.2 52.9 11.7 13.4 69.9 34.4 50.8

h2 105.8 35.1 66.8 9.1 9.8 65.2 31.7 51.4

h3 134.9 55.3 59.1 9.2 11.4 87.0 44.1 49.3

h4 113.7 41.0 63.9 9.5 11.6 98.4 44.8 54.5

Mean 120.0 47.6 60.7 9.8 11.5 80.1 38.7 51.5

Std 12.9 11.5 6.1 1.2 1.5 15.4 6.7 2.2

Two active tension scaling parameters, for the LV and RV, were
estimated throughout the cardiac cycle for each case. Normalised
time-to-peak (t̂max

lv
and t̂max

rv ) as well as peak scaling parameters
(αmax

lv
and αmax

rv ) are listed in Table 3. It should be noted that
the traces of αlv and αrv are dependent on volume changes as
well as pressures. Since higher ESP values were assigned in the
HCM cases, it can be seen that the peak values of αmax

lv
and αmax

rv

are greater in this group. There were no significant differences
between time to peak activation. Figure 7 shows mean active
fibre stress over the cardiac cycle in the LV and RV as well as
panels showing fibre stress patterns throughout the model for a
single case (v1) at three time points during systole. The highest
stresses are seen near the base of the left and right ventricles.
Fibre stretch with respect to the end-diastolic state is plotted for
a representative case illustrating model deformation and regional
stretch patterns over the cardiac cycle (Figure 8). A bullseye plot
of fibre stretch at end-systole illustrates that the largest values
(<0.55) are seen in the LV free wall whereas fibre stretch is
restricted in the basal septal region near the valves.

Both mean active fibre stress and mean fibre stretch in
the LV are plotted for 16 AHA segments for all cases in
Figure 9, illustrating group differences. Peak fibre stretch is
smaller in DCM cases when compared to healthy volunteers in
12 out of 16 AHA regions (p < 0.05). Regional fibre stretch

demonstrates that, in some DCM cases, some segments exhibit
further stretching of fibres (values>1.0) in early phases of systolic
contraction. Circumferential and longitudinal stretch, common
clinical metrics, are also plotted for 16 AHA segments for all
cases in Supplementary Figure 8. The mean for each segment
and group are listed in Supplementary Table 4.

4. DISCUSSION

The primary goal of this study was to implement a pipeline for
running full-cycle simulations using personalised biventricular
models generated entirely from neural-network labels. In this
process, no manual segmentation was done for the cases
presented, other than for analysis of the accuracy of each
network. The time and computational resources used for the
pipeline are given in Supplementary Table 5 and demonstrate
a clear advantage over manual methods. Additionally, all data
used in this study was obtained using sequences common to
any standard clinical MR scan. Due to its ability to be applied
to diverse datasets, this pipeline could be used to develop an
in silico cohort based on true patient data. This virtual cohort
would be invaluable for testing novel therapies and devices
alongside human and animal studies. Additionally, personalised
metrics obtained from the models (e.g., anisotropy, material
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TABLE 3 | Personalised passive and active parameters.

Case γ LVEDP (kPa) a0 (kPa) af (kPa) LVESP (kPa) αmax
lv t̂maxlv RVESP (kPa) αmax

rv t̂maxrv

Healthy volunteers

v1 0.31

1.07

0.27 0.86

16.0

248.1 0.75

4.0

129.9 0.69

v2 0.49 0.20 0.41 236.8 0.75 124.4 0.83

v3 0.34 0.32 0.94 271.9 0.85 204.8 0.77

v4 0.43 0.16 0.38 164.5 0.83 162.5 0.67

Mean 0.39 0.24 0.65 230.3 0.80 155.4 0.74

Std 0.08 0.07 0.30 46.3 0.05 37.0 0.08

DCM patients

d1 0.64

2.69

2.68 4.19

16.0

242.0 0.82

4.0

70.7 0.99

d2 0.44 2.21 5.03 221.8 0.81 303.5 0.63

d3 0.34 1.39 4.071 163.7 0.88 244.4 0.82

d4 0.93 2.17 2.33 295.0 0.83 50.0 0.84

Mean 0.59 2.11 3.91 230.6 0.84 167.1 0.82

Std 0.26 0.54 1.14 54.3 0.03 125.9 0.15

HCM patients

h1 0.64

3.23

1.76 2.74

24.4

303.0 0.70

6.1

173.7 0.83

h2 0.61 0.31 0.50 365.5 0.84 217.7 0.73

h3 0.40 0.61 1.52 278.5 0.83 231.7 0.75

h4 0.58 0.42 0.72 337.1 0.87 200.3 0.75

Mean 0.56 0.77 1.37 321.0 0.81 205.8 0.76

Std 0.11 0.67 1.02 38.2 0.08 25.0 0.05

γ represents the anisotropic stiffness ratio (a0/af ). Times to peak activation (t̂
max ) in the LV and RV are represented as a percentage of the systolic phase.

FIGURE 7 | Mean active fibre stress over the cardiac cycle in both the LV and RV for a single case (v1) illustrating the active stress distribution over the entire heart at

three points during active contraction: early systole (t = 50 ms), peak active contraction (t = 230 ms), and end-systole (t = 360 ms). The bullseye plot shows the

regional distribution of mean active fibre stress over the 17 AHA regions at end-systole.
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FIGURE 8 | Mean fibre stretch over the cardiac cycle is shown for both the LV and RV for a single case (v1). Fibre stretch over the cardiac cycle is also plotted for nine

time points with the reference state model (ES) shown as a wireframe mesh. The bullseye plot illustrates differences in regional stretch at the end-systolic state in the

17 AHA regions.

stiffness) could be further used to either classify patients or mark
disease progression. However, larger sample sizes are needed in
order to better understand differences between patient classes.
Additional data, where available, could be used to augment
the robustness of the personalised models, such as the use of
tagged MR data for passive parameterisation (Asner et al., 2015).
The use of a biventricular template along with fitting weights
assigned to contours based on data fidelity enabled the generation
of high-quality meshes suitable for biomechanical simulations
withminimal user intervention. Neural-network identified leaflet
landmarks were used to prescribe average valve motion on each
valve in the model, allowing for physiological basal motion of
both ventricles.

4.1. Neural Networks
The neural network was able to accurately label the left and
right ventricles from standard clinical images in a diverse cohort.
The network captured the varied morphology of heart shapes
in both DCM and HCM patients. Dice scores for labelling
the LV blood pool were comparable to those from other
segmentation networks (Wang et al., 2021) and the RV dice

scores demonstrated greater accuracy than previous studies (Luo
et al., 2016; Tran, 2016). However, the largest errors arose in labels
of the myocardium. Although a comparison to inter-observer
error was not done as part of this study, previous groups have
compared annotations from multiple observers using the UK
Biobank (Attar et al., 2019) as well as ACDC (Bernard et al., 2018)
data sets. Similar to results shown in Figure 4, inter-observer
errors for myocardium are greater than those for both the LV
and RV blood pools in both data sets. Dice scores observed in
this study are higher than the inter-observer dice scores reported
for the LV and RV blood pools in Attar et al. (2019). One
possible reason for the larger errors in the segmentation of the
myocardium could be due to its annular shape which has a larger
perimeter. Any equal overlap shifts would produce a greater error
when compared to any shift in segmentation of the blood pools.

The second neural network labelled 10 different valve
landmarks in each long-axis image to within 2–3 pixels of
accuracy. These errors are similar to those encountered using
common tracking algorithms and the method does not require
manual initialisation (Kerfoot et al., 2021). Of the 10 valve
landmarks, four demonstrated lower neural network predicted
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FIGURE 9 | (A) Mean active fibre stress and (B) fibre stretch over the cardiac cycle in 16 AHA regions of the LV for healthy (black), DCM (blue), and HCM (red) groups.
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FIGURE 10 | Selected long-axis images which were part of the 12 cases (h1, h4, d2, d4) used in this study which demonstrate poor image quality due to imaging

artefacts. In the first row, the LV blood pool and myocardial segmentations obtained using the neural network are overlain on top of each image to qualitatively show

the impact of the image quality on the network segmentation. In the second row, the final fitted model surface is shown on top of the image.

errors than interobserver errors (Kerfoot et al., 2021). The
error can vary considerably throughout the cycle and between
patients as each image is treated individually—i.e., no temporal
consistency is taken into account in the neural network. There
was no single patient that performed worse than others. Higher
errors seen in the identification of landmark 8, on the septal
side of the aortic valve can be attributed to image artefacts
during systolic blood flow through the aortic outflow tract.
Although improvements can be made in future work to increase
the accuracy of both neural networks, the study focused on
demonstrating their utility in driving model generation and
biomechanical personalisation for a diverse set of patients.

In order to have a pipeline that is robust to the presence
of noise and artefacts in the imaging data, the neural network
training process introduces noise to the images in various ways
(e.g., dropout in k-space) so that it learns to account for the
noise it may encounter in the imaging data. Additionally, due
to the use of a model template fit to all short- and long-axis
contours simultaneously, the pipeline is robust to the presence
of a single or even multiple poor-quality images within a dataset.
This, however, can result in a smooth surface that does not
conform to small features. To demonstrate the robustness of
the neural network segmentation and resulting pipeline, selected
poor-quality images are shown in Figure 10 which were part
of the 12 datasets used in this study. The poor image quality
resulted in deteriorated segmentations. However, the final fitted
model, which also takes into account all short-axis information,
produced an adequate estimate of the long-axis shape. The

pipeline could be improved by further augmenting the neural
network with images that mimic typical artefacts found in
MR images.

4.2. Clinical Metrics
Beyond improving the generation of computational models,
trained neural networks provide a mechanism for automatically
characterising common clinical metrics. In the DCM group, the
mean EDV and ESV were greater than those measured in the
healthy volunteers. Similarly, the mean LVEF was less than that
in both the healthy group, marking the deteriorated contractile
and diastolic filling function typically clinically associated with
DCM (Rihal et al., 1991). Conversely, the mean EDV and ESV
values were slightly smaller in the HCM group when compared to
the healthy volunteers. As commonly reported in HCM patients,
the LVEF in this group was slightly elevated when compared to
the healthy group (Haland et al., 2017). HCM patients exhibited
greater wall thickness at both end-diastole and end-systole when
compared to both the DCM patients and healthy volunteers.
Typically, HCM is characterised by a wall thickness >12 mm
during diastole. Although the wall thickness values shown in
Table 2 report mean values <12 mm, isolated hypertrophic
regions in each patient demonstrate areas of hypertrophy >12
mm. Regional plots of wall thickness averaged over each cohort
are shown in Supplementary Figure 4 using the 17-segment
AHA model. In each of these three groups, no significant
differences were observed in the mean RVEF. However, the HCM
patients demonstrated lower values of EDV and ESV in the RV
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than the other two groups. This pipeline has demonstrated the
ability to rapidly generate common clinical metrics such as EF
and wall thickness as well as cavity volumes over the entire
cardiac cycle without the need for manual processing. Aside from
using these values in clinical decision making, they can also be
used as input into personalised biomechanical models.

4.3. Valve Motion
This study presents a novel means of constraining valve
motion. Displacement was prescribed to valve centroids based
on the motion of the identified landmarks from the neural
network. In other cardiac modelling studies, basal motion is
often constrained by restricting longitudinal motion (e.g., Sack
et al., 2018b; Finsberg et al., 2019; Wang Z. J. et al., 2020) or
applying an average motion measured from imaging data (e.g.,
Hadjicharalambous et al., 2017). In another study, basal motion
was constrained by tethering the pulmonary outflow tract to a
fixed point (Sack et al., 2018a). In truncated models, without the
inclusion of anatomical landmarks, tagged magnetic resonance
imaging (MRI) data is necessary to measure longitudinal motion,
which may not be available in all clinical scans. The use of a
biventricular model with all four valve annuli along with the
neural network-defined leaflet insertion points allowed for the
integration of longitudinal motion measured from imaging data
into the computational model. Further, to impose a constraint
similar to the stiff valve annulus, an additional stiffness term was
used to restrict annular dilation.

4.4. Model Personalisation
Integration of imaging data with personalised biomechanical
models enables estimation of intrinsic material stiffness
parameters, providing important information about the
mechanical state of the myocardium. In this study, we focused
on determination of bulk and fibre material parameters, fit
by adjusting their ratio, γ . The mean value of γ , which is
independent of pressure, was smaller for the healthy volunteers
than those estimated for the DCM and HCM patient groups.
These weak differences may indicate that the myocardium in
healthy individuals is more anisotropic than in pathological
hearts. However, these differences were not statistically
significant. A power analysis suggests that using eight samples
would enable these differences to reach significance. In order to
demonstrate statistically significant differences between αmax

values in the LV for DCM and HCM groups, 11 samples would
be needed. To distinguish differences between the time to peak
contraction in diseased patients and healthy volunteers, 46
samples are needed. Therefore, future studies will aim to expand
the sample size to demonstrate the pipeline’s utility in providing
metrics which distinguish between patient groups.

Simulation outcomes such as strain are relatively independent
of the estimated value of γ since the simulations are driven by
cavity volumes. However, stress would be more affected by a
change in passive material properties. Fibrosis, common in both
DCM and HCM patients (Aurigemma et al., 2006; Marian and
Braunwald, 2017), results from the growth of collagen within
cardiac tissue and may impact tissue anisotropy. The estimated
value of γ is also strongly influenced by the angles defined in the

rule-based fibre field (Asner et al., 2015; Hadjicharalambous et al.,
2017; Campos et al., 2020). As rapid in vivo diffusion tensor MRI
sequences improve (Stoeck et al., 2018), personalised fibre fields
will augment the robustness of the presented pipeline. Methods
of using low-resolution in vivo data along with statistical
models of population fibre fields may provide a new means of
personalisation without significantly adding to the clinical scan
time (Stimm et al., 2021).

The objective function used for determining the optimal value
of γ utilised LV contour points only. The RV deformation is
impacted significantly by epicardial boundary conditions due to
its thin wall. Various approaches have been used in previous
studies to constrain epicardial dilation, such as a spring force
acting in the normal direction (Levrero-Florencio et al., 2020;
Strocchi et al., 2020) or parallel spring and dashpot forces (Pfaller
et al., 2019). However, there remains a lack of clear consensus
on the role of the pericardium in restricting myocardial motion
and whether or not the inclusion of epicardial constraints
improves model personalisation. Therefore, simulations in this
study were run without the addition of boundary conditions on
the epicardium. However, without these constraints, the right
ventricular deformation did not sufficiently match the imaging
data (Supplementary Figure 6). Objective function curves with
and without the inclusion of RV free wall points are shown
in Supplementary Figure 7. Including the RV in the objective
function resulted in larger errors and, in some cases, resulted
in curves with no unique minimum. The inclusion of the RV in
the mechanics problem, however, plays a vital role in restricting
motion of the septum (Hadjicharalambous et al., 2017). In future
studies, RV epicardial boundary conditions should be tested
which result in accurate RV deformation.

This method also presents an elegant solution for estimating
dynamically varying active scaling parameters in both the LV and
RV in the forward model problem. It avoids data assimilation
methods which often require repeated simulations and thus, the
presented method reduces computation time. In some diseased
states, contractility can vary regionally over the whole heart, such
as the case in patients with a myocardial infarction (Chabiniok
et al., 2012). In this case, utilising additional constraints on
regional displacements, the current method could be adapted to
have a spatially varying activation parameter. The method could
be also be augmented by adding a time-varying activation model,
such as an Eikonal model (Keener, 1991), to specify the spatially
varying sequence of activation.

4.5. Regional Stress and Strain
From full-cycle simulations, active fibre stress and fibre stretch
were plotted over 16 AHA regions in Figure 9 illustrating
regional differences. In some DCM cases, fibre stretch in some
regions was greater than one in early systole, signifying dilation.
This may be due to regional systolic dysfunction in these cases.
In general, DCM cases showed smaller magnitudes of fibre
stretch than healthy and HCM groups, in line with typical
systolic dysfunction marked in DCM (Hayashida et al., 1990).
Fibre stretch, as opposed to circumferential and longitudinal
stretch, could provide more direct measurements of how
muscle fibres change with disease. Circumferential stretch
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measured from the models, plotted in Supplementary Figure 8,
were comparable to circumferential strain measured from
ultrasound in healthy individuals (Hurlburt et al., 2007;
Leitman et al., 2010; Duan et al., 2012). However, model-
derived longitudinal stretch was underestimated compared with
longitudinal strain from ultrasound. Longitudinal strain is largely
dependent on the defined fibre orientation and the model
used to describe active contraction. In future, patient-specific
fibres as well as constitutive models should be adapted to
achieve physiological longitudinal strains. Stress and strain from
personalised simulations such as these can provide valuable
insights into cardiac function on an individual basis.

4.6. Limitations
In previous cardiac modelling studies, inverse methods have
been used to estimate the unloaded geometry of the heart
(Krishnamurthy et al., 2013; Wang Y. et al., 2020) which are
dependent on the choice of material law, stiffness parameters
and boundary conditions. In other studies, various points in the
cardiac cycle have been used as the reference geometry including
end-systole (Wang et al., 2009), early-diastole (Xi et al., 2013),
and diastasis (Wang et al., 2018). However, physiologically, the
heart is never in an entirely unloaded state. In early diastole,
residual active stress may be present and in all phases of
diastolic filling, the cavity pressure is never zero. Although
passive parameter estimates have been shown to be minimally
affected by changing the reference state from end-systolic to
early-diastolic geometries (Hadjicharalambous et al., 2014b), the
impact of the choice of reference state is examined further
in Hadjicharalambous et al. (2021) and should be assessed in
biventricular patient-specific modelling.

The personalised parameters in this study, e.g., a0, af , αlv,
and αrv, are all dependent on pressure estimates. If available,
catheter measurements from within the LV cavity would enable
accurate scaling of these parameters for each individual, and
better certainty on model data. LV filling pressures can also be
approximated with knowledge of the peak blood flow through
the mitral valve as well as the mitral valve peak annular velocity
(Nagueh et al., 1997). Given that the mitral valve annular
velocity can be obtained in the current pipeline using the
landmark predicted valve points, the additional acquisition of 4D
flow MR imaging could provide measurements of peak blood
flow, enabling appropriate personalisation of all parameters
through non-invasive imaging. New methods, such as the use
of microbubbles within the LV (Forsberg et al., 2005; Dave
et al., 2012), may soon enable more accurate non-invasive cavity
pressure measurements. Here, we demonstrate the feasibility of
the personalised modelling method using standardised pressure
data. If available, pressure data can easily be incorporated into the
current pipeline.

5. CONCLUSIONS

This work presents a pipeline using neural networks for
generating high quality biventricular models from standard MR
cine data. A cohort of 12 individuals were used to demonstrate
the pipeline in three different groups: healthy volunteers, DCM

patients and HCM patients. Despite the varied morphology and
motion of each case, the automated pipeline robustly allowed for
determination of a unique passive material parameter describing
the tissue anisotropy (γ ) as well as two active scaling parameters
controlling systolic contraction in the LV and RV (αlv and αrv).
The entire pipeline was run using only images from a typical
clinical scan, demonstrating its potential to be applied to a large
cohort of retrospective data. The use of neural networks along
with the model fitting step significantly sped up the process for
creating high-quality finite element models. cardiac cycle. This
study demonstrates a pipeline that is suitable to model cardiac
mechanics and estimate personalised parameters in a diverse
cohort of individuals including healthy volunteers, DCM and
HCM patients with varying morphologies.
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