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Prohibitin 1 (PHB1) is an evolutionarily conserved and ubiquitously expressed protein

that stabilizes mitochondrial chaperone. Our previous studies showed that liver-specific

Phb1 deficiency induced liver injuries and aggravated lipopolysaccharide (LPS)-induced

innate immune responses. In this study, we performed RNA-sequencing (RNA-seq)

analysis with liver tissues to investigate global gene expression among liver-specific

Phb1−/−, Phb1+/−, and WT mice, focusing on the differentially expressed (DE) genes

between Phb1+/− and WT. When 78 DE genes were analyzed for biological functions,

using ingenuity pathway analysis (IPA) tool, lipid metabolism-related genes, including

insulin receptor (Insr), sterol regulatory element-binding transcription factor 1 (Srebf1),

Srebf2, and SREBP cleavage-activating protein (Scap) appeared to be downregulated

in liver-specific Phb1+/− compared with WT. Diseases and biofunctions analyses

conducted by IPA verified that hepatic system diseases, including liver fibrosis, liver

hyperplasia/hyperproliferation, and liver necrosis/cell death, which may be caused

by hepatotoxicity, were highly associated with liver-specific Phb1 deficiency in mice.

Interestingly, of liver disease-related 5 DE genes between Phb1+/− and WT, the mRNA

expressions of forkhead box M1 (Foxm1) and TIMP inhibitor of metalloproteinase (Timp1)

were matched with validation for RNA-seq in liver tissues and AML12 cells transfected

with Phb1 siRNA. The results in this study provide additional insights into molecular

mechanisms responsible for increasing susceptibility of liver injuries associated with

hepatic Phb1.
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INTRODUCTION

Liver disease is a comprehensive term, including diverse stages of the disorder related to liver injury,
and is one of the main causes of illness and death worldwide. According to Globocan 2018 by the
WHO, the incidence and mortality of liver cancer are the sixth and third highest in both sexes and
all ages, respectively (Bray et al., 2018). Although the risk factors include hepatitis B and C virus,
alcohol, obesity, etc., the cellular regulatory mechanisms for liver disease and accountable evidence
for physiological responses are yet to be explored (Smalling et al., 2013). It may be crucial to identify
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specific genes and pathway changes by liver injuries through
whole transcriptome analyses of a relevant animal model.
RNA-sequencing (RNA-seq) can proceed with a whole-
genome survey of gene expression and provide a digital
measure of the presence and prevalence of transcripts from
known and previously unknown genes (Wang et al., 2010;
Benjamin et al., 2014). The objective of the present study
was to conduct global gene expression analyses of liver-
specific Prohibitin 1 (Phb1) knockout (KO) mice as a liver
disease model. PHB1 is an evolutionarily conserved and
ubiquitously expressed protein that stabilizes mitochondrial
chaperone (Yang et al., 2018). The protein is located to
inner mitochondrial membrane and nucleus, so it regulates
several important cellular processes, including apoptosis, cell
proliferation, and transcriptional regulation by interacting with
retinoblastoma protein (Rb), p53, and E2F transcription factors
(Nijtmans et al., 2000; Ramani et al., 2016).

Liver-specific Phb1 homozygous KO (referred to as Phb1−/−)
mouse showed positive staining for OV-6, an oval cell marker,
and glutathione S-transferase Pi (GST Pi), a preneoplastic
marker, at 3 weeks old and exhibited spontaneous liver
injury, fibrosis, and hepatocellular carcinoma (HCC) from
8 months of age (Ko et al., 2010). A follow-up research
study demonstrated that lipopolysaccharide (LPS)-innate
immune responses were exacerbated by Phb1 deficiency, which
mimics Phb1−/−, in murine macrophages (Jung et al., 2020).
Furthermore, another research showed that there were no
significant differences in body weight between liver-specific
Phb1 heterozygote (referred to as Phb1+/−) and wild-type
(WT, referred to as Phb1+/+) mice, but Phb1+/− showed
more severe liver damage when feeding a methionine or
choline-deficient diet, compared with WT (Heo and Ko,
2019).

Collectively, these results suggested that liver-specific Phb1
deficient mice may be a suitable model to investigate molecular
mechanisms related to hepatotoxicity. In an earlier study,
we observed phenotypic differences and differential gene
expression, using microarray assay between Phb1−/− and
WT (Ko et al., 2010). On the basis of the result, we
have also investigated the vulnerability of hepatotoxicity in
deletion of Phb1 (Heo and Ko, 2019; Jung et al., 2020). As
part of research elucidating the susceptibility, it is necessary
to observe the genetic change in liver-specific Phb1+/−,
compared with WT to determine which genetic factors
increases the susceptibility of liver injuries. In the current
study, we aimed to investigate genome-wide gene expression
among liver-specific Phb1−/−, Phb1+/−, and WT mice by
using the RNA-seq method, focusing on the differentially
expressed (DE) genes between Phb1+/− and WT. Also, we
verified the expression level of hepatic disease-related genes
in normal murine hepatocytes transfected with Phb1 siRNA
to compare RNA-seq data. Through this comparison, DE
genes showing greater differences between Phb1+/− and WT
may provide sharper perceptions of alteration of physiological
responses in a liver-specific Phb1-deficient mouse as a liver
disease model.

MATERIALS AND METHODS

Animals, Liver Tissue, and Total RNA
Isolation
This study about sample collection was approved by Cedars-
Sinai Medical Centers (Los Angeles, CA, USA) (IACUC
9370). Liver-specific Phb1 deficient mice were generated as
previously described (Ko et al., 2010). Briefly, liver-specific Phb1
KO [Phb1loxp/loxp, Albumin-Cre+/+ (Alb-Cre+/+)] mice on a
C57BL/6 background, and Alb-Cre+/+ mice were maintained
for the generation of liver-specific Phb1-deficient mice. Selected
three males and three females per Phb1−/−, Phb1+/−, and WT
(4–5 weeks old, n = 6/genotype) were sacrificed for the harvest
of liver tissue. Obtained samples were stored at −80◦C until
analysis. Total RNA was isolated from liver tissue, using TRIzol
reagent (ThermoFisher, Waltham, MA, USA) according to the
guideline of the manufacturer.

RNA-seq and Data Analysis
The RNA quality based on the RNA integrity number (RIN)
was assessed using the RNA R6K assay for the Agilent 2200
TapeStation (Agilent Technology, Santa Clara, CA, USA). RIN
scores were ranged between 8.5 and 9.5. For the RNA-seq
analysis, library preparation and sequencing analyses were
carried out at the Research Technology Support Facility
of Michigan State University (East Lansing, MI, USA).
Transcriptome (n = 6 for each WT, Phb1+/−, and Phb1−/−

mice, including three males and three females per group)
was analyzed, using a 1 × 50 bp single-end-read method of
Illumina HiSeq system (Illumina Inc., San Diego, CA, USA) as
described in earlier reports (Kong et al., 2017; Lee et al., 2020).
The raw reads were aligned with the mouse reference genome
(GRCm38.p6) downloaded from NCBI (https://www.ncbi.nlm.
nih.gov/assembly/GCF_000001635.26) using ArrayStar program
in Lagergene software package (DNAStar Inc., Madison, WI,
USA). Total mapped counts were transformed into log2 values of
the number of reads per million (RPM) to stabilize the variance,
and then further quantile normalization was performed.
Normalized values were subjected to further statistical analyses
performed by JMP Genomics 9 (SAS Institute Inc., Cary, NC).
The one-way ANOVA statistics was used to compare among
WT, Phb1+/−, and Phb1−/− mice. Genes showing >2-fold
changes (1 in log2) differences and <0.05 false discovery rate
(FDR) in the comparisons were considered DE genes. The raw
data were submitted to the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database
under accession numbers: SRR14876823, SRR14876822,
SRR14876815, SRR14876812, SRR14876818, SRR14876817,
SRR14876813, SRR14876821, SRR14876820, SRR14876819,
SRR14876816, SRR14876814, SRR14876807, SRR14876811,
SRR14876810, SRR14876809, SRR14876808, and SRR14876806.

Bioinformatics Pathway Analyses
For pathway analyses, ingenuity pathway analysis (IPA; Qiagen,
Valencia, CA; http://www.ingenuity.com) software was used for
functional annotation, canonical pathway analysis, upstream
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analysis, and network discovery. The IPA core analyses are based
on previous knowledge of the associations of upstream regulators
and their downstream target genes archived in the ingenuity
knowledge base. The p-values were calculated by Fisher’s exact
test for the upstream regulator analysis.

Validation for RNA-seq Using RT-PCR in
Liver Tissues
For cDNA synthesis and PCR, a Verso cDNA synthesis kit
(ThermoFisher, Waltham, MA, USA) and Promega PCR master
mix (Promega Corp., Madison, WI, USA) were used. PCR
reactions were carried out at 95◦C for 2min, followed by 22 or
32 cycles with denaturation at 95◦C for 30 s and annealing and
elongation at 55◦C for 45 s and 72◦C for 1min. Band density
was determined, using Image J software (National Institutes of
Health, Bethesda, MD, USA). The gene expression levels were
normalized to the expression levels of the GAPDH housekeeping
gene. Relative quantification was reported as fold changes
compared to control samples. The primer sequence of RT-PCR
used in the experiment is shown in Supplementary Material 1.

Cell Culture
The normal murine hepatocyte cell line, AML12 cells were
obtained from American Type Culture Collection (ATCC,
Manassas, VA, USA). AML12 cells were cultured in a 1:1 mixture
of Dulbecco’s modified Eagle’s medium and Ham’s F12 medium
(Cytiva/Hyclone, Marlborough, MA, USA), supplemented with
10% fetal bovine serum (FBS) (ThermoFisher, Waltham, MA,
USA), 1% penicillin and streptomycin (ThermoFisher, Waltham,
MA, USA), 0.5mM sodium pyruvate (Sigma-Aldrich, St. Louis,
MO, USA), 5µg/ml insulin, 5µg/ml transferrin, and 5 ng/ml
selenium (ITS) (Sigma-Aldrich, St. Louis, MO, USA), 40 ng/ml
dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), and 0.6 g
of sodium bicarbonate (Daejung Co., Siheung, Korea). The cells
were maintained at 37◦C and in a 5% CO2 humidified incubator.

Knockdown of Prohibitin 1 by Small
Interfering RNAs
Predesigned small interfering RNA (siRNA) targeting mouse
Phb1 (ThermoFisher, Waltham, MA, USA) with different
knockdown (KD) efficiency and nonspecific scrambled
siRNA (ThermoFisher, Waltham, MA, USA) were purchased.
Briefly, AML12 cells were seeded and transfected in a six-
well plates at density of 0.2 × 106 cells/well with 13 nM
siPhb1 (sense: AGAGCGAGCGGCAACAUUTT, antisense:
AAAUGUUGCCGCUCGCUCUGT), which mimics Phb1−/−,
50-nM siPhb1 (sense: GCCGCUGUCAAUAAAUCACTT,
antisense: GUCAUUUAUUGACAGCGGCTT), which mimics
Phb1+/−, or scramble siRNA supplemented with Lipofectacmine
RNAi MAX (ThermoFisher, Waltham, MA, USA), following the
guideline of the manufacturer.

qRT-PCR for Expression of Target Genes
Total RNA was isolated from AML12 cells transfected with
siRNAs by using TRIzol reagent (ThermoFisher, Waltham,
MA, USA) according to the guideline of the manufacturer.
First-strand complementary DNA (cDNA) was prepared from

2 µg of total RNA, using RevertAid First Strand cDNA
Synthesis Kit (ThermoFisher, Waltham, MA, USA) according
to manufacturer’s protocol. Quantitative PCR (qPCR) was
performed with the Maxima SYBR Green/ROX qPCR Master
Mix (2X) (ThermoFisher, Waltham, MA, USA). The reaction
was performed in a volume of 10 µl, containing 50 ng of
cDNA, 0.3µM of each primer (Supplementary Material 2) and
5µl maxima SYBR Green/ROX qPCR Master Mix (2X), which
were run in duplicate, using a QuantStudio3 thermocycler
(ThermoFisher, Waltham, MA, USA). Amplification was carried
out with a template denaturation at 95◦C for 10min, followed
at 95◦C for 15 s and 60◦C for 1min for 40 cycles. The gene
expression levels were normalized to the expression levels
of the β-actin housekeeping gene and calculated using the
2−11Ct method.

Statistical Analysis
Data on validation using RT-PCR and qRT-PCR were presented
as the mean ± standard deviation. Differences among groups
were determined by one-way ANOVA analysis with Duncan post-
hoc test, using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).
Values of p < 0.05 were considered statistically significant.

RESULTS

RNA-seq Results
A total of 18 RNA-seq libraries were constructed using RNA
samples extracted from the liver obtained from WT, Phb1+/−,
and Phb1−/−. After filtering low read counts and normalization,
a total of 8,982 transcripts remained. Of those, only mRNAs
showing FDR <0.05 and log2 fold change >1 or <−1
(linear fold change >2 or <−2) were considered differentially
expressed (DE) genes for further bioinformatics analyses and
PCR validation. Using these criteria, this study was able to
select 78 (15 up- and 63 downregulation) DE genes in Phb1+/−

mice, compared with WT. The complete gene list for 78DE
genes is provided in Supplementary Material 3. Several genes,
including optic atrophy 1 (Opa1), mitofusin 1 (Mfn1), and
mitofusin 2 (Mfn2), which are involved in mitochondrial fusion
and fission, contributing to mitochondrial morphology, were not
differentially expressed between Phb1+/− and WT. Expression
of mitochondrial cytochrome c oxidase (Cox) responsible for
aerobic energy generation was also no difference in Phb1+/−,
compared with WT (data not shown). But these mitochondrial-
related genes are downregulated in Phb1−/− (data not shown).
This result can indicate that half of the reduction in Phb1
expression may not affect mitochondrial dysfunction.

The 10 Most DE Genes in Hetero
Compared With WT
The full name of the 10 most DE genes in the Phb1+/− group
compared WT (plus FC values and FDR in KO compared with
WT) and their functional characteristics are shown inTables 1, 2.
Of those, upregulated genes were involved in nucleolar functions
(Nol3, Hist1h2b, and Snora17), xenobiotic enzyme (Sult1e1),
ubiquitin peptidase (Usp2), and circadian functions (Ciart, Per2).
The 10 most downregulated genes appeared to be involved
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TABLE 1 | The 20 most differentially expressed genes, comparing between Phb1+/− vs. WT, Phb1−/− vs. WT, and Phb1−/− vs. Phb1+/−.

Symbol Entrez gene name Hetero vs. WT KO vs. WT KO vs. Hetero

Log2FC FDR Log2FC FDR Log2FC FDR

Gm40498 Predicted gene, 40498 7.0 1.3E-02 10.0 1.0E-03 3.0 3.2E-01

HIST1H2BM Histone cluster 1 H2B family member m 5.5 3.5E-02 2.3 4.2E-01 −3.2 2.3E-01

SULT1E1 Sulfotransferase family 1E member 1 2.7 3.8E-03 2.4 8.7E-03 −0.3 7.9E-01

CIART Circadian associated repressor of transcription 1.4 4.0E-02 0.4 5.8E-01 −1.0 1.6E-01

Gm38832 Predicted gene, 38832 1.4 2.7E-04 −1.2 7.0E-04 −2.6 3.4E-07

Gm40368 Predicted gene, 40368 1.3 3.9E-02 2.5 3.5E-04 1.2 4.7E-02

USP2 Ubiquitin specific peptidase 2 1.3 9.4E-03 −0.6 2.4E-01 −1.8 5.2E-04

NOL3 Nucleolar protein 3 1.1 4.8E-02 4.2 3.5E-07 3.2 8.4E-06

Snora17 Small nucleolar RNA, H/ACA box 17 1.0 1.9E-02 2.2 4.0E-05 1.2 8.2E-03

PER2 Period circadian regulator 2 1.0 2.1E-02 0.6 1.9E-01 −0.4 3.6E-01

MYBL1 MYB proto-oncogene like 1 −3.3 2.1E-02 3.8 8.0E-03 7.1 4.1E-05

RAD51AP1 RAD51 associated protein 1 −3.5 2.3E-02 3.3 2.9E-02 6.8 1.4E-04

PYCR1 Pyrroline-5-carboxylate reductase 1 −3.8 9.0E-03 5.3 8.0E-04 9.1 3.9E-06

KIFC1 Kinesin family member C1 −3.9 4.8E-02 2.2 2.8E-01 6.0 3.2E-03

FZD3 Frizzled class receptor 3 −3.9 2.3E-02 5.3 3.5E-03 9.2 2.3E-05

F13A1 Coagulation factor XIII A chain −4.1 1.1E-02 4.6 4.9E-03 8.7 1.7E-05

TIMP1 TIMP metallopeptidase inhibitor 1 −4.4 1.2E-02 6.4 6.9E-04 10.8 4.4E-06

SHC4 SHC adaptor protein 4 −4.5 7.3E-03 5.1 3.0E-03 9.7 8.9E-06

ABCC12 ATP binding cassette subfamily C member 12 −4.6 3.9E-03 3.9 1.3E-02 8.5 1.6E-05

TUBB2B Tubulin beta 2B class IIb −4.8 1.5E-02 7.6 5.2E-04 12.4 4.2E-06

“Hetero” and “KO” in tables represent “Phb1+/−” and “Phb1−/−”, respectively.

in potential transcription factors (Mybl1), telomere length
regulation (Rad51ap1), mitochondrial enzyme (Pycr1), DNA
synthesis (Kifc1), receptors (Fzd3), coagulation factor (F13a1),
TIMP inhibitor of metalloproteinase (Timp1), adapter protein in
receptor tyrosine kinase (Shc4), membrane transporter (Abcc12),
and structural protein (Tubb2b).

Validation of Five DE Genes
Of 78DE genes in the liver-specific Phb1+/− group, forkhead box
M1 (Foxm1), Timp1, Usp2, stearoyl-CoA-desaturase 1 (Scd1),
and Sult1e1 are known to be associated with hepatic system
disease (Haimerl et al., 2009; Wang et al., 2011; Hu et al., 2014;
Lounis et al., 2016; Matsushita et al., 2017). We verified the five
DE genes obtained RNA-seq data, using RT-PCR in the same liver
tissues, in addition to qRT-PCR in normal murine hepatocytes
transfected with siPhb1. Phb1 was silenced by siRNAs, which
mimic Phb1−/− and Phb1+/− (Supplementary Materials 4, 5).
The mRNA expression levels of all 5 DE genes were well-matched
between Phb1+/− and WT in terms of the direction (Table 3;
Figures 1A,B). But, in in vitro validation, the mRNA expression
levels of Foxm1 and Timp1were only matched with RNA-seq and
RT-PCR validation in liver tissues (Table 3; Figure 1C), which
may be due to differences between animal tissues and cell culture.
These results confirmed both validity of RNA-seq data for further
pathway analyses and the reliability of our liver disease model,
indicating that half deficiency of Phb1 in the liver can elucidate
the altered molecular mechanisms related to liver injuries.

Bioinformatic Pathway Analyses: Upstream
Regulators and Molecular Networks
The 78 DE genes in Phb1+/− compared with WT were
subjected to core pathway analyses, using ingenuity pathway
analysis (IPA) software. Upstream regulator analysis was
conducted with enriched pathways and p-value computed
by IPA literature review algorithm. The resulting causal
networks were scored for known physiological relationships
with diseases, functions, genes, or chemicals in the liver tissue
and liver cell lines. Causal networks derived by participating
the regulator molecule, which controls the expression effector
molecules in the given dataset. Thus, causal networks are small
hierarchical networks of regulators that control the expression
of the given data set. Upstream regulator analyses containing
networks provide positive and negative z-scores (≥2 and ≤−2,
respectively), which are considered significant predictions of
activation and inhibition, respectively. Results showed that sterol
regulatory element-binding transcription factor 2 (Srebf2) (z-
score = −3.12), Srebf1 (z-score = −3.08), SREBP cleavage-
activating protein (Scap) (z-score = −2.98), insulin receptor
(Insr) (z-score = −2.62), ATPase copper transporting beta
(Atp7b) (z-score = −2.65), and nuclear receptor coactivator
2 (Ncoa2) (z-score = −2.00) were predicted to be inhibited,
while peroxisome proliferator-activated receptor alpha (Pparα)
(z-score = 2.16) was predicted to be activated in liver of
Phb1+/− mice (Table 4). Figure 2 showed these three potential
interactions were centered with: (1) Scap, Srebf1, Srebf2; (2)
Atp7b, Ncoa2; (3) Pparα, Ncoa2. Similarly, causal network
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TABLE 2 | Biological functions of the 10 most up- and down-regulated genes between Phb1+/− vs. WT.

Symbol Functions

Gm40498 • Predicted gene

Hist1h2bm • Is a protein which is intronless and encodes a member of the histone H2B family

Sult1e1 • Is an estrogen sulfotransferase (EST), which is a major sulfotransferase isoform

• Expresses in multiple human tissues

• Regulates estrogen homeostasis by sulfonating and deactivating estrogen (Guo et al., 2015)

Ciart • Forms a complex with other clock proteins and modulates the circadian machinery (Hatanaka and Takumi, 2017)

• Associates mutant human CIART gene with grade 4 astrocytoma in human brain (Lee et al., 2017)

Gm38832 • Predicted gene

Gm40368 • Predicted gene

Usp2 • Is a member of the family of de-ubiquitinating enzymes, encoding a ubiquitin-specific protease

• Stabilizes mouse double minute 2 (MDM2) and mouse double minute 4 (MDM4) to degrade p53 (Young et al., 2019)

• Knockdown of USP2 inhibits hepatocyte apoptosis by elevating levels of c-Flip as an anti-apoptotic protein (Haimerl et al., 2009)

Nol3 • Is an apoptosis repressor with caspase recruitment domain

• Can protect against cell death by interacting with Bax, preventing mitochondrial dysfunction (Gustafsson et al., 2004)

• Ras induces NOL3 in epithelial cancers and NOL3 play a role in the oncogenic actions of Ras (Wu et al., 2010)

Snora17 • Is a non-coding small RNA; unknown function

Per2 • Is a member of the Period family of gene, which plays a role in circadian rhythms

• Polymorphisms in this gene may increase the risk of getting certain cancers and have been linked to sleep disorders

• Loss of the clock gene PER2 decreases erythrocyte life span (Sun et al., 2017)

Mybl1 • Expresses predominantly as a tissue-specific transcription factor in spermatocytes and breast epithelial cells (Tang and Goldberg, 2012)

• Is a master regulator of meiotic genes related to multiple processes in spermatocytes that required for cell cycle progression (Bolcun-Filas et al., 2011)

Rad51ap1 • Its disruption blocks alternative lengthening of telomeres (ALT) activity and leads to extensive telomere shortening in ALT+cancer cell lines

(Barroso-González et al., 2019)

• RAD51AP1 silencing suppresses the epithelial-mesenchymal transition (EMT) and metastasis of non-small cell lung cancer (NSCLC) (Wu et al., 2019)

Pycr1 • PYCR1 is localized in the mitochondria, related to conversion of glutamate to proline (De Ingeniis et al., 2012)

• A key enzyme in proline production and high levels of PYCR1 is involved in a compensatory mechanism allowing tumor expansion (Loayza-Puch

et al., 2016)

Kifc1 • A highly expressed in a variety of neoplasm and promotes EMT and metastasis of hepatocellular carcinoma via gankyrin/AKT signaling (Han et al., 2019)

• Involves in regulating DNA synthesis in S phase and chromatin maintenance in mitosis, and maintains cell growth in a nuclear transport-independent

way (Wei and Yang, 2019)

Fzd3 • A member of the frizzled gene family and is a susceptibility locus for schizophrenia

• Expresses in the mouse anterior neural tube and controls proper midbrain morphogenesis (Stuebner et al., 2010)

F13a1 • Encodes the coagulation factor XIII A subunit which is a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B

subunits (FXIII-B)

• Congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization (Souri et al., 2015)

Timp1 • A natural inhibitor of the matrix metalloproteinases (MMPs), a group of peptidases involved in degradation of the extracellular matrix, but able to exert

multiple effects on cell growth, proliferation, differentiation and apoptosis, in an MMP-independent manner

• TIMP1 deficiency exacerbates carbon tetrachloride-induced liver injury and fibrosis in mice (Wang et al., 2011)

• Displays complete pro-tumor activities through its upregulation in liver tissue and serum from patients and mouse model with liver disease (Yoshiji et al.,

2000)

• Shows MMP-independent role of TIMP1 at the blood brain barrier during viral encephalomyelitis (Savarin et al., 2013), or regulation of adipogenesis of

adipose-derived stem cells via Wnt singnaling pathway (Wang et al., 2020)

Shc4 • Involves in coupling receptor tyrosine kinases to the Ras-mitogen activated protein kinase signaling pathway, and to have a predominant cytoplasmic

distribution (Ahmed and Prigent, 2014)

• Acts non-canonically to promote phosphorylation of select epidermal growth factor receptor (EGFR) residues (Wills et al., 2014)

Abcc12 • Is a member of the superfamily of ATP-binding cassette (ABC) transporters and the MRP subfamily which is involved in multi-drug resistance

• In all the breast cancer tissues, the expression of ABCC12 gene 3.74 times higher than in controls (Esmaeili et al., 2018)

Tubb2b • Microtubules, which is a key participant in processes such as mitosis and intracellular transport, are composed of heterodimers of alpha- and

beta-tubulins

• Among taxane-based chemotherapy group, cases with higher β-tubulinIII expression were associated with a significantly more favorable prognosis

compared with those having lower β-tubulinIII expression (Aoki et al., 2009)

regulator analysis showed that Srebf2 (z-score = −3.16), Srebf1
(z-score = −3.16), Scap (z-score = −3), Insr (z-score = −2.65),
Atp7b (z-score = −2.65), insulin-like growth factor 1 (Igf1) (z-
score=−2.53) were predicted to be inhibited, while arachidonic
acid (z-score = 2.31) was predicted to be activated (Table 5).

Srebf1, Srebf2, and Scap, which are involved in regulating cellular
lipid metabolism, were listed as the highest ranks of causal
network regulators. The predicted downstream target molecules
of arachidonic acid were mitogen-activated protein kinase 14
(Mapk14) and Srebf1, followed by downregulating molecules
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TABLE 3 | The selected 5 DE genes in comparison between Phb1−/−, Phb1+/−,

and WT.

Gene symbol Hetero vs. WT KO vs. WT KO vs. Hetero

RNA-seq*

Foxm1** −3.1 7.9 24.3

Timp1** −20.6 86.1 1,769.3

Usp2 2.4 2.2 −3.6

Scd1 −2.6 −2.8 −1.1

Sult1e1 6.6 5.4 −1.2

“Hetero” and “KO” in Tables represent “Phb1+/−” and “Phb1−/−”, respectively.

*Values mean linear fold changes and only statistically significant values (FDR < 0.05) are

in bold.

**Consistent with validation for RNA-seq by RT-PCR from liver tissues and qPCR from

AML12 cells transfected with Phb1 siRNA.

involved in cholesterol and triglycerides (TG) synthesis such as
farnesyl diphosphate synthase (Fdps), cytochrome P450 family
51 subfamily A member 1 (Cyp51a1), and Scd1 (Figure 3A). Igf1
was predicted to be inhibited and downregulated similar genes
associated with cholesterol and triglycerides via Insr (Figure 3B).
Also, Timp1 is one of the target molecules of Igf1 via signal
transducer and activator of transcription 3 (Stat3) (Figure 3B).

The most critical diseases and biofunctions (Table 6),
molecular and cellular functions (Table 7), and physiological
system development and functions (Table 8) were identified with
influences of 78 DE genes, and specific genes involved in all
diseases and functions were listed in Supplementary Material 6.
Of diseases and biofunctions listed in Table 6, hepatic system
diseases were ranked as the second. The molecules, including
Scd1, Acta2, collagen type I alpha 1 chain (Col1a1), Timp1,
Foxm1, Sult1e1, and plasminogen activator (Plat), are also
involved in hepatotoxicity pathways, such as liver fibrosis,
liver hyperplasia/hyperproliferation, liver proliferation, and
liver necrosis/cell death (Table 9). Molecules associated with
hepatotoxicity were shown in Figure 4. Hepatic DE genes in
Phb1+/− mice showed increased risks of hyperplasia of the
liver, apoptosis of liver cells, hepatic injury, and hepatoma and
decreased functions in the proliferation of liver cells and fibrosis.
The hepatotoxicity analysis indicates that Phb1+/− mice may
become more susceptible with liver damages/injuries.

Molecular network analysis produced five potential molecular
interactions among 78 DE genes (Table 10). The most interesting
network #1 centered with regulatory molecules, including Pparα
and Srebf1, which were discussed in upstream regulators above,
in addition to tumor necrosis factor (TNF), which is predicted to
be inhibited. Molecules interacting network #1 are connected to
functions of lipid metabolism, small molecule biochemistry, and
vitamin and mineral metabolism (Table 10; Figure 5).

DISCUSSION

In this study, we examined the hepatic transcriptome of liver-
specific Phb1 deficient mice and identified biological functions
and genes associated with hepatotoxicity, lipid metabolism,
and metabolic disorders. IPA suggested a network related to

hepatotoxicity, which is composed of Foxm1, Timp1, Usp2,
Scd1, and Sult1e1. These data exhibited that decreased Phb1
in hepatocytes contributed to abnormal proliferation of various
liver cell types and cancer cell transformation by upregulated or
downregulated genes. Also, IPA analysis with DE genes suggested
increasing arachidonic acid and suppressing Igf1-mediated
signaling as causal networks in liver-specific Phb1+/−, compared
with WT. They had in common with downstream targets as
Timp1, Scd1, Fdps, and Cyp51a1 (Figure 3), which are mainly
associated with the extracellular matrix, fatty acid metabolism,
and steroid biosynthesis (Ge et al., 2020; Yan et al., 2020) and
downregulated via Mapk14, Srebf1, Stat3, and Insr. This finding
is in line with the blocking of activation of phosphoinositide 3-
kinase by insulin via p38 Mapk in hepatocytes with arachidonic
acid (Talukdar et al., 2005) and evidence that arachidonic acid has
the potential to decrease insulin-mediated activation of Srebp-1c
by inhibiting liver X receptor (Lxr) activation in rat hepatocytes
(Chen et al., 2004). Also, Igf1 and Insr-mediated Cyp51a1 were
predicted as a downregulated enzyme, and related research
reported that hepatocyte Cyp51KO mice showed inflammation
and mild-to-moderate portal fibrosis and abnormal hepatic
sterol metabolism (Urlep et al., 2017). Collectively, these results
may elucidate physiological changes by Phb1 and provide a
comprehensive understanding of prognosis and prevention of
liver injuries, containing liver cancer.

Liver Disease-Related Genes
Of 78 DE genes, which were filtered out from liver-specific
Phb1+/− vs. WT, Foxm1, Timp1, Usp2, Scd1, Sult1e1, are
known to be associated with hepatotoxicity (Figure 4). Foxm1,
a transcription regulator, is located to the nucleus and highly
expressed in proliferating normal cells and various cancer cells
(Teh, 2012). The knockdown of FOXM1 in human hepatocellular
carcinoma (HCC) cell lines significantly alleviated cell cycle
arrest and cell growth suppression (Hu et al., 2014). In addition,
overexpression of FOXM1 is associated with an aggressive tumor
feature and poor prognosis of HCC (Sun et al., 2011). Unlike
earlier results of positive correlation between Foxm1 and HCC,
our transcriptomic profile demonstrated that fold change of
Foxm1 was rather reduced in Phb1+/− compared with WT
(Phb1+/− vs. WT, log2 FC=−1.6) (Supplementary Material 3)
and then increased in Phb1−/− compared with Phb1+/−

(Phb1−/− vs. Phb1+/−, log2 FC = 4.6) (data not shown).
This finding was consistent with validation using the PCR
method in liver tissues and AML12 cells transfected with siPhb1
(Figure 1). Deletion of Foxm1 is correlated with Ras-induced
HCC with stem cell features by accumulating reactive oxygen
species (ROS) (Kopanja et al., 2015). Another study revealed a
negative association with Foxm1/nuclear factor kappa B (NF-
kB) and methionine adenosyltransferase 1A (Mat1a) that is
responsible for catalyzes in the conversion of methionine to
homocysteine (Li et al., 2020). It was reported that Foxm1 directly
interacts with Mat1a, which is a tumor suppressor in the liver.
Collectively, it can be interpreted that Phb1 leads to a unique
change of the expression pattern of Foxm1 and may be a key
regulator, modulating the transcriptional activity of Foxm1 in
terms of tumorigenesis.
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FIGURE 1 | The mRNA expression levels of selected five DE genes in liver tissues and AML12 cells transfected with Phb1 siRNA. (A) The mRNA expression of

selected five DE genes in each group of three males and three females (n = 6/ genotype) was detected by RT-PCR. (B) Band density from RT-PCR was quantified with

Image J software and represented as the fold change of control and normalized Gapdh. (C) The mRNA expression levels of selected five DE genes in AML12 cells

transfected siPhb1 (n = 9) were detected by qRT-PCR and normalized b-actin. “LE” means “low efficiency”, represented Phb1+/−, and “HE” means “high efficiency”,

represented Phb1−/−. All data were expressed as means ± standard deviation. One-way ANOVA followed by Duncan’s post hoc test was performed, and differences

were considered statistically significant. *p < 0.05 vs. wild type (WT) and control, respectively. #p < 0.05 vs. Phb1+/− and low efficiency (LE). $p < 0.05 vs. scramble.

Likewise, Timp1 expression in the transcriptomic profile and
PCR validation was similar to the results of Foxm1 expression.
Previous studies explained increasing Timp1 expression as a
marker of extrahepatic and intrahepatic tumors from liver
tissues and serum (Ylisirniö et al., 2000; Yoshiji et al., 2000;
Yukawa et al., 2007). Also, Thiele et al. (2017) suggested
that hepatic Timp1 mRNA expression from WT mice was
upregulated in HCC tissue compared with adjacent paired
normal tissue when co-treated with diethylnitrosamine and
CCL4. In agreement with these studies, our transcriptomic profile
showed increased Timp1 expression in Phb1−/−, compared with
Phb1+/− (log2 FC = 10.8) (Table 1). On the contrary, Timp1
expression was rather decreased in Phb1+/−, compared with
WT, which was similar to Foxm1 (log2 FC = −4.4) (Table 1).
Wang et al. (2011) demonstrated the newly hepatoprotective

role of Timp1 during acute and chronic liver injuries, which
is positively regulated by the interleukin-6 (IL-6)/STAT3
signaling pathway. Our liver-specific Phb1-deficient mouse
showed different Timp1 expression patterns according to Phb1
depletion, which encompassed both protumor- and antitumor
activity of Timp1. It was previously reported that Timp1 was
increased in the liver from adipocyte-specific nuclear form
of SREBP-1c (nSREBP-1c) transgenic mice, showing human
nonalcoholic steatohepatitis (NASH) (Kakino et al., 2018).
However, Upregulation of Timp1 was reduced in the liver
from the Tnf−/− nSREBP-1c transgenic mice (Kakino et al.,
2018). Tomita et al. explained that control mice-fed-MCD diet
rapidly increased mRNA expression of Timp1 in the whole
liver, compared with both TNF receptors 1 (Tnfr1) and 2
(Tnfr2) knockout mice, representing Tnfr-double KO mice
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TABLE 4 | Upstream regulators between Phb1+/− and WT.

Upstream regulator Activation z-score p-value of overlap Target molecules in dataset

SREBF2 −3.12 5.42E-16 CYP51A1, FABP5, FDPS, IDI1, MSMO1, NSDHL, PCSK9, RDH11, SCD, SQLE

SCAP −2.98 3.49E-14 CYP51A1, FDPS, IDI1, MSMO1, NSDHL, PCSK9, RDH11, SCD, SQLE

INSR −2.62 7.27E-13 CYP51A1, FDPS, IDI1, MSMO1, NSDHL, SCD, SQLE

SREBF1 −3.08 1.04E-12 CYP51A1, FABP5, FDPS, IDI1, MSMO1, NSDHL, PCSK9, RDH11, SCD, SQLE

ATP7B −2.65 1.4E-11 Cyp2c40 (includes others), CYP51A1, FABP5, FDPS, IDI1, MSMO1, SQLE

PPARA 2.16 3.37E-08 Cyp2c40 (includes others), CYP51A1, FABP5, FDPS, IDI1, MSMO1, NSDHL, SCD,

SELENBP1, SQLE

POR 4.88E-08 CYP51A1, FDPS, IDI1, MSMO1, NSDHL, SCD, SQLE

MAPK14 0.15 1.05E-06 COL1A1, CYP51A1, FDPS, TIMP1

Ethanol −0.71 1.12E-05 ACTA2, NSDHL, PCSK9, SCD, SQLE, TIMP1

NCOA2 −2 1.13E-05 Cyp2c40 (includes others), CYP51A1, IDI1, NSDHL

FIGURE 2 | DE genes between Phb1+/− and WT, regulated by (A) Insr, Scap, Srebf1, and Srebf2; (B) Pparα; (C) Atp7b and Ncoa2. Red, green, orange, and blue

represent upregulation, downregulation, predicted upregulation, and predicted downregulation, respectively.
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TABLE 5 | Causal network regulators between Phb1+/− and WT.

Master regulator Molecule type Activation z-score p-value of overlap Target molecules in dataset

SREBF2 Transcription regulator −3.16 2.07E-16 CYP51A1, FABP5, FDPS, IDI1, MSMO1, NSDHL, PCSK9,

RDH11, SCD, SQLE

Arachidonic acid Chemical -

endogenous

mammalian

2.31 2.16E-16 COL1A1, CYP51A1, FABP5, FDPS, IDI1, MSMO1, NSDHL,

PCSK9, RDH11, SCD, SQLE, TIMP1

NR1H4 Ligand-dependent

nuclear receptor

−1.73 9.98E-15 ACTA2, CYP51A1, FABP5, FDPS, FOXM1, IDI1, MSMO1,

NSDHL, SCD, SQLE, SULT1E1, TIMP1

IGF1 Growth factor −2.53 2.69E-14 ACTA2, COL1A1, CYP51A1, FDPS, IDI1, MSMO1, NSDHL,

SCD, SQLE, TIMP1

SREBF1 Transcription regulator −3.16 2.69E-14 CYP51A1, FABP5, FDPS, IDI1, MSMO1, NSDHL, PCSK9,

RDH11, SCD, SQLE

SCAP Other −3 2.81E-14 CYP51A1, FDPS, IDI1, MSMO1, NSDHL, PCSK9, RDH11,

SCD, SQLE

BTG1 Transcription regulator −1.67 6.46E-14 ACTA2, COL1A1, CYP51A1, FDPS, IDI1, MSMO1, NSDHL,

SCD, SQLE

PTPN1 Phosphatase 1.67 5.3E-13 COL1A1, CYP51A1, FDPS, IDI1, MSMO1, NSDHL, SCD,

SQLE, TIMP1

INSR Kinase −2.65 7.27E-13 CYP51A1, FDPS, IDI1, MSMO1, NSDHL, SCD, SQLE

ATP7B Transporter −2.65 1.4E-11 Cyp2c40 (includes others), CYP51A1, FABP5, FDPS, IDI1,

MSMO1, SQLE

(Tomita et al., 2006). We can interpret that decreased Timp1
may act as an initial signal of liver injuries by Phb1+/−,
and then chronic liver injuries by Phb1−/− may represent a
rapid increase of Timp1. Since we recognize the importance to
uncover a direct correlation between Phb1 and Timp1, further
study is underway to assess the association. Nevertheless, both
RNA-seq and PCR validation in siPhb1-transfected hepatocytes
showed indirect inverse relevance between Phb1 and Timp1
in this research. Especially, Ko et al. already explained the
relation using microarray analyses (Ko et al., 2010), showing an
increase in the expression of Timp1 in liver-specific Phb1−/−

mice. Therefore, Timp1 may be an important enzyme that
predicts the extent of liver injuries by lack of the Phb1 gene.
Further investigations are needed to characterize functional
connections between Phb1 and Timp1 in the liver disease
model. Despite increased expression of Foxm1 and Timp1
in an environment with liver injuries, another possibility to
interpret the differential gene expression in Phb1+/− vs. Phb1−/−

may be deciphered by genetic compensation by the gene
knockout (El-Brolosy and Stainier, 2017). Genetic compensation
means that another gene takes over the role of the knocked-
out gene (De Souza et al., 2006). This concept is used for
explaining the discrepancy between knockdown and knockout
phenotypes. For example, it was reported that upregulated Emilin
3, which shares the functional domain with egfl7 represented for
endothelial extracellular matrix genes, was observed only in the
zebrafish egfl7 knockout, not in the knockdown, demonstrating
that Emilin 3 may compensate for the egfl7 knockout (Rossi
et al., 2015). Besides, both Prnp and Sprn proteins share
biological functions in early embryogenesis according to the
need for either Prnp or Sprn expression, showing that one
can compensate for the absence of the other in PrP-knockout

mammals (Young et al., 2009). According to these cases in
which gene expression is reversely regulated in the knockout
and knockdown comparison of the unique expression pattern of
Foxm1 and Timp1 in Phb1+/− and Phb1−/− may be explained by
genetic compensation. To specify the concept in our liver disease
model, further intensive research is necessary in the environment
with regulating the expression of Phb1.

Ubiquitin carboxyl-terminal hydrolase 2 (Usp2), which is
upregulated in Phb1+/− compared with WT (log2 FC = 1.3)
(Table 1), is a deubiquitinating enzyme and involved in
controlling activity and levels of protein under certain
physiological conditions. Usp2 has been reported to stabilize
mouse double minute 2 (Mdm2) and Mdm4, which are proto-
oncogenes with both p53-dependent or independent activities,
to degrade p53 (Benassi et al., 2012; Young et al., 2019),
maintaining the expression of p53 at a low level. Specifically,
protein-protein interaction assays using the bacterial two-hybrid
system showed that USP2 can deubiquitinate MDM2 and
promotes p53 degradation, showing the association between
USP2 and MDM2 (Stevenson et al., 2007). Especially, it was
reported that transfection of tumor-derived cell lines with siUsp2
resulted in increasing p53 protein expression and its target gene,
p21 (Stevenson et al., 2007). PHB1 has an ability to physically
interact with p53 and enhance p53-mediated transcriptional
activation by promoting its recruitment to promoters in two
breast cancer cell lines where it co-localizes with p53 (Fusaro
et al., 2003). Our transcriptome analysis showed that the
expression level of Usp2 was upregulated in Phb1+/− compared
with WT (log2 FC = 1.3) and then decreased in Phb1−/−

compared with Phb1+/− (log2 FC = −1.8) (Table 1). We can
infer that Phb1 may participate in enhancing Usp2-mediated
proteosome activity, and Phb1 deficiency may result in abnormal
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FIGURE 3 | Causal network between Phb1+/− and WT, regulated by (A)

arachidonic acid and (B) Igf1. Red, green, orange, and blue represent

upregulation, downregulation, predicted upregulation, and predicted

downregulation, respectively.

p53 stabilization and activation (Haupt et al., 1997; Honda and
Yasuda, 2000). Thus, we can explain that there is no defense
response against a high-stress environment, such as an increasing
susceptibility of liver injuries by the drastic shortage of Phb1,
represented to Phb1−/−.

Stearoyl-CoA desaturase-1 (SCD1) plays an important role
in the conversion of saturated fatty acids to monosaturated
fatty acids and further synthesis of TG (Lounis et al., 2016).
We expected that Scd1 expression in Phb1+/−, compared
with WT, also increased in transcriptome analysis, since our
previous research on the effect of Phb1 deficiency with siPhb1
knockdown on impaired lipid metabolism demonstrated
that palmitic acid promoted Scd1 mRNA expression levels
(unpublished data, under review). In the current study, Scd1
expression was decreased in Phb1+/− compared with WT
(log2 FC = −1.4) (Supplementary Material 3), and there
was no statistically significant difference between Phb1+/−

and Phb1−/− (Table 3). Wang et al. (2002a) reported that
PHB1-mediated transcriptional repression required histone
deacetylase (HDAC), and additional corepressors like N-CoR
are involved. Also, E2F transcription factors, which play a

key role in regulating mammalian cell cycle progression,
were controlled by PHB1, interacting with retinoblastoma
protein (Rb) (Wang et al., 2002b; Mishra et al., 2006). Recently,
combining research using lipidomics and transcriptome
analyses in Rb depletion in mouse embryonic fibroblast has
shown that Rb deficiency increases the concentration of fatty
acid, acylcarnitine, phosphatidylcholine, and arachidonoyl
ethanolamine (Muranaka et al., 2017). Also, Scd1 is most
strongly controlled by Rb, possibly through E2F and SREBP
transcription factors (Muranaka et al., 2017). Collectively, a
decrease in Scd1 expression in Phb1+/− compared with WT
may be due to the interaction between PHB1 and SCD1 at the
protein level, maintaining a balance between lipid catabolism
and anabolism.

Sulfotransferase family 1E member 1 (SULT1E1) is a cytosolic
enzyme, which is called as an estrogen sulfotransferase and is
responsible for the inactivation of β-estradiol (E2) involved in
changing estrogen metabolism and liver function (Li and Falany,
2007; Li et al., 2009; Xu et al., 2018). According to a study
on cystic fibrosis, which is an inherited disorder and affects
the lung, intestine, pancreas, and livers, hepatic Sult1e1 activity
was increased in cystic fibrosis transmembrane conductance
regulator (CFTR) −/− mice compared with CFTR+/+ (Li and
Falany, 2007). Also, the estrogen receptor α protein level was
reduced in CFTR−/−mice with high Sult1e1 activity, showing
high affinity between E2 and substrate of SULT1E1 and thereby
altering the level of estrogen-regulated proteins (Song, 2001;
Li and Falany, 2007). Wang et al. (2004) demonstrated the
association of PHB1 with E2F transcription factor 1 (E2F1)
and the repressive function of estrogen antagonists in human
breast cancer cells (Wang et al., 2004). Moreover, the PHB1
gene and protein expression were both markedly enhanced by
estrogen antagonists (Wang et al., 2004). In agreement with
these studies, Sult1e1 expression in the current transcriptomic
profile was increased by depletion of Phb1 in between Phb1+/−

and Phb1−/− compared with WT (log2 FC = 2.7 and 2.4,
respectively) (Supplementary Material 3). Both transcriptome
analyses and validation, using AML12 cells transfected with
siPhb1, showed a negative relationship between Phb1 and Sult1e1
(Figure 1C). We can infer that Phb1 deficiency is likely to
have relevance to increasing expression of Sult1e1. Also, Phb1
depletion may be a crucial status to elevate hepatic Sult1e1
activity responsible for repressing estrogen-related genes in terms
of its transcriptional activities. Thus, the association of Phb1
depletion with its effect on estrogen metabolism in livers needs
to be investigated further.

Lipid Metabolism and Metabolic Diseases
In addition to the hepatotoxicity of 5 DE genes between
liver-specific Phb1+/− and WT, there are some associations
with lipotoxicity. The role of fatty acid metabolism in cancer
initiation, progression, and drug resistance through the FOXO3-
FOXM1 axis had been mentioned (Saavedra-García et al., 2018).
Besides, compared with adipose tissue from controls, toll-like
receptor 2 (Tlr2) KO mice fed a high-fat diet that decreased
levels of Timp1, collagen 1, and transforming growth factor-
β1 (TGFβ1) (Song et al., 2018). Usp2 enhances the stability of
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TABLE 6 | Top diseases and biofunctions between Phb1+/− and WT.

Name p-value range Molecules

Gastrointestinal disease 4.87E-02 – 2.46E-04 ACTA2, COL1A1, SCD,TIMP1, FOMX1, PBK, PLAT, USP2

Hepatic system disease 4.87E-02 – 2.46E-04 ACTA2, COL1A1, SCD, TIMP1, FOXM1, USP2, PLAT

Organismal injury and abnormalities 4.87E-02 – 2.46E-04 ACTA2, COL1A1, SCD, TIMP1, PBK, PLAT, FOXM1, USP2

Cancer 1.77E-02 – 1.21E-03 ACTA2, PBK, PLAT, TIMP1, FOXM1

Cardiovascular disease 4.87E-02 – 3.56E-03 FOXM1, PLAT

TABLE 7 | Molecular and cellular functions between Phb1+/− and WT.

Name p-value range Molecules

Carbohydrate metabolism 4.19E-02 – 3.56E-03 SCD

Cell-to-cell signaling and interaction 3.56E-03 – 3.56E-03 SCD

Cellular assembly and organization 3.56E-03 – 3.56E-03 SCD

Lipid metabolism 4.87E-02 – 3.56E-03 SCD, FABP5

Molecular transport 4.97E-02 – 3.56E-03 SCD, FABP5

TABLE 8 | Physiological system development and function between Phb1+/− and WT.

Name p-value range Molecules

Cardiovascular system development and function 1.40E-02 – 1.74E-03 COL1A1, FOXM1, TIMP1

Digestive system development and function 4.53E-02 – 3.56E-03 FOXM1, COLA1A1, TIMP1, SCD, PLAT

Hepatic system development and function 4.53E-02 – 3.56E-03 FOXM1, COLA1A1, TIMP1, SCD, PLAT

Organ morphology 4.53E-02 – 3.56E-03 FOXM1, PLAT

Organismal development 4.53E-02 – 3.56E-03 FOXM1, COL1A1, TIMP1

TABLE 9 | Hepatotoxicity between Phb1+/− and WT.

Name p-value range Molecules

Liver fibrosis 1.36E-01 – 2.46E-04 SCD, ACTA2, COL1A1, TIMP1

Liver hyperplasia/hyperproliferation 1.00E00 – 3.56E-03 TIMP1

Liver proliferation 1.06E-01 – 1.40E-02 FOXM1, COL1A1, TIMP1

Liver necrosis/cell death 8.80E-02 – 2.12E-02 TIMP1

Liver damage 6.94E-02 – 6.94E-02 SCD, SULT1E1

fatty acid synthase (FASN) by impeding proteasome-dependent
degradation in human HCC (Calvisi et al., 2011; Kitamura
and Hashimoto, 2021). The high-fat diet-induced NAFLD rat
model showed increased protein levels of SULT1E1, compared
with mice-fed normal standard diet through proteomics analysis
and western blots analysis (Cong et al., 2021). From upstream
regulator analysis and causal network regulators, Insr, Scap,
Srebf1, and Srebf2 were predicted to be inhibited in liver-specific
Phb1+/− compared with WT (Tables 4, 5). SREBPs regulate
the biosynthesis of triglyceride (TG), fatty acids (FAs), and
cholesterol, which can increase the expression of genes related
to lipid synthesis and lipid uptake (Brown and Goldstein, 1997).
SREBF1 and SREBF2 encode three SREBP isoforms: SREBP-
1a, SREBP-1c, and SREBP-2, respectively. SREBP-1a and−1c are
usually expressed in the liver, adipose tissue, and adrenal gland
of mice and humans, whereas SREBP-2 is ubiquitously expressed

in cell lines, spleen, and intestinal tissues (Jeon and Osborne,
2012;Moslehi andHamidi-Zad, 2018).When cellular sterol levels
are high, SCAP, which is called ER membrane protein, interacts
with SREBPs in the endoplasmic reticulum (ER) membrane,
and the SREBP/SCAP complex moves to Golgi to translocate
to the nucleus and bind to the target gene promoters (Xiao
and Song, 2013; Moslehi and Hamidi-Zad, 2018). SREBP-1a
and−1c mostly activate fatty acid and TG synthesis, and SREPB-
2 increases transcription of genes related to cholesterol synthesis
and uptake. Remarkably, SREBP-1c is known to be controlled
by insulin treatment. Hegarty et al. (2005) showed that full
induction ofmature and transcriptionally active form of SREBP-1
in rat hepatocyte resulted from insulin treatment (Hegarty et al.,
2005). Many studies reported that insulin is one of the most
potent activators of SREBP-1c (Shimomura et al., 1999; Azzout-
Marniche et al., 2000; Zeng et al., 2017). We found that Insr,
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FIGURE 4 | A network of DE genes affecting functions related to “hepatotoxicity” between Phb1+/− and WT. Red, green, orange, and blue represent upregulation and

downregulation, predicted upregulation, and predicted downregulation, respectively.

SREBPs, and Scap were predicted to be inhibited in liver-specific
Phb1+/−, compared with WT (Tables 4, 5). Potential decrease of
Insr may interpret Insr-related insulin resistance in non-adipose
tissues like the liver, contributing to metabolic diseases. The
liver regulates various metabolism by insulin, which is triggered
by INSR (Samuel and Shulman, 2012; Knebel et al., 2018).
Liver-specific Insr-KO mice showed dramatic insulin resistance,
abnormal glucose homeostasis, and hyperinsulinemia (Michael
et al., 2000; Miao et al., 2014). In addition, according to a study
on patients with simple steatosis and NASH, downregulation
of SREBP-1c may be associated with the development of
burned-out NASH through decreasing quantification of SREBP-
1c positive hepatocyte nuclei and increasing mature SREBP-1c
levels by immunoblot analysis (Nagaya et al., 2010). The study
demonstrated that hepatic expression of SREBP-1c is increased in
simple steatosis but gradually decreases with fibrosis progression.
Based on these findings, we can speculate that Phb1 is relevant to
the downregulation of hepatic expression levels of SREBPs and
Insr, which control lipid metabolism and metabolic homeostasis
by insulin. However, SREBPs were not predicted as upstream
regulators between Phb1−/− and Phb1+/− (data not shown);
further study is necessary to investigate the hepatic expression
level of Insr and SREBPs in our liver diseasemodel for elucidating
contribution by gradual depletion of Phb1 on Insr-related insulin
resistance and pathogenesis of liver injuries.

Peroxisome proliferator-activated receptor alpha (Pparα) was
predicted as an increased upstream regulator in liver-specific
Phb1+/− compared with WT (z-score = 2.16) (Table 4). PPARα

is a key regulator of lipid oxidation, which regulates genes
involved in lipid and glucose metabolism and inflammation
in the liver (Li and Palinski, 2006). PPARα agonists, such as
fenofibrate and bezafibrate, are widely used to treat dyslipidemia,
preventing hepatic steatosis and improving insulin sensitivity
(Chou et al., 2002; Harano et al., 2006). We expected that if
Pparα is an upstream regulator, it will decrease its function
by Phb1 deficiency. Because our previous study showed that
the Pparγ mRNA expression level, one of the markers of
hepatic steatosis, was increased in normal murine hepatocytes
transfected with siPhb1, which mimics liver-specific Phb1−/−

(unpublished data, under review). On the other hand, our current
study depicted that a slight decrease in Phb1 may attribute
to increase Pparα. This trend was consistent with SREBPs as
other upstream regulators. In a previous study on a patient with
liver diseases, hepatic expression of SREBP-1c was increased in
simple steatosis (SS) but gradually decreased in mild NASH and
advanced NASH. Likewise, the hepatic mRNA level of PPARα

was significantly increased in SS and decreased in the mild NASH
and advancedNASH (Nagaya et al., 2010). Taken together, we can
infer that Phb1 deficiency at the early stage reflects a defective
mechanism via Pparα against abnormal lipogenesis and/or lipid
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TABLE 10 | Molecular networks between Phb1+/− and WT.

Network_ID Molecules in network Score Focus molecules Top diseases and functions

1 ACADL, ADIPOQ, CAT, CLOCK, COL1A1, CYP51A1,

Cyp2c40 (includes others), DBI, FABP5, FDPS, IDI1, IGFBP4,

LEPR, MAPK14, MBTPS1, MIF, MSMO1, NFIL3, NSDHL,

Ncoa6, P4HB, PCSK9, PEMT, PER2, PLIN5, PPARA,

RDH11, RGCC, SCD, SELENBP1, SQLE, SREBF1,

SULT1E1, TNF, USP2

28 16 Lipid metabolism, small molecule biochemistry,

vitamin and mineral metabolism

2 ABCB4, ACTA2, APOE, CYP7A1, FABP1, FOXM1, HGF,

HIF1A, KLF11, LEP, MIF, MMP2, NR1H4, PDGFC, PLAT,

S1PR2, STAT3, TGFB1, TIMP1, ethanol

5 4 Cellular movement, hematological system

development and function, immune cell trafficking

3 RASSF1, TUBB2B 2 1 Cell cycle, cellular assembly and organization,

cellular function and maintenance

4 IFI16, MTOR, TNK1 2 1 Cancer, endocrine system disorders, organismal

injury and abnormalities

5 GSTA1, GSTA3, Gsta1, MAF 2 1 Drug metabolism, glutathione depletion in liver,

endocrine system development and function

FIGURE 5 | A network relevant to “lipid metabolism”, “small molecule biochemistry”, “vitamin and mineral represented in a gene network (network ID 1). Red, green,

orange, and blue represent upregulation and downregulation, and predicted upregulation and downregulation, respectively.

catabolism. But dramatic depletion of Phb1 is no capable of
preventing impaired lipid metabolism and rapidly exacerbates
liver injuries.

CONCLUSIONS

In summary, our study demonstrated that the degree of
depletion in Phb1 reflects different physiological responses.

We characterized that Foxm1 and Timp1 can provide a basis
for investigating a molecular mechanism on the increased
susceptibility of liver injuries by Phb1 deficiency. Additionally,
SREBPs and Pparα may be key genes to elucidate the
pathogenesis of liver diseases relevant to Phb1 deficiency in terms
of lipidmetabolism. Taken together, these insightsmay lead to the
establishment of novel therapeutic strategies against liver diseases
containing liver cancer.
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