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Background: Fecal immunochemical testing (FIT) is an establishedmethod for colorectal

cancer (CRC) screening. Measured FIT-concentrations are associated with both present

and future risk of CRC, and may be used for personalized screening. However,

evaluation of personalized screening is computationally challenging. In this study, a

broadly applicable algorithm is presented to efficiently optimize personalized screening

policies that prescribe screening intervals and FIT-cutoffs, based on age and FIT-history.

Methods: We present a mathematical framework for personalized screening policies

and a bi-objective evolutionary algorithm that identifies policies with minimal costs and

maximal health benefits. The algorithm is combined with an established microsimulation

model (MISCAN-Colon), to accurately estimate the costs and benefits of generated

policies, without restrictive Markov assumptions. The performance of the algorithm is

demonstrated in three experiments.

Results: In Experiment 1, a relatively small benchmark problem, the optimal policies

were known. The algorithm approached the maximum feasible benefits with a relative

difference of 0.007%. Experiment 2 optimized both intervals and cutoffs, Experiment 3

optimized cutoffs only. Optimal policies in both experiments are unknown. Compared

to policies recently evaluated for the USPSTF, personalized screening increased health

benefits up to 14 and 4.3%, for Experiments 2 and 3, respectively, without adding

costs. Generated policies have several features concordant with current screening

recommendations.

Discussion: The method presented in this paper is flexible and capable of optimizing

personalized screening policies evaluated with computationally-intensive but established

simulation models. It can be used to inform screening policies for CRC or other diseases.

For CRC, more debate is needed on what features a policy needs to exhibit to make it

suitable for implementation in practice.

Keywords: colorectal cancer, personalized screening, fecal immunochemical test, screening interval, cutoff,

microsimulation models, evolutionary algorithm, FIT-history
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1. INTRODUCTION

Colorectal cancer (CRC) is an important cause of cancer
deaths. In 2020, it was the third most incident cancer type
and the second leading cause of cancer deaths worldwide
(Sung et al., 2021). CRC is preventable through screening,
and screening programs for CRC have been implemented in
many countries. A large proportion of these are based on the
Fecal Immunochemical Test (FIT) (Schreuders et al., 2015).
This test measures the concentration of hemoglobin (Hb) in an
individual’s stool sample. An increased concentration may be
caused by a precancerous lesion or a cancer. Participants with
a concentration above a prespecified threshold for a positive
result, commonly referred to as the cutoff, are referred for a
colonoscopy, an endoscopic test with which the colon and rectum
are directly observed by a specialized practitioner. Participants
with a concentration below the cutoff are invited for a new FIT
after a fixed time interval.

However, the FIT provides opportunities which currently
remain unexploited. Grobbee et al. (2017) showed that measured
FIT-concentrations, also below the cutoff, are strongly associated
with the future risk of developing CRC.While screening intervals
and cutoffs are equal across the population in current FIT-based
programs, Grobbee et al. (2017) conclude that FIT-programs
may be improved by implementing a screening policy with
personalized intervals and cutoffs based on an individual’s history
of measured fecal Hb-concentrations.

Screening policies come with benefits, as they are likely to
prevent CRC cases, and with harms such as overtreatment, for
example when participants are treated for screen-detected lesions
that would not have progressed to a cancer during their lifetime.
These harms and benefits are measured in Quality-Adjusted Life
Years (QALYs): one QALY represents one life year in perfect
health. Screening policies also come with costs. Given their
financial budget, policy makers aim to maximize the number
of QALYs gained, and screening policies need to be developed
that achieve precisely this. Implementing personalized screening
policies may help to achieve this.

The amount of feasible personalized screening policies is
endless, making it infeasible to evaluate the costs and health
benefits of all of them in practice in randomized controlled trials.
Instead, advanced simulation models such as those by Loeve et al.
(1999) and Rutter and Savarino (2010) have been developed to
evaluate screening policies. Still, the sheer amount of possible
personalized screening options based on FIT-concentrations is so
large, that it prohibits evaluating all options even by simulation.
This underlines the need for optimization algorithms to design
effective personalized screening policies without the need to
evaluate all options.

Though algorithms have been developed to optimize
personalized policies, none of them have the flexibility to
incorporate detailed and computationally heavy simulation
models, which is required for accurate evaluation of costs and
benefits. Instead, strong assumptions are typically imposed to
ensure computational tractability. Maillart et al. (2008), Ayer
et al. (2012), Erenay et al. (2014) and Otten et al. (2017) use the
framework of (Partially Observable) Markov Decision Processes

(POMDPs) to develop personalized screening policies for a
variety of cancer types, modeling the progression of the cancer
by a Markov process. However, these Markov models assume, for
example, that the transition rates between the different cancer
states are independent. In reality, these transition rates are
highly correlated within an individual. Consequently, POMDPs
optimize their policies to a simpler model of the disease
progression. Ahuja et al. (2017) adapt a method for POMDPs
to incorporate such correlations in the cancer progression.
However, they impose strong restrictions to the costs associated
with screening and treatment, and don’t allow for optimizing the
costs and benefits as a bi-objective problem.

In this study, we present an algorithm that optimizes screening
policies while incorporating MISCAN-Colon (Loeve et al., 1999).
This is a detailed simulation model for CRC screening which is
able to realistically evaluate the costs of and QALYs gained by
a screening policy and that is commonly used to inform e.g.,
the United States Preventive Services Task Force on their CRC
screening policy (Knudsen et al., 2020). We present a bi-objective
evolutionary algorithm (EA), a heuristic algorithm which is
frequently applied to difficult optimization problems. An EA is
an ideal tool to combine with a computationally heavy evaluation
procedure, in this case required to evaluate the costs and QALYs
of a screening policy with MISCAN-Colon. Moreover, the EA
is very well-suited to generate a frontier of screening policies
with varying preference weights for costs and benefits, allowing
policy makers to make a well-informed choice for a particular
screening policy within their given budget. Finally, the EA is a
flexible tool that is to some extent modular for the evaluation
procedure. This means that the algorithm can be applied to
inform screening programs for any disease, as long as there is a
simulation tool to evaluate the costs and benefits of a screening
policy, and the program uses a test with a quantitative test result.
Examples include prostate cancer screening based on Prostate
Specific Antigen (PSA), lung cancer screening based on smoking
behavior and breast cancer screening based on nodule size, for all
of which model consortia exist within the Cancer Intervention
and Surveillance Modeling Network (CISNET) (Gulati et al.,
2011; Alagoz et al., 2018; Criss et al., 2019).

In this paper, we present a proof-of-concept of our
computational approach by (1) showing how our evolutionary
algorithm can be combined with an established simulationmodel
to optimize personalized screening policies, and (2) showing the
potential of personalized screening in the case of CRC.

The remainder of this paper is structured as follows. In
section 2, we discuss all aspects of the algorithm and how
personalized screening policies are evaluated. In section 3, we
present the outcomes of our experiments and compare them
with screening policies from practice. Finally, in section 4 we
discuss the outcomes of the experiments and the advantages and
limitations of our algorithm.

2. METHODS

In this section, we introduce all aspects related to our
evolutionary algorithm and the experiments we performed. First,
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we give background on the microsimulation model MISCAN-
Colon that is used to evaluate the costs and benefits of
personalized screening policies obtained by the algorithm. Next,
we introduce our mathematical framework for personalized
screening policies. After that, we formalize the bi-objective
optimization problem that we aim to solve in this study using
our algorithm. Then, we present all details on the evolutionary
algorithm. Finally, we introduce the experiments that we used to
illustrate the performance of the algorithm.

2.1. MISCAN-Colon
The microsimulation model MISCAN-Colon was developed by
the Department of Public Health within Erasmus University
Medical Center, Rotterdam, The Netherlands. It is an established
model, and has been used to inform the American Cancer Society
(ACS) and the United States Preventive Services Task Force
(USPSTF) guidelines (Knudsen et al., 2020). It has been validated
on the results of three clinical trials on the effects of screening for
colorectal cancer: the United Kingdom Flexible Sigmoidoscopy
Screening (UKFSS) trial (DeYoreo et al., 2020); the Norwegian
Colorectal Cancer Prevention (NORCCAP) trial (Buskermolen
et al., 2018); and the Screening for Colon and Rectum (SCORE)
trial (Gini et al., 2021).

The structure of the model, the underlying assumptions, and
the calibration and validation studies have been described in
detail by Loeve et al. (1999) and van Hees et al. (2014). In
brief, the model simulates individual life histories from birth to
death. At birth, all individuals are free of disease, but they may
develop CRC during their lives. MISCAN-Colon assumes that
all cancers develop from precancerous lesions, called adenomas,
via the conventional adenoma-carcinoma pathway. Individuals
may develop one or more adenomas over time. These lesions
grow andmay progress to preclinical CRC. Preclinical cancers are
asymptomatic but may become symptomatic, resulting in clinical
detection. Once a cancer becomes clinical, the person is treated,
and a time to death is determined, depending on the stage of
the cancer. The parameters of the natural history of CRC were
calibrated to high-quality data sources, such as autopsy studies on
age-specific adenoma prevalence and multiplicity (Meester et al.,
2018) and age-, stage-, and location-specific CRC incidence data
from the Surveillance, Epidemiology and End Results (SEER)
program from the period before screening was common practice
(1975–1979) (SEER, 2021).

The model also has an optional screening component.
When activated, the simulated individuals undergo screening
according to a specified screening policy. Some lifetimes are
altered because some cancers are prevented by removal of the
precedent adenomas, or are detected at an early stage, leading
to more favorable survival. The effect of screening depends
on the implemented policy and the test characteristics such
as the sensitivity and specificity and the reach of endoscopic
tests. Endoscopic tests also have a risk of complications. The
characteristics of the screening tests inMISCAN-Colon are based
on various studies to assess the diagnostic performance of FIT
and colonoscopy (Knudsen et al., 2016).

Screening policies are associated with monetary costs and
benefits in terms of QALYs, related to the total number of

screening tests and the life years spent on cancer treatment in
a simulated population. After simulation, the model aggregates
these quantities to calculate the policy’s costs and benefits. The
costs and benefits used in this study are listed in Gini et al. (2017).

Up to now, MISCAN-Colon has not been used before to
evaluate personalized screening policies based on FIT-history.
FITs were modeled as binary tests that return either a positive
or negative test result based on sensitivity and specificity. For
our study, the model was extended with a prototype module
describing individuals’ fecal occult blood loss over time, such that
FIT-concentrations were returned. A model was developed with
a linear mixed-effects model (GLMM) structure. Its parameter
values were estimated using population-based data on measured
FIT-concentrations and corresponding outcomes observed in
the Dutch national colorectal cancer screening program (Toes-
Zoutendijk et al., 2017). This module is a prototype and still
needs further calibration before informing actual policy changes.
However, the quality of this module is not relevant for the
purpose of this study which is to provide a proof-of-concept of
the presented computational technique.

An overview of the model assumptions for the natural
history, test characteristics and the module for FIT-
concentrations is presented in Supplementary Section 1 of
the Supplementary Material.

2.2. Personalized Screening Policies
In this section, we provide the mathematical framework for
personalized screening policies. In short, an individual is
represented by a pair (r, τ ) that contains its perceived risk of CRC
based on its FIT-history r and its age at the most recent FIT τ .
The two-dimensional space of all possible pairs is called the belief
space. Each individual is represented by a point in this space.
A screening policy prescribes an action for each point in the
belief space. There are two types of actions: either a participant
is referred to a hospital for a follow-up colonoscopy, denoted by
COL, or an interval of I years until the next FIT is prescribed,
denoted by FITI . In fact, a personalized policy is a mapping that
partitions the belief space and relates each part to an action. An
example is given in Figure 1A, in which screening intervals of 1, 2
and 3 years are prescribed. The remainder of this section provides
a more extensive formalization of the framework of personalized
screening policies.

First, the framework requires a discrete set of screen-eligible
age groups T . In this study, individuals were assumed eligible
for screening between ages 40 and 85. This range was split in age
groups of 5 years and we assumed that the policy is the same for
each age group, i.e., two individuals aged 40 and 44 with equal
perceived risk are prescribed the same action. Age groups are
represented by their lowest age and in our study, the set of age
groups was T : ={40, 45, . . . , 80}.

Second, the framework requires a measure for perceived risk
of CRC. In this study, perceived risk was estimated by the average
of an individual’s k most recently measured FIT-concentrations.
We used k = 1 as a base case and k = 2, 3 for sensitivity analyses.
The average was mapped linearly to a value in the range [0, 1]
where risk values of 0 corresponded to a negligible risk and 1
to a very high risk. This way, more advanced risk estimators
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FIGURE 1 | (A) An example policy. Individuals are represented by a pair (age, perceived risk) which is a point in the belief space. For example, the participant

represented by A is aged 68 and has a risk of 0.075. A policy defines an action for each individual by partitioning the belief space and relating each part to an action,

as shown by the colors. The individuals represented by points A and B are prescribed actions FIT3 and FIT2 (a screening interval of 3 and 2 years), respectively.

Individual C is referred to a hospital for a colonoscopy. The discretization of R and T causes the grid structure. (B) An infeasible policy. Participant E is assigned a

longer interval than participant D while they are of the same age and the risk of E is higher. Therefore, this policy does not comply with the test order assumption.

can easily be incorporated in the future. Since most countries
use a cutoff between 15 and 80 µg/g (Schreuders et al., 2015),
we assumed that average FIT-concentrations above 100 µg/g
correspond with a perceived risk of 1. In our method, individuals
with a FIT-concentration above 100µg/g were always referred for
a colonoscopy. Formalizing the above, the perceived risk of CRC
Rk after the participant’s nth FIT was calculated as

Rk : =
1

100k

k
∑

i=0

Cn−i,

with Cj the measured concentration at the participant’s jth FIT.
Similar to the age groups, we discretized the interval [0,1] in parts
of length 0.1 and assumed that the action is the same within each
part for a given age group, i.e., two individuals with risk 0.11 and
0.19 of equal age were prescribed the same action. This restricted
the number of feasible cutoffs. The set of feasible cutoffs R was
{0, 0.1, . . . , 1}. Note that the discrete nature of T and R causes
the grid structure in Figure 1A. Finer discretization increases
the number of potential personalized screening policies, but also
increases the size of the search space of the algorithm.

Third, the framework needs a set of actions A. In our study,
we used two types of actions. The first, denoted by COL, was
equivalent to a positive FIT and referred an individual for a
colonoscopy in a hospital. After a positive colonoscopy result,
the individual left the screening program and was referred to
a surveillance program instead. After a negative colonoscopy
result, the individual re-entered the screening program and
obtained a new FIT after a fixed 5-year interval. The second
action type corresponded with a negative FIT and prescribed a
screening interval I. Such actions were denoted by FITI . The set
of feasible intervals was denoted by I . The resulting action set A
was

A : = {COL} ∪ {FITI |I ∈ I}.

Considering larger action sets allows formore potential screening
policies, but also increases the size of the algorithm’s search space.

The space B := R × T is called the belief space. The current
status of a participant is represented by a point in this space. A
screening policy π :B → A partitions the belief space and maps
each part to an action in the action set (see Figure 1A), defining
an action for each participant.

The framework assumes that the actions have a test burden
and that the order of the actions in the belief space is fixed with
respect to this test burden. In our case, colonoscopies, for which
participants are referred to a hospital, have a relatively high test
burden compared to FIT which is done at home. Short FIT-
intervals were also assumed to have a higher burden than longer
intervals. Only screening policies that adhere to this ordering by
test burden are considered. That is, a participant is only assigned
a test with a higher burden than another participant of the same
age, if also the perceived risk is higher. Figure 1B shows an
example of a screening policy that does not comply with the
test order assumption. We consider such a policy infeasible in
this framework.

As the ordering of the actions is fixed per age group,
screening policies can also be characterized by the bounds of
their partitions. The upper bound of the parts of the belief space
that correspond to an action are considered a function in the
belief space. In our study, this concerned the actions FITI with
corresponding policy bounds βI : T → R. In Figure 1A, these
functions are represented by the bold, dotted lines. A screening
policy is characterized by the set of its policy bounds

π = {βI}I∈I .

Note that the characterization only included the policy bounds
of the screening intervals I ∈ I , because the upper bound of the
part corresponding with the action COL was not relevant. This
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characterization of personalized screening policies is used in the
remainder of this paper.

Policies that are obtained by a combination of two other
policies are also considered. By prescribing policy π to a fraction
λ ∈ (0, 1) of the population and prescribing policy σ to the
remaining fraction (1− λ), a new policy ρ is generated.

2.3. Optimization Problem
Next, we introduce the optimization problem solved in this
paper. In particular we present a multi-objective (specifically
bi-objective) optimization problem.

A policy π has associated costs and QALYs, denoted as C(π)
and Q(π), respectively, and measured per 1,000 individuals, as is

common. We define o(π) : =

[

C(π)
Q(π)

]

as the vector containing

both objectives of π .
The bi-objective optimization problem is to find policies

minimizing the costs andmaximizing theQALYs gained. A single
policy optimizing both objectives is unlikely to exist as screening
policies with an increased number of QALYs gained generally
come with higher costs. Therefore, we aim to find a set of policies
that contains those with maximal benefits for given costs. Given
this set, policy makers can choose policies based on their budget
constraints or on what they find a suitable balance between the
two criteria.

In a multi-objective setting, the concept of Pareto dominance
is used to compare policies. A policy π dominates another policy
σ if π is a better choice than σ , i.e., if (1) the costs and QALYs of
π are at least as good as those of σ :

Q(π) ≥ Q(σ ) and C(π) ≤ C(σ ),

and (2) at least one of the objectives is better:

Q(π) > Q(σ ) or C(π) < C(σ ).

Figure 2 shows the costs and QALYs of several example policies.
Here, policy B dominates E because its costs are lower and its
QALYs are higher. B does not dominate D. A policy that is
not dominated by any other policy is called Pareto optimal. The
set of all Pareto optimal policies is referred to as the Pareto
frontier. The multi-objective optimization problem is to find
the Pareto frontier. The Pareto frontier potentially includes an
infinite number of policies, and is computationally difficult to
identify precisely. Therefore, the algorithm aims to find a set of
policies that best approximates the Pareto frontier.

Next, we explain how an approximation of the Pareto frontier
is represented using the approximation set as introduced in
Zitzler et al. (2003). This set makes use of combinations of
policies, i.e., prescribing policy π to a fraction λ ∈ (0, 1) of the
population and prescribing policy σ to the remaining fraction
(1−λ) which results in a new policy ρ. Observe that the objective
values of ρ are convex combinations of the objective values of π
and σ in the conventional sense:

o(ρ) = λo(π)+ (1− λ)o(σ ).

By varying λ, an infinite number of new policies can be generated
using only two policies.

FIGURE 2 | The costs of and QALYs gained by the fictive screening policies in

5 = {A,B,C,D,E} are plotted. The dotted black line shows the objective

values of the policies in the approximation set ψ (5). The minimal

representation of ψ (5) is {A,B,C}.

We use the above observation to create an approximation set
of the Pareto frontier of the following form. An approximation set
is represented using a finite set of policies5. This approximation
set contains all non-dominated policies among 5 and all their
non-dominated combinations, and is denoted by ψ(5). This
way, (if |5| ≥ 2) the approximation ψ(5) consists of an
infinite set of policies, but can be represented using a, typically
small, finite set of policies. In our computations, but also when
presenting the results in this paper, it is beneficial to consider a
minimal representation of ψ(5), which is a smallest subset5′ of
5 such that ψ(5′) = ψ(5).

As an example, the dotted black line in Figure 2 shows the
approximation set ψ(5) represented by 5 = {A,B,C,D,E}.
The same approximation set can also be represented by policies
5′ = {A,B,C} because D is dominated by a combination of A
and B and E is dominated by B.

2.4. Evolutionary Algorithm
In this section, we describe the evolutionary algorithm (EA)
which we developed to identify approximation sets of the Pareto
frontier. EAs are based on the principle of survival of the fittest
(Holland, 1975).

In general, the algorithm keeps track of two sets of policies.
Firstly, it maintains a population of screening policies. This set
evolves over time, i.e., it changes at every iteration of the EA.
Secondly, it maintains a memory which is a set of policies that
is a minimal representation of the best approximation set found
so far. This set is updated every time that a policy appears in the
population which is non-dominated by any found policy. This
new policy is then added to the memory, and others are removed
if they are dominated. Therefore, the population can be thought
of as the current generation, while the memory simply contains
the best policies observed over all generations. Although we
are interested in the approximation set represented by the final
memory as the final solution to our optimization problem, the
population does not necessarily have to be a non-dominated set
of policies. In fact, for diversification purposes it can be beneficial
to allow inferior policies in the population.

As an example, if policies A, . . . ,E in Figure 2 are the policies
found by the algorithm, policies A, . . . ,D form the memory as
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FIGURE 3 | Schematic overview of the initialization of a policy. (A) First, the policy bounds are assigned a constant value over all age groups, adhering to the test

order assumption. (B) After that, random mutations are applied.

FIGURE 4 | An illustration of the NSGA-II algorithm. The dots represent the

costs of and QALYs gained by several fictive policies. Policies with equal rank

are connected by the lines. Non-dominated policies obtain rank 1. Those that

are dominated by policies with rank 1 only, obtain rank 2, etc. The crowding

distance of the white policy equals the circumference of the rectangle drawn

around it. The rectangle touches the next less costly and next more expensive

policies with equal rank.

policy E is dominated by B. Policy D is also part of the memory
because it is not dominated by a found policy.

The EA starts with an initial population that consists of a
predefined number of screening policies. It evaluates the fitness,
or quality, of these policies in terms of the objectives. Then, it
selects half of the policies to stay in the population and discards
the other half. This is a semi-random selection procedure where
solutions of higher fitness are more likely to be selected. The
selected policies are paired up randomly to form pairs of parents.
Together, these parents generate two child policies by exchanging
some of their features, called cross-over. Some of the child
policies undergo random mutations in which their features are
changed randomly. Finally, the algorithm adds the children to
the population, which results in a new population, and updates
the memory such that it contains the best policies observed
until then. It repeats the cycle of fitness evaluation, selection,
cross-over and mutation until some stopping criterion is met.

In the remainder of this section we provide a more detailed
description of the key elements of the EA and its interaction with
MISCAN-Colon.

2.4.1. Initialization
A screening policy is initialized in two steps as illustrated in
Figure 3. First, each policy bound βI(τ ) is assigned a constant

value for all age groups τ ∈ T . For that, |I| random values
are uniformly drawn from R and assigned to the policy bounds,
adhering to the test order assumption. That is, the smallest value
drawn from R is assigned to the policy bound that relates to
the action with the lowest test burden, the second smallest value
to the action with the second lowest test burden, etc. Then,
the mutation operator as described in section 2.4.5 is applied
such that the policy bounds are not necessarily constant over
the age groups anymore. The algorithm repeats these two steps
Npop times to obtain an initial population of policies, where Npop

denotes the number of screening policies in the population.

2.4.2. Fitness Evaluation
The algorithm bases the fitness of a policy in the population
on its costs and QALYs as simulated by MISCAN-Colon. In
MISCAN-Colon, both objectives were discounted by 3% annually
from the age of 40 and were calculated relative to a situation
without screening. Simulations used one million individuals.
Common seeds ensured that the results of different simulation
runs were comparable.

The EA uses the Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) introduced by Deb et al. (2002) to evaluate fitness.
NSGA-II summarizes fitness of policies with two quantities: the
rank and crowding distance. Given a population of policies P,
the rank of a policy represents to what extent it is dominated
by other policies in P (excluding combinations of policies).
Non-dominated policies in P obtain rank 1. Then these policies
are excluded and the non-dominated policies of the remainder
are assigned rank 2. This is repeated until every policy is
ranked (Figure 4). Consequently, the solution quality increases
for decreasing rank.

It is likely that multiple policies in the population obtain an
equal rank. To break a tie in the selection procedure, NSGA-
II evaluates for each policy a crowding distance. The crowding
distance is a statistic that reflects the level of isolation with respect
to other policies with equal rank. For a policy π , the crowding
distance is the circumference of the rectangle that touches the
next less costly and next more expensive policies with the same
rank as π , see Figure 4 for an example. Note that the crowding
distance of the cheapest and most expensive policies in a frontier
are considered to be infinite. In case two policies have equal rank,
the algorithm prefers the one with a higher crowding distance.
The idea behind the crowding distance is to get a good spread
of different screening policies, i.e., expensive as well as cheap
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FIGURE 5 | Schematic overview of the cross-over operator. The two upper figures represent the parent policies, a random pair of policies in Mg. The lower figures

represent two offspring policies that are added to Og. The two age groups 50 and 65 were randomly selected. The policy bounds in between these age groups

(marked by the red box) are exchanged in the offspring.

policies. This may help in achieving a high quality approximation
of the complete Pareto frontier.

In our particular bi-objective case, the time complexity of the
NSGA-II algorithm is O(N2

pop) (Deb et al., 2002).

2.4.3. Selection Operator
Once the rank and the crowding distance of the policies in
the population are evaluated, the EA selects which policies are
maintained in the population and which are discarded. The
maintained policies form the mating pool. In iteration g, the
pool is denoted by Mg . During the selection procedure, exactly
Nsel := Npop/2 policies are selected and added to Mg . The
selection operator consists of two phases.

First, the mating pool is (partially) filled by an elitist
selection procedure. Given the current population Pg and the
approximation set ψ(Pg), the EA adds the solutions in the
minimal representation of ψ(Pg) to the mating pool, i.e., it
adds the policies in the population that are not dominated by
(combinations of) other policies in the population. This ensures
that the best policies are selected. Note that this is a subset of
the policies with rank 1. Tests with our benchmark have shown
that adding the complete set of policies with rank 1 in this phase
leads to poorer algorithm performance. If more thanNsel policies
are selected in this first, elitist phase, the algorithm randomly
discards policies until Nsel policies remain.

In the second phase, the remainder of the mating pool is filled
by tournament selection: two policies are randomly sampled
from the population and the fittest of the two policies in terms
of rank and crowding distance is added to the mating pool. This
is repeated until the mating pool is filled with Nsel policies. Note
that this procedure may lead to duplicates in the mating pool.
Policies may be selected once in both phases and/or multiple
times in the second phase.

2.4.4. Cross-Over Operator
Having filled the mating pool Mg , the algorithm applies 2-point
cross-over (Whitley, 1994) to generate offspring. The policies in
Mg are paired up randomly. For each of the pairs, two age groups
τ1, τ2 ∈ T are randomly selected. The policy bounds in the
interval [τ1, τ2] are exchanged, see Figure 5 for an example. This
results in two new offspring policies which are added to Og , the
set of offspring obtained in iteration g. After all pairs of parents
have generated offspring, Og has a size of Npop/2.

2.4.5. Mutation Operator
The offspring policies inOg are subject to randommutations with
probability pM . If the EA selects a policy to undergomutation, the
following steps are taken. First, a fraction pe of the age groups in
T is randomly selected. For these age groups, the values of all
policy bounds {βI}I∈I are mutated: they are replaced by random
values from R. However, these values are not sampled from R,
instead they are sampled from a subset of R. For each selected
age group, a value r̃ ∈ R is sampled. This value is an upper or
a lower bound with 50% probability. If it is an upper bound, |I|
random values are drawn from the values in R smaller or equal
to r̃. If it is a lower bound, they are drawn from the values in
R larger or equal to r̃. These new values are assigned as policy
bounds, adhering to the test order assumption, see Figure 6 for
an example.

The reason to sample the new values from a subset of R is
that this is more likely to result in a larger variety of policies. For
example, the policy bound related to the largest screening interval
always obtains the smallest of the |I| new values. If these values
are drawn from the complete setR, it is unlikely that a value close
to 1 is assigned to this bound. This is more likely to occur when
sampling from a subinterval ofR.
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FIGURE 6 | Schematic overview of the mutation of a policy. (A) A policy before mutation. If pe = 3/9, the algorithm is likely to select three age groups, marked by the

three red boxes. (B) For each age group, new policy bounds are sampled from a subset of R (red boxes). For age groups 50 and 75, r̃ is 0.4 and 0.3, resp., and it is

an upper bound. Therefore, the new values of the policy bounds must be smaller or equal to 0.4 and 0.3, resp. For age group 70, r̃ = 0.5 is a lower bound and all new

values are larger or equal to 0.5.

2.4.6. Updating Procedures and Stopping Condition
After applying all operators, the algorithm obtains (1) a mating
pool Mg that contains the selected policies from the current
population Pg , and (2) a set of newly generated offspringOg . Both
sets have size Npop/2. The algorithm merges these sets to obtain
the population for the next iteration, i.e., Pg+1 = Mg ∪ Og .

Additionally, it updates its memory with the best found
policies. It adds all newly found policies that are not dominated
by the policies in the current memory, and removes all policies
that are dominated by the newly added policies.

The algorithm repeats the procedures for selection, fitness,
cross-over, mutation and updating until no new solutions are
added to the memory for Nstop = 30 consecutive iterations.
The approximation set represented by the memory at the final
iteration is considered the best approximation of the Pareto
frontier and is the final solution to our problem.

2.5. Experiments and Implementation
We demonstrate the performance of the algorithm with three
different experiments. First, we evaluated how well the algorithm
approximated a Pareto frontier, i.e., the optimal solution to
the multi-objective optimization problem, using a benchmark
problem. We considered an instance of the problem with a
relatively small number of feasible policies, which enabled us to
enumerate all feasible policies, evaluate their costs and QALYs
and identify the Pareto frontier. All policies were simulated with
2 million individuals using common random numbers to ensure
that each policy was evaluated for exactly the same population.
Based on this benchmark, we also identified the best values for
the parameters Npop, pM and pe.

The benchmark problem size was reduced by restricting the
assumed screen eligibility to ages 55 to 75, resulting in the age
groups T = {55, 60, 65, 70}, and restricting the set of feasible
cutoffs toR = {0, 0.125, 0.25, 0.375, 0.5}. We used R1 to estimate
perceived risk. As shown in Supplementary Section 2 of the
Supplementary Material, this combination of parameters gave
approximately 1.5 million feasible policies.

To quantify how well the Pareto frontier was approached by
an approximation set, we used the relative difference between
the hypervolume (HV) of both sets. The HV is a quality
indicator introduced by Zitzler and Thiele (1998) and is very
common in multi-objective optimization (Riquelme et al., 2015).

FIGURE 7 | The costs and QALYs of several policies that form a minimal

representation of an approximation set. The hypervolume of this approximation

set is equal to the area of the objective space dominated by the approximation

set, bounded by a reference point. This point is marked with a cross in the

figure.

In our study, the hypervolume of an approximation set was
defined as the area of the objective space dominated by the
approximation set, bounded in some sense by a reference point
as illustrated in Figure 7. The reference point was chosen as
(costs, QALYs) = (4,000,000; 0). In Experiment 1, we evaluated
the HV of both the approximation set represented by the
Pareto frontier and the approximation set obtained by the
algorithm. The relative difference between the two quantified the
optimality gap, i.e., how well the approximation set approaches
the Pareto frontier.

Next, we used two larger problem instances to test the
algorithm. Experiment 2 used the original settings for T and R

and used the action set A = {COL, FIT1, FIT2, FIT3} such that
both the cutoff for FIT-positivity and screening intervals were
optimized. In Experiment 3, we considered a simplified situation
in which A = {COL, FIT2}. It effectively means that we used a
fixed screening interval of 2 years and only optimized the cutoff
per age group. This is an improvement already compared to
current practice in which the cutoff is fixed for all ages. The size
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of the search space was much smaller compared to Experiment 2
(see Supplementary Material).

For both experiments, it was computationally impossible to
evaluate all feasible policies and to find the exact Pareto frontier.
To evaluate the obtained approximation sets, we compared them
in terms of costs and QALYs with policies recently evaluated
for the United States Preventive Services Task Force (USPSTF)
by Knudsen et al. (2020) that include FIT and/or colonoscopies.
For a fair comparison, we only used reference policies that start
screening no later than age 45, because the policies generated by
the algorithm all start at age 40 due to our chosen parameter
settings. An overview of the reference policies is shown in
Supplementary Section 3 of the Supplementary Material. The
reference policies and those in the memory of the algorithm were
(re-)evaluated withMISCAN-Colon using 2.5million individuals
and with a different random number stream than used in the
algorithm. This prevented a biased comparison, since the policies
of the algorithmmay have been optimized to the random number
stream used for simulations in the EA.

As is common in health economics, we made use of a
statistic, the incremental cost-effectiveness ratio (ICER) (Sanders
et al., 2016), to identify a single policy in an approximation set
which is cost-effective, for comparative purposes. We evaluated
the ICER for the policies in the finite set that is a minimal
representation of the approximation set. The ICER of policy
π is defined as the extra costs per extra QALY gained when
opting for policy π instead of the next less costly policy in the
minimal representation, i.e., it is defined as the ratio between the
difference in costs and the difference in QALYs gained between
the two. Due to our definition of an approximation set, the
ICER of a policy increases for increasing costs. The cost-effective
policy is defined as the policy that has maximum benefits for
which the ICER is still below a predetermined threshold, often
called the willingness-to-pay threshold. In this study, we used
a threshold of $100,000 per QALY gained to determine the
cost-effective strategy.

The running time of the algorithm strongly depends on
the implementation and computational resources. In our
experiments, the algorithm was implemented using the Python
DEAP evolutionary computation framework (Fortin et al., 2012)
and implemented as a high-performance computing (HPC)
workflow using the EMEWS framework (Ozik et al., 2016). The
first, second and majority of the third experiment were run on
Bebop, an HPC cluster managed by the Laboratory Computing
Resource Center at Argonne National Laboratory. Bebop has
1,024 nodes comprised of 672 Intel Broadwell processors with
36 cores per node and 128 GB of RAM and 372 Intel Knights
Landing processors with 64 cores per node and 96 GB of RAM.

3. RESULTS

In this section, we present the results of the three experiments
introduced in section 2.5. All presented costs and QALYs are
relative to a situation without screening for CRC. Also, they
were discounted by 3% annually from age 40, as is common in
cost-effectiveness analyses.

3.1. Experiment 1: Benchmark
Figure 8 shows the costs and QALYs of all feasible policies in
the benchmark problem, evaluated in 10 phases on Bebop, 9 of
which used 1,792 cores each and 1 which used 2,016 cores. It was
completed in 97.07 h, resulting in 177,528.31 core hours in total.

Experiments were done with varying values for Npop, pM , and
pe. After convergence, the hypervolume (HV) of the obtained
approximation set was highest for the values (Npop, pM , pe) =

(400, 0.3, 0.6). This approximation set, obtained after 499
iterations of the algorithm, is included in Figure 8. The three
selected parameters values are used in the remainder of our study.

We observe that nearly all feasible policies are dominated by
the approximation set, suggesting it is a good approximation
of the Pareto frontier. This is further confirmed by the
hypervolume. The HV of the approximation set and Pareto
frontier (PF) equal 108,116,896 and 108,124,226, respectively,
effectively resulting in an optimality gap of 0.007%.

The PF contains 12 policies, the minimal representation of the
approximation set contains 11. Further analysis showed that the
11 policies representing the approximation set are all part of the
representation of the PF: the approximation set misses only one
of the policies on the PF, which explains the optimality gap. The
missing policy is marked in Figure 8.

3.2. Experiment 2: Optimizing Cutoffs and
Screening Intervals
In the second experiment, using R1 to estimate perceived risk,
the algorithm took 1263 iterations until convergence. This was
performed in 5 phases on Bebop. Each phase of the experiment
was run on 432 cores, enabling 430 individual policies to be
evaluated in parallel with the remaining two processors being
used for workflow management. The total number of 1,263
iterations was completed in 101.7 h for a total compute time
of 43,934.4 core hours, four times faster than the enumeration
in Experiment 1 despite the factor 1016 increase in search
space (see Supplementary Material). The evolutionary operators
consumed 0.11% of the total computation time, the remainder
was used by MISCAN-Colon.

Incorporating extra FIT-concentrations in the perceived risk
value did not affect the performance and the outcomes of the
algorithm. Experiments with perceived risk estimators R2 and R3

resulted in similar computation times and policies with similar
costs, QALYs and patterns. In the remainder of this section, we
only discuss the outcomes using R1.

Figure 9 shows the total number of policies added to the
memory in each iteration, and how many of these policies were
added to the minimal representation of its approximation set,
i.e., the number of new policies that were not dominated by any
combination of other policies in the memory.We observe that the
latter group is a minority. Especially in the final 600 iterations,
only 9 of such policies were found.

Figure 10 shows the costs and QALYs of the best
approximation set of the PF obtained by the algorithm and
of all reference policies. The minimal representation of the
approximation set contains twelve personalized policies, and
dominates all reference policies. For similar costs, the QALYs of
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FIGURE 8 | Visualization of all feasible policies in the problem instance of Experiment 1. The yellow dots represent the costs and QALYs of the feasible policies. The

blue line shows the approximation set obtained by the algorithm. It is represented by the 11 policies indicated by the blue dots. The policy indicated by the purple

square is the only strategy on the PF that was not in the approximation set found by the algorithm.

FIGURE 9 | The number of policies added to the memory in each iteration for Experiment 2. The blue line counts all added policies, the orange line only those that are

not dominated by (combinations of) other policies in the current memory. The latter are part of the minimal representation of the memory’s approximation set.

the obtained screening policies increased up to 14% compared to
the reference policies. This shows that the algorithm succeeded
in finding personalized screening policies that are more
effective than the uniform reference policies as evaluated using
MISCAN-Colon.

To characterize the obtained approximation set, Figure 11

shows the cost-effective personalized policy inmore detail (policy
6, marked blue-red in Figure 10), as well as two reference

policies with comparable costs and QALYs (marked green-

red in Figure 10). The reference policies initiate screening at

age 45. Policy 6 prescribes screening before 45, but limits
colonoscopy referrals by prescribing a high FIT-cutoff of 90µg/g.

The reference policies both stop screening at age 75. Policy 6
prescribes high cutoffs and long intervals from age 70. Since
the algorithm is forced to design screening policies that start at
age 40 and stop at age 85, we suspect that it tries to reduce the
screening intensity by prescribing long intervals and high cutoffs
for younger/older age ranges. Interestingly, the FIT-cutoffs at age
ranges 55 and 65 in policy 6 are 0 µg/g, effectively resulting in a
guaranteed referral for a colonoscopy regardless of the measured
FIT-concentration. After such a colonoscopy, provided it was

negative, screening is first halted for 5 years by design.We see that
screening is then offered with higher cutoffs for another 5 years.
Effectively, the colonoscopies are applied with a 10-year interval
for most participants between these ages, in line with current
USPSTF recommendations for colonoscopy-based screening and
policy C3.

Figure 12 displays all policies that represent the blue
approximation set in Figure 10 to observe the effect of decreasing
or increasing the costs compared to policy 6. All policies offer
intermittent colonoscopy and FIT-screening by prescribing at
least one guaranteed colonoscopy and prescribing FIT-screening
with higher cutoffs after a guaranteed colonoscopy with a
negative result. The cheaper policies focus on FIT-screening
during the ages 50 through 65. They apply higher cutoffs and
longer screening intervals for other ages, limiting the screening
intensity for those age ranges. This is a consequence of the
lower risk of CRC for younger age ranges in general and the
shorter life expectancy for older age ranges, effectively resulting
in less life years to gain from screening. More expensive policies
focus relatively more on colonoscopy screening (FIT-cutoffs of 0
µg/g) and decrease the cutoffs and the intervals first for those
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FIGURE 10 | The costs and QALYs of the reference policies and of the best approximation sets generated in Experiments 2 and 3. The blue line shows the best

approximation set obtained in Experiment 2, the black line shows that of Experiment 3. The blue-red and black-orange policies in the approximation sets are

cost-effective. The plus represents a situation without screening, the diamonds represent the policies evaluated for the USPSTF with FIT and/or colonoscopies that

start at age 45. The two white diamonds are the two reference policies that are not dominated in Experiment 3. The four green-red/green-orange diamonds are

referred to in Figures 11, 14.

FIGURE 11 | The three blue-red/green-red policies in Figure 10 are shown. Policy 6 is the cost-effective policy within the willingness-to-pay threshold in the

approximation set for Experiment 2. Policies CF2 and C3 are the closest reference policies in terms of costs and QALYs (these policies are listed in

Supplementary Table 3). For age groups with a black bar, reference policies do not offer screening.

aged 40 and then for the 70+ age ranges. The most expensive
policies prescribe multiple guaranteed colonoscopies, similar to
the colonoscopy-based policies evaluated for the USPSTF.

3.3. Experiment 3: Optimizing Cutoffs
Experiment 3 has a smaller number of feasible policies
compared to Experiment 2 because the action space was smaller.
Nonetheless, the algorithm converged after 2,111 iterations,
more than in Experiment 2. The third experiment was run
in two phases. The first 505 iterations were run on a virtual
machine managed by Erasmus Medical Center, the remaining
1,606 iterations on Bebop. The part run on Bebop was performed
on 288 cores, enabling 286 concurrent model runs, with a total
walltime of 65.5 h, and a computation time of 18,864 core hours.

The evolutionary operators used 0.07% of the computation time,
MISCAN-Colon used the remainder. The running times of
Experiments 2 and 3 are incomparable because MISCAN-Colon
was accelerated in between the two runs.

The number of policies added to the memory per iteration
(Figure 13) evolved along similar lines as in Experiment 2,
where the minority of the policies added are not dominated by
a combination of other policies, especially during the last few
iterations. The peak at iteration 505 is caused by the changed
random number stream for MISCAN-Colon when the runs were
transferred from the virtual machine to the Bebop.

In Experiment 3, there were 13 policies to minimally represent
the obtained approximation set (Figure 10). The figure shows
that nearly all reference policies were dominated, except for
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FIGURE 12 | The policies that form the minimal representation of the approximation set of Experiment 2 as shown in Figure 10.

FIGURE 13 | The number of policies added to the memory in each iteration for Experiment 3. The blue line counts all added policies, the orange line only those that

are not dominated by (combinations of) other policies in the current memory. The latter are part of the minimal representation of the memory’s approximation set. The

peak at iteration 506 is caused by the different seeds used on the virtual machine and the Bebop.

two. The two exceptions are marked by white-green diamonds:
triennial FIT for ages 45 through 70, and colonoscopy for age
ranges 45 and 60 (policies F1 and C1 in Supplementary Table 3,
resp.). Both policies quit screening relatively early whereas the

personalized policies have a fixed stopping age of 85 by design.
Disregarding these two reference policies, the QALYs of the
obtained screening policies were up to 4.3% higher than the
QALYs of the reference policies for similar costs.
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FIGURE 14 | The three black-orange/green-orange policies in Figure 10 are shown. Policy 7 is the cost-effective policy within the willingness-to-pay threshold in the

approximation set for Experiment 3. Policies CF4 and C4 are the closest reference policies in terms of costs and QALYs (see also Supplementary Table 3). For age

groups with a black bar, no screening is offered.

In this experiment, the black-orange policy in Figure 10 was
the cost-effective policy within the willingness-to-pay threshold
(policy 7 in Figure 14). The two most similar reference policies
with respect to costs and QALYs (marked green-yellow in
Figure 10) commence screening at 45. Also, the screening
intensity of policy 7 is low until age 45 as a cutoff of 50 µg/g is
prescribed. The policies stop screening at age 80 or 85, though
policy 7 has high cutoffs for colonoscopy referral from age 75. In
between, policy 7 effectively prescribes 10-yearly colonoscopy for
most participants, in line with US colonoscopy-based screening
recommendations and policy C4.

Overall, the other policies in the minimal representation of
the obtained approximation set (Figure 15) have patterns similar
to the policies found in Experiment 2. Screening is primarily
focused on the ages 50/55 through 75 for policies cheaper
than policy 7. More expensive policies allow more screening
in other age ranges, and the most expensive policies are more
colonoscopy-based.

3.4. Comparing Experiments 2 and 3
Screening policies in Experiment 2 are more flexible as they have
a larger variety in screening intervals compared to Experiment
3. However, with this flexibility, the number of feasible policies
increases by a factor 1013 (see Supplementary Section 2). This
means that the algorithm has a larger search space.

Figure 10 shows that the approximation set of Experiment 3
is dominated by that of Experiment 2. Figures 9, 13 show that
the set was found in fewer iterations in the second experiment
compared to the third. This suggests that it may be beneficial to
increase the flexibility of the problem by increasing the action
space, despite the increased search space.

4. DISCUSSION

In this paper, we demonstrated the computational viability
of designing and optimizing personalized FIT-based screening
policies using an evolutionary algorithm. The algorithm

combines with an advanced simulation model to evaluate the
policies. The generated policies prescribed varying screening
intervals or referral for a colonoscopy, based on a person’s
age and measured fecal haemoglobin concentrations. The
evolutionary algorithm was used to generate a collection of
personalized screening policies, also called an approximation
set, that approximates the Pareto frontier, the set of policies
with maximum benefits, measured in QALYs gained, for given
costs. In our study, an established microsimulation model,
MISCAN-Colon, was used to estimate the costs and QALYs of
a screening policy.

We demonstrated the performance of the algorithm in three
experiments. In the first, we used a relatively small problem
instance with 1.5 million feasible policies.We calculated the exact
optimal Pareto frontier and tested how well it was approximated
by the algorithm. The algorithm could solve this instance to
near-optimality, with an optimality gap of 0.007%.

The problem instances of the second and third experiments
were too large to derive the exact Pareto frontier. We evaluated
the performance of the evolutionary algorithm by (1) comparing
the generated policies to a set of reference policies, previously
evaluated with MISCAN-Colon in a decision analysis for the
United States Preventive Services Task Force (USPSTF), in terms
of costs and benefits and (2) assessing the face validity of the
obtained policies. First, the generated personalized screening
policies generally outperformed the reference policies in terms of
costs and QALYs. For a given level of costs, the QALYs gained
by the generated policies increased by 14% in Experiment 2
and 4.3% in Experiment 3. In Experiment 2, the computation
time of the algorithm was four times shorter than the time
of the enumeration process in Experiment 1, despite the 1016

times larger search space. This underscores the potential of
personalized screening, and of the computational approach
presented in this study.

Second, the obtained policies have several interesting features.
The cost-effective policies allocated screening predominantly
to the ages 50–70 or 45–70 through short intervals and low
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FIGURE 15 | The policies that form the minimal representation of the approximation set of Experiment 3 as shown in Figure 10. Note that a cutoff at a perceived risk

of 1.0 implies that participants with a FIT-concentration above 100 µg/g are referred for a colonoscopy.

cutoffs for these ages. This is in line with currently implemented
policies, which mostly prescribe screening to those aged 50–70
(Schreuders et al., 2015). Cheaper policies increased the intervals
and cutoffs for the ages below 55 and above 65. This way, the
algorithm narrows the focus of the policies to the ages 55–65
since policies are forced to apply screening from age 40 to 85 by
design.More expensive policies expanded the age ranges with low
cutoffs and short intervals. Remarkably, all policies guaranteed
at least one colonoscopy to all participants by prescribing a FIT-
cutoff of 0 µg/g for at least one age range. However, whenever a
second guaranteed colonoscopy was offered, the interval from the
previous colonoscopy was at least 10 years. This is in accordance
with current US colonoscopy-based screening recommendations
(Lin et al., 2021). The above observations support the algorithm’s
face validity, i.e., its ability to generate sensible policies.

In the second experiment, the policies prescribed a larger
variety of screening intervals than in the third experiment,

resulting in an increase of the search space by a factor 1013.
Still, the approximation set found in Experiment 2 dominates
the set found in Experiment 3. This suggests that a larger
set of screening intervals is beneficial, despite the increased
search space.

To the best of our knowledge, this is the first algorithm
that optimizes personalized FIT-screening policies evaluated by
an advanced microsimulation model. Whereas current methods
impose strong Markov assumptions to evaluate generated
policies, we evaluated them without such assumptions. The
described algorithm is flexible: an individual’s risk can be
estimated by a variety of estimators, a wide range of actions
can be incorporated in the action set, and custom age ranges to
which policies apply may be considered. It may also be applied to
other diseases when combined with a suitable simulation model
that evaluates the costs and benefits of policies, as long as their
screening program is based on a test with a quantitative test
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result. Examples include prostate specific antigen (PSA) based
screening for prostate cancer or mammography screening for
breast cancer. Such models are increasingly developed and our
algorithm provides enough flexibility that it can be combined
with many existing models.

The developed algorithm may be amenable for further
improvement. First, it may be possible to enhance the
evolutionary operators to search the space of screening
policies more efficiently, for example by applying semi-random
mutations directed by other simulation outcomes. Second, more
fine-grained variations of the belief and action space may
be considered, for example including information on prior
colonoscopy results in addition to FIT-history, and the option to
“stop screening”. Furthermore, additional user constraints may
be applied to the policies generated by our algorithm, to facilitate
easier implementation in practice. For example, it may not be
desirable to prescribe guaranteed colonoscopies, or policymakers
may want age-independent cutoffs for FIT-positivity for practical
reasons. Decision scientists and policy makers should come up
with a guideline of what features a policy requires for real-
world implementation.We believe the computational framework
presented in this paper is sufficiently flexible to incorporate such
additional features.

As with any model, results from a microsimulation model
are subject to uncertainty, and should be interpreted with
caution. MISCAN-Colon was extensively validated in the past
on randomized clinical trial data for screening, including fecal-
based screening. However, the module for FIT-concentrations
was a prototype model for which direct clinical validation
was not possible in the scope of this study. It needs further
development and validation when more data on the relation
between FIT-concentrations and presence of lesions become
available. On the other hand, the study shows that using
a simpler but faster model could decrease the algorithm’s
computation time. In Experiments 2 and 3, 99.9% of the
algorithm’s running time was spent on simulation by MISCAN-
Colon, despite parallel computations. However, this may
be at the cost of decreased accuracy in the evaluation
of the policies.

To conclude, we demonstrated a potential method for
identifying optimized personalized screening policies while
evaluating them with established simulation models from

practice. This moves the field a step closer to implementing
personalized screening in practice.
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