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Abnormally strong synchronized activity is related to several neurological disorders,

including essential tremor, epilepsy, and Parkinson’s disease. Chronic high-frequency

deep brain stimulation (HF DBS) is an established treatment for advanced Parkinson’s

disease. To reduce the delivered integral electrical current, novel theory-based stimulation

techniques such as coordinated reset (CR) stimulation directly counteract the abnormal

synchronous firing by delivering phase-shifted stimuli through multiple stimulation sites.

In computational studies in neuronal networks with spike-timing-dependent plasticity

(STDP), it was shown that CR stimulation down-regulates synaptic weights and drives the

network into an attractor of a stable desynchronized state. This led to desynchronization

effects that outlasted the stimulation. Corresponding long-lasting therapeutic effects

were observed in preclinical and clinical studies. Computational studies suggest that

long-lasting effects of CR stimulation depend on the adjustment of the stimulation

frequency to the dominant synchronous rhythm. This may limit clinical applicability as

different pathological rhythms may coexist. To increase the robustness of the long-

lasting effects, we study randomized versions of CR stimulation in networks of leaky

integrate-and-fire neurons with STDP. Randomization is obtained by adding random

jitters to the stimulation times and by shuffling the sequence of stimulation site activations.

We study the corresponding long-lasting effects using analytical calculations and

computer simulations. We show that random jitters increase the robustness of long-

lasting effects with respect to changes of the number of stimulation sites and the

stimulation frequency. In contrast, shuffling does not increase parameter robustness of

long-lasting effects. Studying the relation between acute, acute after-, and long-lasting

effects of stimulation, we find that both acute after- and long-lasting effects are strongly

determined by the stimulation-induced synaptic reshaping, whereas acute effects solely

depend on the statistics of administered stimuli. We find that the stimulation duration

is another important parameter, as effective stimulation only entails long-lasting effects

after a sufficient stimulation duration. Our results show that long-lasting therapeutic

effects of CR stimulation with random jitters are more robust than those of regular CR
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stimulation. This might reduce the parameter adjustment time in future clinical trials and

make CR with random jitters more suitable for treating brain disorders with abnormal

synchronization in multiple frequency bands.

Keywords: coordinated reset stimulation, spike-timing-dependent plasticity (STDP), random jitter, long-lasting

desynchronization, stimulation-induced decoupling

1. INTRODUCTION

The human organism can be viewed as an integrated network
where complex physiological systems continuously interact;
whereby the regulatory mechanisms of one system may
affect others or the organism as a whole (Bashan et al.,
2012; Ivanov et al., 2016). Associations between network
topology and network functionality may provide insights into
how distinct pathological/physiological states emerge from
nonlinear interactions between multi-compartment complex
systems (Bartsch et al., 2015). On the other hand, therapeutic
effects of stimulation applied to one system may spread
throughout the entire network (Pfeifer et al., 2021).

In neurological disorders, such as epilepsy (Mormann et al.,
2000) or Parkinson’s disease (PD) (Alberts et al., 1969; Nini et al.,
1995), patients suffer from pronounced motor symptoms that
are caused by impaired brain activity. In PD, several strongly
interconnected brain areas are involved, including the basal
ganglia, the thalamus, and the sensorimotor cortex. In several
of these areas, symptom-related abnormal neuronal synchrony
has been observed (Nini et al., 1995; Hammond et al., 2007). An
established treatment for advanced Parkinson’s disease is high-
frequency deep brain stimulation (HF DBS). HF DBS has been
delivered to several target areas, such as the subthalamic nucleus
(STN) (Krack et al., 2003) or the ventral intermediate nucleus
of the thalamus (Benabid et al., 1991). HF DBS of the STN is
the standard of care for treating medically refractory Parkinson’s
disease, however, there is no consensus on its mechanism of
action (Ashkan et al., 2017; Jakobs et al., 2019; Lozano et al., 2019;
Krauss et al., 2020).

Recently, DBS has been suggested as a treatment for
other disorders, including obsessive-compulsive disorder
(OCD) (Vicheva et al., 2020). Symptoms of OCD include
uncontrollable recurring thoughts (obsessions) and repetitive
behaviors (compulsions). OCD is also associated with substantial
comorbidities, including substance use disorders, anxiety, and
impulse-control (Ruscio et al., 2010; Vicheva et al., 2020). The
exact mechanism underlying OCD and the therapeutic effect of
DBS for OCD remain enigmatic (Bourne et al., 2012; Ahmari
and Dougherty, 2015; Vicheva et al., 2020).

Besides several benefits, continuous HF DBS has limitations.
In PD patients, HF DBS may successfully suppress symptoms
while stimulation is on, however, symptoms return shortly after
cessation of stimulation (Temperli et al., 2003). Permanent
stimulation of the target area and surrounding tracts and nuclei
as well as the corresponding medication dose adjustment may
lead to DBS-induced movement disorders (Baizabal-Carvallo
and Jankovic, 2016), e.g., characterized by dyskinesias, gait
disorder, dysarthria, ataxia etc. (Rodriguez-Oroz et al., 2005;

Temel et al., 2006; Moreau et al., 2008; Tripoliti et al., 2008;
Schrader et al., 2011; Baizabal-Carvallo and Jankovic, 2016; Xie
et al., 2017).

To substantially reduce the integral amount of delivered
stimulation current and the risk of unwanted side effects, several
studies focused on developing stimulation approaches that
specifically counteract pathological synchrony. Some approaches
use delayed feedback to desynchronize networks of oscillators
(Rosenblum and Pikovsky, 2004a,b; Popovych et al., 2005;
Hauptmann et al., 2005a,b,c; Popovych et al., 2006a,b; Pyragas
et al., 2007; Popovych and Tass, 2010); clinically this could
be implemented using linear or nonlinear delayed feedback
envelope pulse trains (Popovych et al., 2017a,b). Other studies
analyzed the nonlinear response of an ensemble of coupled
oscillators to external stimuli. For instance, an ensemble of
synchronized oscillators can be desynchronized by delivering
a single stimulus pulse at a vulnerable phase of the collective
rhythm (Mines, 1914;Winfree, 1977, 1980;Warman andDurand,
1989; Tass, 1999). During double-pulse stimulation, such a
desynchronizing pulse is delivered shortly after a strong phase-
resetting pulse to increase robustness (Tass, 2001, 2002; Zhai
et al., 2005). Other studies suggest the delivery of periodic
stimulation. It was shown that periodic stimulation with certain
frequencies can desynchronize a synchronous ensemble of
oscillators. This effect is known as chaotic desynchronization
(Wilson et al., 2011). Phasic burst stimulation is another
approach that aims at increasing the phase differences between
individual oscillators by delivering stimulation bursts at certain
phases of the collective rhythm. Corresponding phases were
predicted using estimated phase response curves calculated
for each patient. A corresponding closed-loop method was
suggested in Holt et al. (2016). Other techniques deliver
spatio-temporal stimulus patterns through multiple stimulation
sites, one of which is coordinated reset stimulation (CR)
(Tass, 2003b). During CR stimulation, desynchronization is
achieved by delivering phase-shifted stimuli to individual
neuronal subpopulations.

Most of these desynchronization techniques were developed
for networks with fixed connectivity. In the brain, however,
synaptic plasticity leads to dynamic reorganizations of neuronal
networks (Doidge, 2007; Liu et al., 2015; Van Ooyen and Butz-
Ostendorf, 2017; Eagleman, 2020). One plasticity mechanism is
spike-timing-dependent plasticity (STDP), where the change of
the strengths of synaptic connections depends on the relative
timing of post- and presynaptic spikes (Markram et al., 1997;
Abbott and Nelson, 2000; Caporale and Dan, 2008). In many
brain regions, STDP leads to a strengthening of synapses, if the
postsynaptic neuron fires shortly after the presynaptic neuron,
and to a weakening in the opposite case (Markram et al.,
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1997; Bi and Poo, 1998). STDP may lead to the formation
of strongly connected neuronal assemblies (Litwin-Kumar and
Doiron, 2014) and may stabilize certain patterns of neuronal
activity, e.g., synchronized activity (Karbowski and Ermentrout,
2002). Plasticity can also lead to multistability in neuronal
networks and networks of oscillators. In particular, networks with
coexisting stable states, such as cluster states, desynchronized
states, and synchronized states have been studied (Seliger et al.,
2002; Zanette and Mikhailov, 2004; Tass and Majtanik, 2006;
Masuda and Kori, 2007;Maistrenko et al., 2007; Aoki and Aoyagi,
2009; Berner et al., 2020; Yanchuk et al., 2020).

Extensive theoretical and computational studies on CR
stimulation of multistable plastic networks showed that CR
stimulation may reshape the synaptic connectivity, and cause
long-lasting desynchronization by driving the network into the
attractor of a stable desynchronized state (Tass and Majtanik,
2006; Hauptmann and Tass, 2009; Popovych and Tass, 2012;
Lourens et al., 2015; Manos et al., 2018; Kromer and Tass, 2020;
Kromer et al., 2020). Corresponding long-lasting therapeutic
effects and/or sustained reduction of neuronal synchrony were
confirmed in preclinical in vitro studies (Tass et al., 2009),
in preclinical in vivo studies (Tass et al., 2012b; Wang et al.,
2016) as well as in clinical studies, delivering CR stimulation
through implanted DBS electrodes (Adamchic et al., 2014) or
noninvasively by means of vibrotactile CR fingertip stimulation
(Tass, 2017; Syrkin-Nikolau et al., 2018; Pfeifer et al., 2021).

Detailed computational studies on CR stimulation of plastic
neuronal networks suggested that long-lasting desynchronization
effects may be sensitive to the ratio of the stimulation frequency
and the dominant frequency of the pathological synchronous
rhythm, frhythm (Manos et al., 2018). Presumably, this is because
stimuli are delivered with fixed inter-stimulus intervals which
may lead to unfavorable resonances with other time scales
(Kromer and Tass, 2020). A lack of frequency robustness might
restrict clinical application as individual symptoms during PD are
related to pathological synchrony in different frequency bands.
Specifically, synchronized basal ganglia activity in the theta band
(3−10 Hz) has been associated with symptoms such as dyskinesia
and tremor (Brown, 2003; Steigerwald et al., 2008; Tass et al.,
2010; Contarino et al., 2012), whereas synchronized beta band
activity (13−30 Hz) has been associated with symptoms such as
rigidity and bradykinesia (Kühn et al., 2006; Weinberger et al.,
2006). Furthermore, tremor may be associated with different
central oscillators (Raethjen et al., 2000).

In order to increase the frequency robustness of long-
lasting effects, spatial and temporal randomization of stimulus
deliveries was suggested (Kromer and Tass, 2020). In particular,
random reset (RR) stimulation was introduced (Kromer and
Tass, 2020) during which stimuli are delivered at random
times to randomly selected neuronal subpopulations. During
RR stimulation, temporal randomization is realized by choosing
stimulation times according to a Poisson spike train. Spatial
randomization is achieved by delivering stimuli to randomly
selected neuronal subpopulations. However, in Kromer and Tass
(2020) no spatial relations between neurons were considered,
this was somewhat artificial and could not be directly applied to
a DBS-type setup as it implicitly assumed microscopic control,

i.e., it assumed that individual neurons could be stimulated
independently. Compared to CR stimulation, RR stimulation
presents an extreme case with minimal temporal and spatial
correlations between stimulus deliveries (Kromer and Tass,
2020; Khaledi-Nasab et al., 2021b). It was found that long-
lasting desynchronization effects of RR stimulation were more
robust with respect to parameter changes than those of CR
stimulation, whereas acute desynchronization effects of RR
stimulation were significantly weaker (Kromer and Tass, 2020;
Khaledi-Nasab et al., 2021b). Also, temporal randomization
during RR stimulation helped to avoid stimulus deliveries during
the neurons’ refractory periods. The authors reported that the
resulting synaptic reshaping was more likely to drive the network
into a stable desynchronized state.

It was argued that improved parameter robustness resulted
from two effects: First, for CR stimulation with unfavorable
stimulation frequencies, a significant portion of stimuli might be
delivered during the neurons’ refractory periods. This renders
such stimulation protocols ineffective. In contrast, temporal
variability of stimulus deliveries during RR stimulation improved
the robustness of long-lasting effects of RR stimulation relative
to CR stimulation. Second, RR stimulation led to a broader
distribution of time lags between post- and presynaptic spike
times that determined weight updates due to STDP. Thus, a
bigger part of the STDP function was considered for weight
updates. It was found that while CR with fine-tuned stimulation
frequency led to faster weight reduction, weight reduction during
RR was more robust with respect to changes of the stimulation
frequency (Kromer and Tass, 2020).

In the present paper, we hypothesize that appropriately
adding temporal and/or spatial randomness to CR stimulus
patterns might improve the parameter robustness of long-
lasting CR effects, thereby preserving its pronounced acute
desynchronization effects. To this end, we analyze the effect of
temporal and spatial correlations in spatio-temporal stimulus
patterns on acute and long-lasting desynchronization effects
of the stimulation. First, we consider a classic CR stimulation
pattern (Tass, 2003a; Kromer et al., 2020). Then, we reduce
temporal and spatial correlations between stimulus delivery
times. Temporal correlations are reduced by adding a random
jitter to the stimulus delivery times. This results in a noisy
CR pattern (NCR). Spatial correlations are reduced by shuffling
the sequence of stimulation site activations. This results in a
shuffled CR pattern (SCR). Finally, both jitter and shuffling
are applied, leading to a shuffled noisy CR pattern (SNCR).
Employing theoretical analysis and computer simulations of
plastic neuronal networks, we analyze and compare the effect of
random jitter and spatial shuffling on the long-lasting outcome
of stimulation. Our results suggest that random jitter is more
suitable for increasing the frequency robustness of long-lasting
desynchronization effects than spatial shuffling. Of note, random
jitter does not degrade acute desynchronization effects.

This paper is organized as follows: In section 2, we
introduce the model and the different stimulation patterns used
throughout the manuscript. In section 2.6, we derive theoretical
predictions of the stimulation-induced synaptic weight dynamics
for different stimulation patterns in the limit of strong and

Frontiers in Physiology | www.frontiersin.org 3 September 2021 | Volume 12 | Article 719680

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Khaledi-Nasab et al. Random Jitters Improve CR Stimulation

fast stimulation. Then, in section 3, we compare theoretical
predictions to results from numerical simulations of networks of
leaky integrate-and-fire (LIF) neurons with STDP. Furthermore,
we present results for weak stimulation. We find that random
jitter is more suitable for increasing parameter robustness of
long-lasting effects than shuffling. Finally, in section 4 we provide
a detailed discussion of our results.

2. MODEL AND METHODS

2.1. Neuronal Network Model
Throughout the paper, we consider networks of 103 excitatory
LIF neurons with STDP (Kromer et al., 2020; Khaledi-Nasab
et al., 2021b). Parameters are chosen according to Kromer et al.
(2020) and Khaledi-Nasab et al. (2021b) such that a stable
synchronized and a stable desynchronized states coexist. See
Appendix for more details. Neurons are equidistantly spaced in
the interval xi ∈ [−2.5, 2.5] mm. This is motivated by the length
of the short axes of an elipsoidal volume approximation of the
human STN used in a detailed computational study (Ebert et al.,
2014). Each neuron has Nsyn = 0.07N outgoing synapses, where
the probability for a synaptic connection between neurons i and j
is proportional to ∝ exp((|xj − xi|)/0.5 mm) (Ebert et al., 2014).
Throughout the paper, simulation results are averaged over
three different network realizations, i.e., different realizations of
random network connectivity.

Initially, synaptic weightswij(t = 0) are randomly set to either
one or zero, such that a mean synaptic weight of 〈w(t = 0)〉 =

0.5 is realized. Here, i and j refer to the pre- and postsynaptic
neurons, respectively. Each network realization was simulated
until it approached a stable synchronized state, see Kromer et al.
(2020) and Khaledi-Nasab et al. (2021b).

Stimulation is applied to Ns stimulation sites. To this end,
we divide the interval of possible x coordinates into Ns equal
segments. Neurons with coordinates in the kth segment are
assumed to receive stimuli delivered to the kth stimulation
site. Throughout the paper, we will refer to these neurons as
the kth subpopulation. Neurons in the same subpopulation
receive stimuli simultaneously and with equal strength. We
thereby neglect distance-dependent modulations of the received
stimulation current and finite travel times of the electrical signal
through the tissue.

2.2. Spike-Timing Dependent Plasticity
The dynamics of synaptic weights wij(t) is determined by
STDP. We consider a nearest-neighbor STDP scheme in which
weight updates are performed at postsynaptic spike times
and presynaptic spike arrival times (Morrison et al., 2008).
Corresponding weight updates wij → wij +W(tj − (ti + td)) are
given by the STDP function (Kromer and Tass, 2020; Song et al.,
2000)

W(1t) = η











e−|1t|/τ+ , 1t > 0

0, 1t = 0

−
β
τR

e−|1t|/τ− , 1t < 0

. (1)

Here, 1t = tj − (ti + td) is the time lag between the current
postsynaptic spike time tj and the latest presynaptic spike arrival
time ti + td (if the update is done at a postsynaptic spike time),
or the time lag between the current presynaptic spike arrival time
ti + td and the latest postsynaptic spike time tj (if the update is
performed at a presynaptic spike arrival time). η = 0.02 scales
the weight update per spike, τR = 4 yields asymmetry in STDP
decay times, τ+ = 10 ms and τ− = τ+τR, β = 1.4 scales
the ratio of overall long-term depression (LTD) to long-term
potentiation (LTP).

These STDP parameters lead to the coexistence of a strongly
connected state with synchronized neuronal activity and a weakly
connected state with asynchronous neuronal activity (Kromer
and Tass, 2020; Kromer et al., 2020; Khaledi-Nasab et al.,
2021a,b).

2.3. Stimulation Patterns
In the present paper, we consider four stimulation patterns:
a (regular) CR pattern and three randomized CR patterns.
Randomization is obtained by adding random jitters to the
stimulation times (reduced temporal correlations between
stimuli), shuffling of the sequence of stimulation sites (reduced
spatial correlations between stimuli), and a combination of
both random jitters and shuffling (reduced temporal and spatial
correlations between stimuli). In the following, we introduce
these four stimulation patterns in detail.

I. Regular CR stimulation (CR): CR stimulation is delivered
in cycles of Ns stimuli (Tass, 2003b), where Ns is the number
of stimulation sites. During each CR cycle, each site receives
exactly one stimulus, and stimuli are administered at times

t0 +
(k+0.5)TCR

Ns
, k = 0, 1, ..,Ns − 1. Here t0 is the beginning

of the CR cycle and TCR = 1/fCR is the cycle length. fCR
is the stimulation frequency and corresponds to the mean
frequency at which individual sites receive stimuli.

In several preclinical and clinical studies (Tass et al.,
2012b; Adamchic et al., 2014; Pfeifer et al., 2021), the
sequence of stimulation site activations during each cycle
was chosen at random for each cycle. The resulting version
of CR stimulation is referred to as CR with rapidly varying
sequence in the literature (Popovych and Tass, 2012; Zeitler
and Tass, 2015). For the sake of brevity, we will refer to this
pattern as CR.

II. Noisy CR stimulation with random jitters (NCR): Same as
CR stimulation except that there are random jitters added to
the stimulation times sk. Jitters are uniformly distributed in

the interval sk ∈ [−σCR
TCR
2Ns

, σCR
TCR
2Ns

) with 0 ≤ σCR ≤ 1.
Thus, stimuli during a CR cycle are delivered at random

times t0+
(k+0.5)TCR

Ns
+sk, k = 0, 1, ..,Ns−1. The case σCR = 1,

refers to the limit of maximum variability of stimulus onset
times. We exclude larger values of σCR as these would result
in overlapping intervals of possible stimulus onset times.

A corresponding stimulation pattern with moderate
jitters was used in a clinical study on vibrotactile CR
stimulation of Parkinson’s patients (Pfeifer et al., 2021).
There, it was referred to as noisy CR (NCR). We will refer
to CR with random jitter as NCR stimulation.
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FIGURE 1 | Illustration of stimulation patterns used throughout the manuscript and the resulting distribution of inter-stimulus intervals. (A) Possible realization of NCR

stimulation for Ns = 4 stimulation sites. Colored curves indicate the stimulation currents delivered to the individual sites. The pink region marks intervals of possible

stimulus onset times, for the maximum jitter σCR = 1. The limit of vanishing jitter, σCR = 0, corresponds to deterministic stimulus onsets, i.e., CR stimulation. Vertical

dashed lines separate subsequent CR cycles, with cycle period TCR = 1/fCR. (B) The distribution of inter-stimulus intervals (ISTIs) for NCR stimulation for two values of

stimulus jitter, σCR . (C) Possible realization of SNCR stimulation with Ns = 4 stimulation sites. The color code is the same as in (A). (D) The distribution of ISTIs for

SNCR stimulation for two values of σCR.

III. Shuffled CR stimulation (SCR): Same as CR stimulation
except that stimuli are delivered to randomly selected sites.
Thus, the restriction that each site receives exactly one
stimulus per cycle was lifted. Sites are selected for stimulus
delivery with uniform probability.

This stimulation pattern was used in a previous
study on stimulation-induced desynchronization (Tass and
Hauptmann, 2009). There, it was referred to as multi-site
random-site stimulation (Tass and Hauptmann, 2009). We
will refer to shuffled CR stimulation as SCR stimulation.

IV. Shuffled Noisy CR with random jitters (SNCR): Same as
SCR but with random jitters added to the stimulus delivery
times. We will refer to shuffled CR with random jitters as
SNCR stimulation. In the limit of small jitter, σCR → 0,
SNCR stimulation becomes equivalent to SCR stimulation.

For NCR and SNCR stimulation, the parameter σCR scales the
width of the distribution for random jitters and therefore the
reduction of temporal correlations between stimulus delivery
times. In the limit of σCR = 0, the NCR pattern is equivalent
to the CR pattern, and the SNCR pattern is equivalent to the
SCR pattern.

Individual stimuli are charge-balanced and consist of
excitatory and inhibitory pulses with durations of νe = 0.5

ms and νi = 3 ms, respectively. This asymmetry is motivated
by preclinical and clinical studies on CR stimulation employing
asymmetric pulse shapes (Wang et al., 2016; Adamchic et al.,
2014). The excitatory pulse has the amplitude Ae = Astimµ/νe
and the inhibitory pulse the amplitude Ai = −Astimµ/νi.
The two pulses are separated by a gap of 0.2 ms. Here, µ =

(Vth,spike − Vreset)/〈Ci〉 and Astim is the stimulation strength.
(Vth,spike−Vreset) is the voltage difference between the maximum
spiking threshold Vth,spike and the voltage reset Vreset. 〈Ci〉 is the
meanmembrane capacitance. SeeAppendix for more details and
see Pyragas et al. (2018) for a discussion of optimal waveforms
for DBS.

Figures 1A,C shows realizations of stimulus patterns for NCR
and SNCR. The shaded areas mark possible stimulus onset times.
Figures 1B,D shows the distribution of inter-stimulus intervals
(ISTIs) for two values of σCR. Small values of σCR lead to a narrow
distribution with peaks at integer multiples of TCR/Ns, while
larger σCR lead to broader ISTI distributions.

NCR with minimal temporal correlations, σCR = 1, leads to
ISTIs between zero and 2TCR withmean ISTI TCR. For SNCR, the
ISTI distribution attains its global maximum at TCR/Ns and
decreases for larger ISTIs. For large jitters, σCR ≈ 1 it decays
approximately exponentially, see Figure 1D. Consequently,
individual sites may not receive any stimulus for multiple cycles.
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2.4. Quantification of Synchronization
In order to quantify the degree of neuronal synchrony,
we calculate the time-averaged Kuramoto order
parameter (Kuramoto, 1984)

ρ(t) =
1

tk

t+
tk
2

∫

t−
tk
2

dt′
∣

∣

∣

1

N

N−1
∑

k=0

e2πIψk(t
′)
∣

∣

∣
. (2)

Here, tk = 10 s is an averaging interval and N is the number of
neurons. ψk(t) is a phase function associated with the spiking of
neuron k. ψk(t) attains subsequent integer values at subsequent
spike times and increases linearly during interspike intervals
(Rosenblum et al., 2001). ρ ≈ 1 indicates pronounced in-phase
synchronization, whereas the absence of in-phase synchronized
neuronal activity leads to ρ ≈ 0.

2.5. Data Evaluation
In simulations, the data for the mean synaptic weight, 〈w〉, and
the time-averaged Kuramoto order parameter, ρ, were recorded
every 10 s. Acute effects of stimulation are quantified using the
acute mean synaptic weight, 〈w〉ac, which is the mean weight at
the end of the stimulation period. For sufficiently low 〈w〉ac the
network approaches a stable desynchronized state after cessation
of stimulation (see Kromer et al., 2020; Khaledi-Nasab et al.,
2021b).

In order to quantify the degree of acute synchronization, we
time-averaged the Kuramoto order parameter, ρac, over the last
10 s of the stimulation duration. Accordingly, we quantified the
acute after-effect of stimulation by time-averaging the Kuramoto
order parameter, ρaf, over the first 10 s interval after cessation
of the stimulation. Lastly, long-lasting effects of stimulation
are quantified by means of the time-averaged Kuramoto order
parameter, ρ ll, which is evaluated over a 10 s interval 1,000
s after the stimulation ceases. ρ ll ≈ 0 indicates long-lasting
desynchronization, while ρ ll ≈ 1 indicates that stimulation did
not entail long-lasting desynchronization effects.

2.6. Estimated Weight Change During
Strong and Fast Stimulation
We derive estimates for the stimulation-induced weight
dynamics during stimulation by applying the theoretical
framework presented in Kromer and Tass (2020). In the
following, we present the main steps and derive specific results
for NCR, SCR, and SNCR. Results for CR were previously
reported in Kromer et al. (2020) and are given below as a
reference for the reader’s convenience.

We consider a synapse with synaptic weightwij(t), presynaptic
neuron i, and postsynaptic neuron j. Its mean rate of weight
change during a time interval of duration T, starting at time t,
is given by Kempter et al. (1999)

Jij(t,T) : =
wij(t + T)− wij(t)

T

=
1

T

∑

ti ,tj ∈spike pairs

W(tj − (ti + td)). (3)

W(t) is the STDP function given in Equation (1). ti and tj
are the pre- and postsynaptic spike times, respectively. The
sum runs over all pairs of pre- and postsynaptic spike times,
that contribute to weight changes according to the given STDP
scheme (Morrison et al., 2008). In the present paper, we consider
a nearest-neighbor scheme in which each presynaptic spike
arrival time (ti + td) is paired with the latest postsynaptic spike
time (tj) and each postsynaptic spike time is paired with the latest
presynaptic spike arrival time.

We are particularly interested in the expectation value
〈Jij(t,T)〉, which is obtained by averaging over different
realizations of the stimulation pattern. Assuming stationary
dynamics and the time interval T being long compared to the
interspike intervals as well as the characteristic time scale of
temporal correlations in the stimulation pattern, the mean rate
of weight change becomes independent of the starting point t
and the length T of the time interval. Then, we can approximate
〈Jij(t,T)〉 by its limit for long time intervals 〈Jij(t,T)〉 → 〈J∞

ij 〉.

Next, we restrict ourselves to the case of stimulation-
controlled spiking where each spike is caused by a stimulus
and each stimulus causes a spike of the stimulated neurons. In
simulations of the LIF network, this can be realized for weak
synaptic interaction by considering strong stimulation (Astim ≈

1) that is fast compared to neuronal firing rates in the absence
of stimulation. Furthermore, the duration of inhibitory pulses
νi should be short, such that the membrane potential recovers
from inhibition before the next stimulus arrives. In the case
of stimulation-controlled spiking, the spike times of pre- and
postsynaptic neurons can be related to stimulus delivery times by
introducing the distribution of spike response times λ(ǫ), where
ǫ is the time lag between stimulus delivery and triggered neuronal
spiking response (Kromer and Tass, 2020). If both post- and
presynaptic neurons receive stimuli at rate fCR, these assumptions
allow us to rewrite Equation (3) as

〈J∞
ij 〉 = fCR

∫

dt′ Gij(t
′)W(t′ − td). (4)

Gij(t
′) is the distribution of time lags t′ = tj − ti between

pairs of post- and presynaptic spike times that contribute to
weight changes.

We calculate Gij(t
′) for CR, NCR, SCR, and SNCR. Following,

GA
ij (t

′) with A=CR, NCR, SCR, or SNCR will denote the

distribution of time lags during ongoing stimulation with the
respective stimulation protocol. To this end, we consider the
statistics of time lags t′ between subsequent post- and presynaptic
spikes. We set t′ = S + 1 with the inter-stimulus interval
S between stimuli triggering these spikes and 1 = ǫpost −

ǫpre denoting the time difference between the realizations of
spike response times for the considered spikes of the post- and
presynaptic neurons resulting in the time lag t′. For narrow
distributions of spike response times λ(t), GA

ij (t
′) in Equation

(4) can be approximated using the two distributions: 3(t) =
∫ ∞

−∞
dt′′ λ(t′′)λ(t′′ + t) and pAij (S|1) as

GA
ij (t)≈

∫

d13(1)

∫

dS δ(t − S−1)pA(S|1), (5)
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see also Kromer and Tass (2020) and Kromer et al. (2020).
pAij (S|1) is the distribution of inter-stimulus intervals between

stimuli delivered to the post- and presynaptic neurons for which
the resulting pairs of spike times contribute to weight changes
according to the STDP scheme. Note that GA

ij (t) and pA(S|1)

are in general not normalized to one as multiple intervals per
spike can contribute to weight changes. For the STDP scheme
considered in the present paper, both are normalized to two, i.e.,
∫ ∞

−∞
dt GA

ij (t) = 2 and
∫ ∞

−∞
dS pA(S|1) = 2.

Estimates 〈J∞
ij 〉 of the mean rate of weight change for the four

different stimulation patterns considered in the present paper
can be obtained by calculating pAij (S|1). The latter depends on

the conditional probability for the postsynaptic neuron to receive
a stimulus at time S after a stimulus has been delivered to the
presynaptic neuron and vice versa.

For the stimulus patterns considered in the present paper, two
classes of synapses exist, each characterized by a distinct statistics
of stimulus delivery times to the post- and presynaptic neurons,
see Kromer and Tass (2020). Intrapopulation synapses connect
neurons that are affected by the same stimulation site. Hence,
post- and presynaptic neurons receive stimuli simultaneously.
In contrast, interpopulation synapses connect neurons that
are affected by different stimulation sites. Thus, post- and
presynaptic neurons receive stimuli at different times. Following,
we will replace the indices i and j, referring to the connected
neurons, by the terms ‘intra’ and ‘inter’ referring to the respective
type of synapse. Specifically, we set pAij (S|1) → pAintra(S|1), if

neurons i and j are in the same subpopulation, and pAij (S|1) →

pAinter(S|1), if neurons i and j are in different subpopulations.
Results for CR stimulation have been derived in Kromer and

Tass (2020) and Kromer et al. (2020) and will be presented below
for the reader’s convenience. In the present paper, we consider the
limit of sharp distributions of spike response times λ(ǫ) = δ(ǫ),
thereby focusing on the contribution of the distribution of inter-
stimulus intervals to weight changes. In this limit, we derive
pAintra(S) = pAintra(S|1 = 0) and pAinter(S) = pAinter(S|1 = 0) for
A = NCR, SCR, and SNCR stimulation.

2.6.1. CR and NCR Stimulation

We calculate the distributions of inter-stimulus intervals that
contribute to weight changes for CR and NCR stimulation
pCRintra/inter(S) and pNCRintra/inter(S), respectively.

In Kromer and Tass (2020) and Kromer et al. (2020),
pCRintra/inter(S) has been derived for the case ofNs = 4 and arbitrary
Ns, respectively. Note that Ns was called M in the cited papers.
Furthermore, in Kromer et al. (2020) a nonlinear dependence of
pCRinter(S|1) on stimulation parameters was found. In more detail,
if S+1 < td presynaptic spikes arrive at the postsynaptic neuron
after the next spikes have been initiated by stimuli. In order to
account for this effect, a correction term was suggested. In the
case of3(1) = δ(1) the authors’ approach yields

pCRintra/inter(S) =

{

pCRintra/inter,0(S),
1

NSfCR
≥td

pCRintra/inter,0(S)+ δp
CR
intra/inter(S),

1
NSfCR

<td
.

(6)

Here, pCRintra/inter,0(S) and δp
CR
intra/inter(S) are the zeroth order term

( 1
NSfCR

≥ td) and the first correction term accounting for the case

that presynaptic spikes arrive at postsynaptic neurons after the
next but before the second to next stimulus has been delivered,
i.e., inter-stimulus intervals are smaller then the delay time, but
second order inter-stimulus intervals are larger than the delay
time. In the present paper, we neglect further correction terms.
These would account for more stimulus deliveries during a single
delay time td.

The results of Kromer and Tass (2020) and Kromer et al.
(2020) can be expanded to NCR by considering that individual
stimulation times are uniformly distributed around their mean.
Consequently, while pCRintra,0 is given by a superposition of delta

distributions at multiples of 1
NsfCR

, pNCRintra,0 shows additional

variability which can be described by the distribution qσCR (S) that
is centered at zero. For a given width, σCR, of the distribution of
jitters, we find

pCR/NCRintra,0 (S) = δ(S)+

2Ns
∑

m=1

Ns − |m− Ns|

N2
s

qσCR

(

S−
m

NsfCR

)

,

(7)

with

qσCR (S) =
N2
s f

2
CR

σ 2
CR

{

−|S| + σCR
fCRNs

, −
σCR
fCRNs

< S < σCR
fCRNs

0, otherwise
, σCR > 0.

(8)

Equation (8) is the distribution of the difference between two
random variables that are uniformly distributed in the interval
[−σCR/(2NsfCR), σCR/(2NsfCR)]. These two random variables
correspond to the jitters of post- and presynaptic stimulus
delivery times. The case of CR stimulation (σCR = 0) can be
described by q0(S) : = δ(S), which yields the results of Kromer
and Tass (2020).

Accordingly, we derive the first correction term using the
results for CR stimulation published in Kromer et al. (2020)

δpCR/NCRintra (S) = −
1

N2
s

δ(S)+

Ns−1
∑

ξ=0

qσCR

(

S−Ns+1+ξ
fCRNs

)

N3
s

,
1

NsfCR
< td.

(9)

We apply the same approach to the results for interpopulation
synapses. Based on the results for CR stimulation from Kromer
et al. (2020), we obtain

pCR/NCRinter,0 (S) =

Ns
∑

ξ=1





1

N2
s



1+

ξ
∑

k=2

(

1−
k− 1

Ns − 1

)



 (10)

+
Ns − ξ

Ns(Ns − 1)

]

×

[

qσCR

(

S+
ξ

NsfCR

)

+qσCR

(

S−
ξ

NsfCR

)

]

+

2Ns−2
∑

ξ=Ns+1





1

N2
s

Ns−2
∑

k=ξ−Ns

(

1−
k

Ns − 1

)





×

(

qσCR

(

S+
ξ

NsfCR

)

+ qσCR

(

S−
ξ

NsfCR

)

)

.
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For the first correction term, we find

δpCR/NCRinter (S) =

Ns−2
∑

u=0

Ns−1
∑

v=0

qσCR

(

S− Buv
fCRNs

)

− qσCR

(

S+ Cuv
fCRNs

)

N2
s (Ns − 1)

+

Ns−1
∑

v=0

qσCR

(

S− Duv
fCRNs

)

N3
s

−

Ns−1
∑

v=1

qσCR

(

S+ v
fCRNs

)

N2
s (Ns − 1)

,
1

NsfCR
< td.

(11)

Here, we introduced Buv = Ns − u + v, Cuv = 1 + u + v, and
Duv = M + u+ v.

2.6.2. SCR and SNCR Stimulation

Next, we consider SCR and SNCR stimulation. As stimuli are
delivered to random stimulation sites independently of previous
stimulus deliveries, the derivation of pSCRintra,0(s) and pSCRinter,0(s) is
comparable to that of the results for RR stimulation presented in
Khaledi-Nasab et al. (2021a). Specifically, pSCRintra,0(S) results from

pSCR/SNCRintra,0 (S) = δ(S)+ F(S, σCR), (12)

with the series

F(S, σCR) =

∞
∑

k=1

1

Ns

(

1−
1

Ns

)k−1

qσCR

(

S−
k

NsfCR

)

. (13)

The summands contain the probabilities 1/Ns and (1− 1/Ns)
k−1

that the neurons’ subpopulations receive the kth but not the
previous k− 1 stimuli.

For interpopulation synapses, we find

pSCR/SNCRinter,0 (S) = F(S, σCR)+ F(−S, σCR). (14)

The first correction terms δpCR/NCRintra (S) and δpCR/NCRinter (S) can be
derived by considering that inter-stimulus intervals of length

1
NsfCR

result in negative time lags for td > 1
NsfCR

. First, we

derive the correction term for intrapopulation synapse. Both
post- and presynaptic neurons receive a stimulus at time t = 0.
If the neurons do not receive a stimulus at time t = 1

NsfCR
,

the presynaptic spike arrival time 0 + td is paired with the
postsynaptic spike at time t = 0 for a negative time lag. However,
with probability 1/Ns both neurons receive a stimulus at time
t = 1

NsfCR
. Then, the presynaptic spike arrival time td is paired

with the postsynaptic spike at time t = 1
NsfCR

for a negative time

lag. Proceeding accordingly for positive time lags, we find the
correction term for intrapopulation synapses

δpCR/NCRintra (S) = −
1

Ns
δ(S)

+
1

N2
s

∞
∑

k=0

(

1−
1

Ns

)k

qσCR

(

S−
k+ 2

NsfCR

)

;

(15)

and the following correction terms for interpopulation synapses

δpCR/NCRinter (S) =
1

N2

∞
∑

k=0

(

1−
1

Ns

)k (

qσCR

(

S−
k+ 2

NsfCR

)

−qσCR

(

S+
k+ 1

NsfCR

))

.

(16)

The first correction term δpAX(s), with A = CR, NCR, SCR,
or SNCR and X = “intra” or “inter,” needs to be added if
postsynaptic spikes, triggered by the next stimulus, occur before
the presynaptic spike, triggered by the current stimulus, arrives
at the postsynaptic neuron. This scenario changes the order of
postsynaptic spike times and presynaptic spike arrival times and

occurs with probability PCor,σCR =
∫ td
0 dS qσCR (S − 1

NsfCR
). By

considering the probability for this scenario, we can generalize
Equation (6) to the case of NCR and SNCR stimulation as

pAX(S) ≈ pAX,0(S)+ PCor,σCRδp
A
X(S), (17)

with σCR = 0 for CR and SCR stimulation. Using pAX(s) in
Equation (5) yields an estimate of GA

X(t), which can be used in
Equation (4) to estimate the mean rate of weight change for
stimulation protocol A and synapses of type X.

3. RESULTS

We compare long-lasting effects of CR, NCR, SCR, and
SNCR stimulation patterns using theoretical estimates of
the stimulation-induced weight dynamics and simulations of
networks of 103 excitatory LIF neurons with STDP.

In simulations, the network connectivity and the neurons’
membrane time capacitances were initialized at random. The
networks were prepared in a state of pronounced in-phase
synchronization (see section 2). For each network realization,
we study the acute, acute after-, and long-lasting effects of
stimulation by means of the mean synaptic weight 〈w〉 and the
Kuramoto order parameter ρ, Equation (2). Stimulation was
delivered for either 500 or 1,000 s, see Figure captions.

3.1. Theoretical Predictions for
Stimulation-Induced Weight Dynamics
To quantify the stimulation-induced synaptic weight dynamics,
we consider the mean rate of weight change during ongoing
stimulation. Theoretical estimates, 〈J∞

X 〉, of the latter have been
derived in the Methods section (see Equation 4). We compare
the NCR/SNCR stimulation with maximum jitter, σCR = 1 to the
ones without any jitter, CR/SCR.

Results for 〈J∞
X 〉 for CR, NCR, SCR, and SNCR

stimulation are shown in Figure 2 for intrapopulation synapses,
Figures 2A–D, and interpopulation synapses, Figures 2A’–D’,
respectively. We find qualitatively different dynamics of intra-
and interpopulation synapses. Intrapopulation synapses weaken
(〈J∞

intra〉 < 0) for the considered range of stimulation frequencies
fCR and numbers of stimulation sites Ns, see Figures 2A–D.
In contrast, interpopulation synapses weaken only during
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FIGURE 2 | Theoretical estimates of stimulation-induced weight dynamics and distributions of time lags for different CR stimulation patterns. Individual columns

correspond to CR (A), NCR (B), SCR (C), and SNCR (D) stimulation patterns. Panels show the estimated mean rates of weight change 〈J∞
X 〉, Equation (4), for

intrapopulation (A–D) and interpopulation synapses (A’–D’), respectively. Here, X = “intra,” “inter” marks the considered type of synapses. White curves mark zero

contour lines and indicate the boundary between strengthening (〈J∞
X 〉 > 0) and weakening of synapses (〈J∞

X 〉 < 0). Corresponding estimates for the distributions of

time lags that lead to weight updates GA
X (t) (black), Equation (5), are compared to simulation results (red) in (A”–D”) for intrapopulation synapses and in (A”’–D”’) for

interpopulation synaspes, respectively. In (A”–D”,A”’–D”’), we set Ns = 2 and fCR = 10 Hz. Networks were simulated for 90 s of ongoing stimulation. Time lags have

been recorded from 400 pairs of pre- and postsynaptic neurons. Pairs were sorted according to synapse types “intra” and “inter” and histograms were calculated

using a bin size of 1 ms. Theoretical estimates for J∞
X were obtained by numerical calculations of pAX (s), Equation (17). To this end, the time interval [−1, 000, 1, 000]

ms was discretized using a binsize of dt = 0.01 ms. Then, GX (t) was obtained using Equation (5). To compare theoretical estimates and simulation results, we plotted

GX(t)dt in (A”–D”,A”’–D”’) and normalized the histograms such that counts summed up to two. Parameters: td = 3 ms, η = 0.02, τ+ = 10 ms, τR = 4, β = 1.4.

slow stimulation with a rather small number of stimulation
sites, Figures 2A’–D’. For fast stimulation with larger Ns,
interpopulation synapses may strengthen (〈J∞

inter〉 > 0).
We observe qualitatively different dynamics of

interpopulation weights for stimulation patterns with
random jitters, i.e., NCR and SNCR, and stimulation
patterns with deterministic stimulation times, i.e., CR and
SCR, Figures 2A’–D’. For NCR and SNCR stimulation,
strengthening of interpopulation synapses (〈J∞

inter〉 > 0)
is observed for fast stimulation, whereas we find a highly
nonlinear dependence of the sign of 〈J∞

inter〉 for CR and
SCR stimulation.

Considering the distributions of time lags that contribute to
weight updates GA

X(t), Equation (5), we find that stimulation
protocols with random jitters, i.e., NCR and SNCR, possess broad
distributions spanning a wide range of possible time lags. In
contrast, for protocols with deterministic stimulation times, i.e.,
CR and SCR, GA

X(t) is given by a sum of delta-like distributions at
integer multiples of TCR/Ns.

We find that simulated distributions of the time lags
between post- and presynaptic spikes, which lead to weight
updates, are well-described by theoretical estimates GA

X(t) for
all four stimulation patterns (for interpopulation synapses,
see Figures 2A”–D”, and for intrapopulation synapses see
Figures 2A”’–D”’). In particular, smooth distributions of time
lags were found for stimulation protocols with temporal
randomization, i.e., NCR and SNCR, whereas protocols with
deterministic stimulation times led to time lags of multiples
of TCR/Ns.

Based on theoretical predictions for the mean rate of
weight change, Figures 2A–D, A’–D’, we expect long-lasting
desynchronization effects of CR, NCR, SCR, and SNCR in a large
portion of the parameter space, spanned by fCR and Ns.

3.2. Acute, Acute After-, and Long-Lasting
Effects of Strong Stimulation
We study the acute, acute after-, and long-lasting effects of
strong stimulation for the four different stimulation patterns.
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FIGURE 3 | Acute, acute after-, and long-lasting effects of Noisy CR (NCR) with different values of the stimulus jitter, σCR, as a function of the stimulation frequency

and the number of stimulation sites for strong stimulation. (A–E) Simulation results for the acute mean synaptic weights, 〈w〉ac, at the end of the 1, 000 s stimulation

duration; (A’–E’) The acute Kuramoto order parameter, ρac, time-averaged over the last 10 s of the stimulation duration; (A”–E”) The acute after-effect on

synchronization as quantified by the Kuramoto order parameter, ρaf, time-averaged over a 10 s interval after cessation of the stimulation; (A”’–E”’) Long-lasting

desynchronization effects for respective stimulus jitters, as quantified by the Kuramoto order parameter, Equation (2), averaged over a 10 s interval 1,000 s after

cessation of stimulation, ρ ll. (A,A’,A”,A”’) show results for σCR = 0 which are similar to Kromer et al. (2020) but for longer stimulation durations. The white curves

show theoretical estimates of the boundary between weakening and strengthening of interpopulation synapses, see Figure 2. Parameters: The stimulation duration

was set to Tstim = 1, 000 s and Astim = 1.

The limit of strong stimulation (Astim = 1) resembles
the case of stimulation-controlled spiking used during the
derivation of theoretical predictions. Simulation results for the
acute mean synaptic weight 〈w〉ac during NCR stimulation and
NSCR stimulation for different values of σCR are shown in
Figures 3A–E, 4A–E, respectively.

First, we consider the extreme cases of deterministic stimulus
onset times, σCR=0, and maximum variability of stimulus
onset times, σCR = 1. We find that strong stimulation
leads to a reduction of the mean synaptic weight for rather
slow stimulation with a small number of stimulation sites. In
other parameter regions, the weight dynamics strongly depends
on the stimulation pattern. For patterns with deterministic
stimulus onset times, i.e., CR (Figure 3A) and SCR (Figure 4A)
stimulations, we find a highly nonlinear dependence of the mean
synaptic weight on the stimulation frequency and the number
of stimulation sites. For CR stimulation, this was previously
reported in Kromer et al. (2020). In contrast, for patterns with
maximum random jitters, i.e., NCR and SNCR stimulations, we
find that stimulation leads to a reduction of the mean synaptic

weight for a wide range of stimulation frequencies and numbers
of stimulation sites, see Figures 3E, 4E.

In order to study the long-lasting outcome of stimulation, we
evaluate the Kuramoto order parameter 1,000 s after cessation
of stimulation. Corresponding simulation results are shown in
Figures 3A”’,E”’, 4A”’,E”’. We find that stimulation entailed
long-lasting desynchronization in regions with considerable
weight reduction. This indicates that the system approached the
stable desynchronized state after cessation of stimulation. In
regions where the mean weight was only slightly reduced, or
even increased, during the stimulation, we observe long-lasting
synchronization. This indicates that the system reapproached the
stable synchronized state for these parameter sets.

To compare theoretical predictions to simulation results,
we show the estimated boundary between stimulation-induced
weakening and strengthening of interpopulation synapses
(〈J∞

X 〉 = 0) in Figures 3, 4. We find that the boundary
accurately reproduces the boundary between long-lasting
desynchronization and long-lasting synchronization. Deviations
occur mainly for low and intermediate stimulation frequencies.
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FIGURE 4 | Acute, acute after-, and long-lasting effects of Shuffled Noisy CR (SNCR) for different values of the stimulus jitter, σCR, for strong stimulation as a function

of the stimulation frequency and the number of stimulation sites. (A–E) Acute mean synaptic weights, 〈w〉ac; (A’–E’) The acute Kuramoto order parameter, ρac,

time-averaged over the last 10 s of the stimulation; (A”–E”) The acute after-effect of stimulation on synchronization as measured by the Kuramoto order parameter,

ρaf, time-averaged over an interval of 10 s right after cessation of the stimulation; (A”’–E”’) Long-lasting effects of stimulation as quantified by the Kuramoto order

parameter, ρ ll, time-averaged over a 10 s interval 1, 000 s after cessation of stimulation. Parameters: The stimulation duration was set as Tstim = 1, 000 s and Astim = 1.

Next, we analyze the degree of stimulation-induced
synchronization during stimulation (acute effects), right
after cessation of stimulation (acute after-effects), and long
after cessation of stimulation (long-lasting effects). Figures 3,
4 show corresponding acute effects (second row), acute after-
effects (third row), and long-lasting after effects (fourth row)
as quantified by the Kuramoto order parameter, Equation (2),
averaged over respective time intervals.

We find that acute stimulation-induced synchrony during
NCR stimulation is independent of the stimulation parameters,
such as the stimulation frequency, the number of stimulation
sites, and the jitter σCR. Throughout the parameter space,
NCR stimulation induces acute partial synchronization with
ρac ≈ 0.3. Only for very slow stimulation (fCR ≈ 1 − 2
Hz), NCR stimulation induces acute desynchronization.
Remarkably, as soon as stimulation ceases, the degree of
synchronization changes rapidly and becomes determined
by the underlying network connectivity, i.e., strong synaptic
connections lead to synchronization and weak synaptic
connections to desynchronization, see the third row of Figure 3.

Similarly, for SNCR stimulation, we find acute
partial synchronization. However, the degree of in-phase

synchronization attains lower values for larger Ns, see Figure 4.
As for NCR stimulation, the degree of synchronization changes
rapidly after cessation of SNCR stimulation and attains the
values determined by the underlying network connectivity.
Of note, for all stimulation patterns shown in Figures 3, 4,
for very low stimulation frequencies, fCR → 1 Hz, there are
no long-lasting effects for most values of Ns. There, the CR
stimulation frequency, fCR, is much smaller than the frequency
of the synchronized rhythm. Hence even if the stimulation
potentially can decouple the network, a much longer stimulation
duration is needed.

3.3. Effect of Jitter on Long-Lasting Effects
Next, we consider the effect of σCR, quantifying the variability of
stimulus onset times. We perform simulations for intermediate
values of 0 < σCR < 1 and evaluate the theoretical prediction
of the boundary between strengthening and weakening of
interpopulation weights (〈J∞

X 〉 = 0) using Equations (4) and
(5), and the results for the respective stimulation patterns given
in section 2. Results for NCR stimulation and SNCR are given in
Figures 3, 4, respectively.
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FIGURE 5 | Acute mean synaptic weight for five values of the stimulus jitter, σCR, as a function of the stimulation frequency for Ns = 24. (A,B) show results for Noisy

CR (NCR) and Shuffled Noisy CR (SNCR), respectively. These graphs represent horizontal lines at Ns = 24 in Figures 3, 4, respectively. Parameters are the same as

in Figures 3, 4.

We find that for both NCR and SNCR stimulations, the
nonlinear dependence of the mean synaptic weight on the
stimulation frequency and the number of stimulation sites
becomes less pronounced as σCR increases, see Figures 3, 4.
This trend is well reproduced by our theory. We observe a
similar trend for the degree of long-lasting desynchronization as
quantified by the Kuramoto order parameter, see the fourth row
of Figures 3, 4.

To directly compare the mean synaptic weights for different
values of σCR, we fix the number of stimulation sites to
Ns = 24. Results for the mean synaptic weight for different
σCR as a function of the stimulation frequency are plotted
in Figure 5. We find that the effect of variability of stimulus
onset times on the acute mean synaptic weight depends on the
stimulation frequency. In particular, we find that increasing σCR
has only a minor effect on the acute mean weight for NCR
stimulation with low stimulation frequencies, see Figure 5A.
In contrast, it leads to a significant reduction of the acute
mean weight for intermediate stimulation frequencies, (fCR ≈

12 Hz), whereas it leads to an increase of the acute mean
weight for higher stimulation frequencies, see Figure 5A. For
SNCR stimulation, we find qualitatively similar results, however,
these trends occur at slightly lower stimulation frequencies, see
Figure 5B.

Of particular interest for clinical application is to provide
parameter ranges for which adding random jitters to the stimulus
onset times might improve the performance of the stimulation.
In order to derive such parameter ranges, we consider the
difference of the acute mean synaptic weight for deterministic
stimulus onset times 〈w〉ac(CR), and the acute mean synaptic
weight for maximum variability (σCR= 1) 〈w〉ac(NCR).
We also calculate the corresponding difference for SCR
and SNCR.

Results are shown in Figures 6A,B for NCR and SNCR
stimulation, respectively. In the red regions in Figure 6, jitter
improves the reduction of the mean synaptic weight during
stimulation. Accordingly, we calculate the differences between
the Kuramoto order parameters, ρ ll, quantifying the effect

of jitter on the degree of long-lasting desynchronization.
Corresponding results are shown in Figures 6A’,B’.

The simulation results in Figure 6 show that adding random
jitters to the stimulus onset times during CR and SCR improves
the performance of these stimulation patterns for intermediate
frequencies. Corresponding frequency intervals I1 (NCR) and I2

(SNCR) are shown in Figure 6. However, for very low and high
frequencies, adding random jitters tends to worsen the outcome
of the stimulation.

3.4. Acute and Long-Lasting Effects of
Weak Stimulation
Next, we consider weak stimulation using the four different
stimulation patterns; CR, SCR, and their noisy counterparts with
maximum jitter, σCR = 1. To this end, we set Astim = 0.1 and
perform a similar analysis as in the previous section.

Figures 7A–D show simulation results for the acute mean
weight 〈w〉ac during weak stimulation for the four different
stimulation patterns. We find that stimulation leads to a
reduction of the mean synaptic weight (prior to stimulation
〈w〉 ≈ 0.38) in the major part of the parameter space spanned by
the stimulation frequency and the number of stimulation sites.
In contrast to strong stimulation, weak stimulation also leads
to weight reduction for fast stimulation with large numbers of
stimulation sites. In the maps of Figures 7A–D, the red colors
indicate that the value of the mean synaptic weight is close to
that prior to stimulation in the stable synchronized state. Overall
weight reduction during weak stimulation is more pronounced
for sufficiently fast stimulation.

Considering the differences between the four stimulation
protocols, we find that protocols with deterministic stimulation
times, i.e., CR and SCR stimulations, do not lead to a substantial
reduction of the mean synaptic weight for the intermediate
number of stimulation sites and a wide range of stimulation
frequencies. In contrast, protocols with random jitters, i.e., NCR
and SNCR stimulations, lead to a reduction of the mean synaptic
weight for sufficiently fast stimulation, fCR ' 6 Hz for NCR and
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FIGURE 6 | Differences between the outcomes of stimulation with deterministic stimulus onset times (CR/SCR) and NCR/SNCR stimulation with maximum jitter,

σCR = 1. The difference maps for the acute mean weight (A,B) and for the long-lasting Kuramoto order parameter (A’,B’). Parameter regions where NCR/SNCR led to

smaller mean weight/values of the long-lasting Kuramoto order parameter compared to CR/SCR are marked red. Dashed vertical lines enclose the largest continuous

range of stimulation frequencies where NCR/SNCR stimulation with maximum jitter led to similar or better outcome than CR/SCR stimulation. These frequency ranges

are referred to as I1, and I2 in the text. Data are taken from panels A,E (acute mean weight) and A”’,E”’ (long-lasting Kuramoto order parameters) of Figures 3, 4,

respectively.

fCR ' 10 Hz SNCR stimulation, across the range of considered
numbers of stimulation sites, see Figures 7A–D.

For a vast range of stimulation frequencies, we find a nonlinear
dependence of 〈w〉ac on the number of stimulation sites. While
〈w〉ac(Ns) expresses multiple extrema for constant fCR for CR and
SCR stimulations, we observe only one maximum for NCR and
SNCR stimulations, see Figures 7A–D.

Next, we consider the acute, acute after-, and long-lasting
effects of stimulation on synchronization. Simulation results are
shown in Figure 7. Similar to the case of strong stimulation, we
find acute partial synchronization during weak stimulation, see
the second row of Figure 7. As stimulation ceases, the network
approaches the state determined by the network connectivity, i.e.,
synchronized activity for strong and desynchronized activity for
weak connections, see the third row of Figure 7. Remarkably, in
parts of the parameter space where synaptic weights have not
been reduced completely during the stimulation, we find that
the Kuramoto order parameter increases right after cessation of
stimulation, compare rows two and three of Figure 7. As one
can see from the acute after-effects, (see Figures 7A”–D”), we
find pronounced in-phase synchronization in parameter regions
where stimulation did not lead to a substantial reduction of the
mean synaptic weight, compare Figures 7A–D, A”’–D”’. As a
consequence, stimulation protocols with random jitters, i.e., NCR
and SNCR stimulation, lead to long-lasting desynchronization,

ρ ll ≈ 0, in a bigger portion of the parameter space than
stimulation protocols without random jitters, i.e., CR and
SCR stimulations.

3.5. Required Stimulation Duration for
Long-Lasting Desynchronization
We study the influence of the stimulation duration Tstim on
the acute and long-lasting outcome of weak stimulation with
the four different stimulation patterns. To this end, we fix the
stimulation frequency to fCR = 12 Hz, see dashed vertical lines in
Figures 7A–D. We deliver stimulation for a stimulation duration
Tstim and record the acute mean synaptic weight 〈w〉ac. Then, we
turn off the stimulation and continue the simulation for 1, 000 s
to evaluate long-lasting effects using ρ ll.

Figures 8A–D shows simulation results for the acute mean
weight 〈w〉ac recorded after the stimulation duration Tstim. We
find that the mean weight 〈w〉ac reduces rapidly for small
numbers of stimulation sites, Ns < 10. For larger Ns, the
evolution of 〈w〉ac(Tstim) depends on the stimulation protocol.
For CR and SCR stimulation, 〈w〉ac(Tstim) reduces rather rapidly
for a narrow range of large 26 < Ns < 40, whereas it reduces
slowly for others Ns. In contrast, the reduction of 〈w〉ac(Tstim)
only slightly depends on Ns for NCR and SNCR stimulation.
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FIGURE 7 | Acute, acute after-, and long-lasting effects of weak stimulation for the four multisite stimulation protocols. Upper (A–D) show simulation results for the

acute mean weight, 〈w〉ac; (A’–D’) show the acute Kuramoto order parameter, ρac, time-averaged over the last 10 s of the stimulation duration; (A”–D”) show the

acute after-effect measured by the Kuramoto order parameter, ρaf, 10 s after cessation of the stimulation; and the bottom panels (A”’–D”’) show the results for the

Kuramoto order parameter, ρ ll, time-averaged over a 10 s time interval 1, 000 s after cessation of stimulation. Low values of the Kuramoto order parameter indicate

desynchronized activity while high values refer to pronounced in-phase synchronization. The white vertical lines in (A–D) mark a stimulation frequency of fCR = 12 Hz

for which we present a detailed analysis of the influence of the stimulation duration Tstim in Figure 8. The frequency of the original synchronous rhythm is

approximately 3.5 Hz and it is shown by the magenta dot-dashed vertical lines. Acute mean weights are measured at the end of Tstim = 500 s stimulation period.

Parameters: Astim = 0.1.

FIGURE 8 | Acute and long-lasting effects of stimulation for different stimulation durations. (A–D) acute mean synaptic weight, 〈w〉ac, at the end of a stimulation

period Tstim for different numbers of stimulation sites Ns. (A’–D’) Long-lasting desynchronization effects quantified by the Kuramoto order parameter, ρ ll, Equation (2),

recorded 1, 000 s after a stimulation period of duration Tstim. Low values indicate desynchronized spiking activity and high values in-phase synchronization of neuronal

spiking. Parameters: Astim = 0.1 and fCR = 12 Hz.
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FIGURE 9 | Long-lasting effects of CR and NCR stimulations as a function of CR frequency, fCR, and simulation strength, Astim. (A–D) The long-lasting Kuramoto

order parameter for CR stimulation as a function of stimulation frequency and stimulation strength for Ns = 4, 8, 16, and 24. (A’–D’) Same as the top row but for NCR

with σCR = 1. (A”–D”) The difference between the long-lasting Kuramoto order parameter for CR and NCR, 1ρ ll = rholl(CR)− rholl(NCR). In the red colored parameter

regions, the Kuramoto order parameter for CR was larger than that for NCR, in the blue colored regions CR led to long-lasting desynchronization whereas NCR did

not. The columns correspond to different numbers of stimulation sites, Ns = 4, 8, 16, and 24, respectively.

3.6. Long-Lasting Desynchronization
Effects Depend on Stimulation Strength
Typically, in clinical trials, the stimulation frequency and
strength can be adjusted more readily, whereas the number of
stimulation sites is constrained by anatomical and physiological
features of the target area. Accordingly, we study the effect of the
stimulation strength, Astim, and the stimulation frequency, fCR,
for fixed numbers of stimulation sites. We study the long-lasting
desynchronization effects, as quantified by the Kuramoto order
parameter ρll, for CR and SCR and their noisy counterparts with
maximum jitter, σCR = 1. For Ns = 4, 8, 16, and 24, we vary the
stimulation frequency and strength.

Figures 9A–D shows the long-lasting desynchronization
effects for CR, and Figures 9A’–D’ shows the same for NCR. The
third row in Figures 9A”–D” shows the difference between the
long-lasting Kuramoto order parameters of CR and NCR.

For weak stimulation strengths (Astim → 0) the stimulation
is ineffective in inducing long-lasting desynchronization. For
moderate stimulation strengths, both CR and NCR lead to
desynchronization over a wide range of stimulation frequencies.
However, for NCR, the range of effective moderate simulation
strengths is larger compared to CR, as can be seen in the second
row of Figure 9. By increasing the stimulation strength (Astim →

1), we approach the limit of strong stimulation (predicted
by our theory, see Figure 2). Here, we find several frequency
intervals in which stimulation does not lead to long-lasting
desynchronization (see black regions in Figure 9). Remarkably,
we find only one of these frequency intervals for NCR, whereas
several intervals occur for CR. Put differently, random jitters

remove the nonlinearities in the parameter space (Compare A–
D with A’–D’ in Figure 9). We find that the parameter region
in which stimulation leads to long-lasting desynchronization is
bigger for smaller numbers of stimulation sites, i.e., Ns = 4.

Figure 10 shows the long-lasting effect for SCR and SNCR.
Here, we find qualitatively similar results as in Figure 9.
Comparing the results for CR and SCR, we find that SCR
performs slightly better than CR at low stimulation frequencies
(fCR = 1 − 3 Hz) (see Figures 9A, 10A). In the limit of strong
stimulation, frequency intervals in which stimulation does not
lead to long-lasting desynchronization effects are larger for SCR
and SNCR than for CR and NCR. However, this reverses if the
stimulation strength is reduced. Thus, shuffling increases the
range of effective stimulation frequencies for moderate to strong
stimulation amplitudes.

4. DISCUSSION

In the present paper, we analyze the acute, acute after-, and long-
lasting effects of randomized coordinated reset (CR) stimulation
patterns on plastic neuronal networks. CR stimulation has
been used in preclinical in vitro studies (Tass et al., 2009),
preclinical in vivo studies (Tass et al., 2012b; Wang et al.,
2016; Ho et al., 2021), as well as in clinical studies (Adamchic
et al., 2014; Syrkin-Nikolau et al., 2018; Pfeifer et al., 2021)
to induce acute and long-lasting desynchronization effects as
well as symptom relief in the context of epilepsy, Parkinson’s
disease, and binge alcohol drinking. We computationally study
the consequences of a reduction of temporal correlations between
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FIGURE 10 | Long-lasting effects of SCR and SNCR stimulation as a function of CR frequency, fCR, and simulation strength, Astim. Panels show the long-lasting

Kuramoto order parameter for SCR (A–D) and for SNCR (A’–D’). (A”–D”) show the difference between the long-lasting Kuramoto order parameter for SCR and

SNCR, 1ρ ll = rholl(SCR)− rholl(SNCR). This figure is similar to Figure 9 but for SCR and SNCR.

stimulus delivery times and a reduction of spatial correlations in
the stimulus pattern on the efficacy of stimulation. A reduction
of temporal correlations is achieved by adding random jitters
to the deterministic stimulus delivery times of the original CR
pattern. We denote the resulting stimulation pattern as CR with
random jitters (NCR). A corresponding stimulation pattern has
been used in a recent clinical study on vibrotactile stimulation of
Parkinson’s patients; where a long-lasting cumulative reduction
of motor symptoms was observed (Pfeifer et al., 2021). The
reduction of spatial correlations is achieved by shuffling the
sequence of stimulated subpopulations of the original CR pattern.
The corresponding stimulation pattern is referred to as shuffled
CR (SCR). Lastly, we refer to a CR pattern with both random
jitters and shuffling as shuffled noisy CR (SNCR). Corresponding
stimulation patterns are illustrated in Figure 1. Our detailed
theoretical and computational analysis reveals a significant
increase in parameter robustness of long-lasting effects due to
random jitters for intermediate stimulation frequencies, whereas
shuffling reduces parameter robustness.

First, we consider the limit of strong stimulation for which
we accurately predict the distribution of time lags between
post- and presynaptic neurons by extending a theoretical
framework previously presented in Kromer and Tass (2020),
see Figure 2. In particular, we find marked differences between
the stimulation-induced dynamics of intrapopulation and
interpopulation synapses. Here, intrapopulation synapses refer
to synapses that connect neurons at the same stimulation site,
while interpopulation synapses connect neurons at different
stimulation sites.

For all considered stimulation patterns, we found a
stimulation-induced weakening of intrapopulation synapses.

This is in accordance with previous results on the stimulation-
induced weight dynamics in plastic neuronal networks (Kromer
and Tass, 2020; Kromer et al., 2020; Khaledi-Nasab et al.,
2021a,b; Pfeifer et al., 2021). These studies found that the
dynamics of intrapopulation synapses is dominated by an effect
called decoupling through synchrony (Lubenov and Siapas, 2008;
Knoblauch et al., 2012). For sharp distributions of spike response
times, this effect leads to a reduction of synaptic weights between
simultaneously stimulated neurons in networks with axonal
delays. For sufficiently long axonal delays, stimulus-elicited
presynaptic spikes arrive after the postsynaptic ones which leads
to pronounced synaptic depression. In our setup, this effect
strongly contributes to the dynamics of the mean synaptic weight
for small numbers of stimulation sites Ns, i.e., when the portion
of intrapopulation synapses is high. Consequently, we observe a
rapid reduction of the mean synaptic weight for small Ns, see, for
instance, Figure 8.

In contrast, the dynamics of interpopulation synapses is more
complex and it depends on the stimulation patterns. A detailed
analysis for regular CR has been provided in Kromer et al. (2020).
The authors revealed a nonlinear dependence of the mean rate
of weight change on the stimulation frequency, fCR, and the
number of stimulation sites used for stimulus deliveries, Ns.
These nonlinearities result from a delay-induced effect that leads
to a change in the order of postsynaptic spikes and presynaptic
spike arrival times whenever k/fCRNs < td, i.e., when spikes
triggered by the next stimulus tend to occur before stimulus-
triggered presynaptic spikes arrive. Here k is a natural number
referring to how many stimuli may be delivered during a single
delay time td. This effect results in the complex pattern of synaptic
weakening (〈J∞

inter〉 < 0) and synaptic strengthening (〈J∞
inter〉 >
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0) of interpopulation synapses, see Figure 2A’. We find the
corresponding pattern for SCR stimulation, i.e., for CR with
shuffled sequence of stimulation sites, see Figure 2C’. However,
these nonlinearities disappear if random jitters are added, i.e.,
for NCR or SNCR stimulation. For these stimulation patterns,
we observe one continuous region in the parameter space
where interpopulation weights reduce. This happens because
the condition k/NsfCR < td is only satisfied by small portions
of stimuli, due to random jitters. Considering these portions
in our theory led to an accurate prediction of regions with
synaptic strengthening and weakening for these patterns, see
Figures 2B’,C’.

Using our theoretical framework, we were able to accurately
predict the distribution of time lags between post- and
presynaptic spikes for strong stimulation. Results for
intrapopulation synapses are presented in Figures 2A”–D”

and results for interpopulation synapses in Figures 2A”’–D”’.
Stimulus patterns with deterministic stimulus delivery times,
i.e., CR and SCR, cause distributions with several peaks at
integer multiples of 1/NsfCR, i.e., multiples of the minimal
inter-stimulus interval, see Figures 2A”,A”’,C”,C”’. Similar
distributions have been reported in Kromer and Tass (2020);
Kromer et al. (2020) for CR stimulation. Kromer et al. (2020)
pointed out that stimulation patterns causing such distributions
of time lags require an adjustment of the inter-stimulus intervals
to the STDP time scales τ+ and τ−. Random jitters, however,
lead to a smoothening of these distributions, see results for NCR
and SNCR in Figure 2 for the maximum jitter, σCR = 1. In
Kromer and Tass (2020), a smoothed distribution of time lags
was also obtained for random reset (RR) stimulation, which
combines temporal and spatial randomization by delivering
stimuli at random times to randomly selected subpopulations.
The authors compared the performance of RR stimulation for
different STDP functions, including the one used in the present
paper, Equation (1), and suggested that stimulation patterns that
cause smoothed distributions of time lags, may lead to weight
reduction that is more robust with respect to changes of the
stimulation frequency. Our results support this suggestion. In
particular, we found that NCR and SNCR stimulations lead
to a pronounced weakening of interpopulation synapses in a
large portion of the parameter space spanned by the stimulation
frequency and the number of stimulation sites used for stimulus
deliveries, see Figures 2–4.

We found that stimulation that leads to a pronounced
weakening of interpopulation synapses may entail long-lasting
desynchronization, see Figures 3, 4. In particular, for different
values of the jitter, our theory accurately predicts the boundary
between regions of stimulation parameters that lead to long-
lasting desynchronization and those that lead to long-lasting
synchronization. We find that deviations mainly occur for slow
stimulation, i.e., where stimuli are administered at a slower pace
than the original synchronous rhythm (≈ 3.5 Hz) and right
next to the boundary, where weight reduction occurs at low
rates and longer stimulation durations are required to drive the
network into the attractor of the stable desynchronized state.
In Figures 3, 4, we also found deviations for high frequencies
(fCR > 8 Hz) and large numbers of stimulation sites. These

are expected as our theory only considers first-order corrections,
i.e., it is restricted to the case that only postsynaptic spikes
(triggered by the next stimulus) may arrive before presynaptic
spikes (triggered by the current stimulus). For fast stimulation
that uses a large number of stimulation sites, however, multiple
stimuli may trigger postsynaptic spikes before the presynaptic
spike arrives at the postsynaptic neuron.

In contrast to the long-lasting effects of stimulation, we didn’t
find a strong parameter dependence of the degree of acute
synchronization (see the second row of Figures 3, 4). During
strong stimulation, the degree of synchronization is determined
by the stimulus pattern rather than the synaptic weights. In
particular, in the limit of strong stimulation, the degree of acute
synchronization is independent of the stimulation frequency as
long as the latter is fast compared to the synchronous rhythm,
see the second row of Figures 3, 4. For NCR stimulation with
various jitters, we find acute partial synchronization which is in
accordance with previous results on acute partial synchronization
during CR stimulation, see Figure 4 in Kromer et al. (2020).
For slower NCR stimulation, we find a reduction of the acute
Kuramoto order parameter indicating acute desynchronization.
This is due to slow but strong stimulus deliveries that perturb the
original synchronous rhythm. During SNCR stimulation, we also
observed partial acute synchronization, however, the Kuramoto
order parameter depends on the number of stimulation sites,
see the second row of Figure 4. A similar effect was observed in
studies on strong RR stimulation (Khaledi-Nasab et al., 2021b).
There it was argued that a low number of stimulation sites
leads to synchronous spiking responses of macroscopic neuronal
subpopulations. Strong RR and SNCR stimulation possess
qualitatively similar correlations between stimulus delivery times
compare Equations (9, 10) in Khaledi-Nasab et al. (2021b) with
Equations (12, 13) in the present paper. Therefore, we expect a
similar dependence on the number of stimulation sites for strong
stimulation. For weak stimulation, we find a slight dependence on
the stimulation frequency. In particular, partial synchronization
during CR and NCR stimulation attains a maximum when
fCR is close to the frequency of the synchronous rhythm (The
synchronous rhythm is shown by magenta vertical lines in
Figure 7). This is similar to previous computation results on CR
stimulation, where weak CR stimulation was inefficient when the
stimulation frequency attained multiples of the frequency of the
underlying synchronous rhythm (Kromer and Tass, 2020).

In contrast to the acute synchronization effects, the acute
after-effects shown in the third rows of Figures 3, 4, 7, showed a
great correspondence to the long-lasting effects. Note that in the
case of weak stimulation, a slight increase of the Kuramoto order
parameter was observed in regions where the synaptic weights
were only slightly reduced during stimulation. Thus, based on
the results in our computational model, we find that acute after-
effects might be more suitable for predicting long-lasting effects
than acute effects. This aligns with previous studies on acoustic
CR for the treatment of tinnitus; where stimulation-induced
acute and acute after-effects (Adamchic et al., 2017), as well as
long-lasting effects (Tass et al., 2012a) were studied. The authors
suggested that significant acute after-effects might be predictive
of long-lasting symptom relief (Adamchic et al., 2017).
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Remarkably, we find that both the synaptic weight reduction
during and the long-lasting desynchronization by weak
stimulation are more robust with respect to changes of the
stimulation frequency and the number of stimulation sites than
those of strong stimulation. In particular, for weak stimulation,
we found that all four stimulation patterns cause a pronounced
synaptic weight reduction and long-lasting desynchronization for
high stimulation frequencies and large numbers of stimulation
sites. This is in line with the results of Kromer et al. (2020), who
observed this for the CR stimulation pattern. They argued that
weak stimuli delivered shortly after neuronal spiking are not
strong enough to elicit spikes, which leads to longer time lags
between post- and presynaptic neurons than for strong stimuli.
This, on the other hand, reduces the contribution of long-term
potentiation to the synaptic weight dynamics, which occurs for
short positive time lags. We observe similar effects for NCR,
SCR, and SNCR stimulation, compare Figures 3, 4, 7. Earlier
studies also observed that weaker stimulation is more suitable for
long-lasting effects. However, they considered spatial stimulation
profiles and accounted for the fact that weaker stimulation affects
a smaller tissue volume. For strong stimulation all neuronal
subpopulations fired in response to the stimulation, and this
in turn led to a weaker desynchronization and may not induce
decoupling (Popovych and Tass, 2012; Lysyansky et al., 2013;
Zeitler and Tass, 2015).

We point out that the stimulation duration is another
relevant parameter; that is particularly important when it
comes to the long-lasting effects of the stimulation. While
stimulation parameters such as the number of stimulation
sites, the stimulation amplitude, and the stimulation frequency
determine whether the stimulation leads to a reduction of the
mean synaptic weight, the time it takes to achieve a sufficient
weight reduction and drive the network into the attractor of a
stable desynchronized state depends on the actual rate of synaptic
weight reduction. In Figure 8, stimulation is capable of inducing
long-lasting desynchronization effects for all considered numbers
of stimulation sites. However, the required stimulation duration
to drive the network into the attractor of a desynchronized state
varies by more than one order of magnitude. Thus, for too short
stimulation duration, stimulationmight be considered ineffective
for inducing long-lasting effects even though it would be well
capable of inducing such effects for a longer stimulation duration.
This is particularly important as, e.g., the current parameter
adjustment procedures for standard DBS focus on acute effects
(Volkmann et al., 2006), which may compromise the potential
long-lasting effects.

Our detailed analysis provides evidence that a reduction
of spatial correlations between stimulus deliveries does not
increase the robustness of long-lasting desynchronization effects
with respect to changes of the stimulation frequency, see
Figures 3, 4, 7. This is in line with the computational result
from earlier studies where SCR stimulation was compared to
CR stimulation with fixed sequence (Tass and Hauptmann,
2009). The authors reported that the weight reduction by
SCR stimulation was weaker than CR stimulation. The authors
further observed a strengthening of synaptic weights by strong
SCR stimulation. However, stimulation parameters such as the

stimulation frequency, the number of stimulation sites, as well
as the stimulation duration were not varied systematically. In
contrast, we provide a systematic comparison of the stimulation-
induced synaptic weight dynamics, as well as the potential long-
lasting desynchronization effects of CR and SCR stimulation
using theoretical and computational analysis. We find that strong
SCR stimulation leads to a different distribution of time lags
between post- and presynaptic spikes than CR stimulation.
Our theoretical analysis shows that this leads to a stronger
contribution of long-term potentiation to the synaptic weight
dynamics for high numbers of sites for the STDP function
considered in the present paper, see Figure 2. The relative
performance of CR and SCR stimulation may, however, differ
for other STDP rules. In particular, Tass and Hauptmann (2009)
considered a symmetric plasticity function. A detailed study
of the performance of CR stimulation for different plasticity
functions was provided in Kromer and Tass (2020).

Our systematic analysis provides evidence that adding
random jitters to the stimulus delivery times might improve the
parameter robustness of synaptic weight reduction and long-
lasting desynchronization effects at intermediate stimulation
frequencies. This was observed for strong stimulation, where
spike times are determined by the stimulation pattern, see
Figures 3, 4, and for weak stimulation see Figure 7. These results
partly confirm the hypothesis that a reduction of spatio-temporal
correlations in stimulus patterns increases parameter robustness
of long-lasting effects, Kromer and Tass (2020); however, it
also shows that this effect results mainly from a reduction of
temporal correlations, while a reduction of spatial correlations
by shuffling did not lead to an increase of parameter robustness.
Motivated by the results of Kromer and Tass (2020), a NCR
pattern of vibrotactile stimuli was studied computationally and
in Parkinson’s patients (Pfeifer et al., 2021). The observed results
were similar as for a corresponding CR pattern, however, the
number of patients included was too small to draw conclusions
about the relative performance of both stimulation patterns.
In Pfeifer et al. (2021) the stimulation mechanism was very
different compared to the electrical stimulation used here and
the jitter was only moderate. Besides this one study, the NCR
pattern has not been studied before. However, other randomized
versions of the classic CR pattern where considered in Tass and
Hauptmann (2009) and Zeitler and Tass (2018). In Tass and
Hauptmann (2009), a multi-site randomly timed reset (MRTR)
pattern was considered in which activation times of individual
sites were generated from a Poisson process, see Figure 8B in
Tass and Hauptmann (2009). Desynchronization and synaptic
weight reduction by MRTR were found to be robust with respect
to variations of the stimulation amplitude, however, longer
stimulation than for CR stimulation was required to achieve this
effect. In Zeitler and Tass (2018) an uncorrelated multichannel
noisy stimulation (UMNS) protocol was considered in which
individual sites were activated at random times during each
CR cycle, see Figure 1 in Zeitler and Tass (2018). The authors
found that UMNS was able to reduce synaptic weights for the
considered parameter combinations. In both studies, the authors
did not vary the stimulation frequency and the number of
stimulation sites systematically which makes a comparison to our
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results difficult. However, as MRTR and UMNS were obtained
by temporal variation of stimulation times and shuffling, both
patterns might be comparable to our SNCR stimulation, which
was obtained by adding random jitters to CR with shuffled
sequences. For strong and weak SNCR stimulation, we find
that indeed weight reduction and long-lasting desynchronization
effects are robust with respect to changes of the stimulation
frequency and the number of stimulation sites, see Figures 3, 4, 7.
Furthermore, the absolute mean rates of weight change in the
region of slow stimulation and small numbers of stimulation sites
are lower than those for CR stimulation. Consequently, although
weight reduction and long-lasting effects are more robust with
respect to parameter changes, longer stimulation is required to
drive the network in the attractor of a stable desynchronized state.

For strong stimulation, our detailed analysis of the impact
of random jitters on the performance of NCR and SNCR
stimulation showed that jitters improve the parameter robustness
of synaptic decoupling, as well as long-lasting desynchronization
mainly in a limited range of stimulation frequencies, see Figure 6.
Corresponding frequency ranges were denoted as I1 (for NCR)
and I2 (for SNCR) and span the range of one to four times the
frequency of the synchronous rhythm. In our network model,
the latter is associated with a frequency of about 3.5 Hz. We
find that I1 is larger than I2 indicating that shuffling reduces
frequency robustness in the presence of random jitters. The range
of these frequencies depends on the considered type of synaptic
plasticity as well as the range of synaptic transmission delays. As
argued above, the latter determines nonlinearities in the synaptic
weight dynamics as a function of the stimulation frequency and
the number of stimulation sites (Kromer et al., 2020) which, as
we found in the present study, can be suppressed by inducing
random jitters. We note that random jitters mainly lead to a
continuous area in the parameter space where the stimulation
leads to long-lasting desynchronization, see Figures 3, 4.

For weak stimulation, Astim = 0.1, our results suggest
that NCR with maximum variability of stimulus onset times
(σCR = 1) may improve parameter robustness of long-lasting
desynchronization effects in clinical studies for intermediate
stimulation frequencies (one to four times the frequency of the
pathological rhythm). In this range, random jitters expand the
parameter region with effective long-lasting desynchronization
toward high numbers of the stimulation site. However, the
precise range depends on the underlying plasticity mechanism in
the target area. As we have shown, the stimulation duration is a
crucial factor, and a sufficiently long duration is needed to obtain
long-lasting effects. Based on our results, one might be able to
utilize the NCR stimulation in existing DBS electrodes to induce
long-lasting effects.

In clinical trials, it is typically easier to vary stimulation
parameters such as the stimulation pattern, the frequency, and
the strength, rather than varying the number of stimulation sites.
The latter are given by anatomical and physiological constraints
of the target area. Hence, we studied long-lasting effects as a
function of stimulation frequency and strength (see Figures 9,
10). In the limit of strong stimulation, Astim → 1, the results
approach the prediction of our theory (see Figure 2), i.e., we
find a nonlinear dependence of long-lasting desynchronization

effects on the stimulation frequency. However, for moderate
stimulation strengths, 0.1 / Astim / 0.5, we observe the highest
degree of robustness with respect to variations of the stimulation
frequency for all stimulation patterns (i.e., CR, SCR, NCR, and
SNCR). Comparing CR and SCR with their noisy counterparts,
NCR and SNCR, we find that including random jitters expands
the parameter region with long-lasting desynchronization effects
toward stronger stimulation.

Our results indicate that long-lasting desynchronization
effects of stimulation with a small number of stimulation sites,
e.g.,Ns = 4, are robust with respect to changes of the stimulation
frequency, even without random jitters. For larger numbers of
stimulation sites (i.e, Ns = 8, 16, 24), the most robust long-
lasting effects were observed for moderate stimulation strengths
for all considered stimulation patterns. We found that jitter is
particularly favorable for moderate to strong stimulation with
larger numbers of stimulation sites.

Our promising results on the improved parameter robustness
of long-lasting effects of NCR stimulation may trigger the
question, whether randomized high-frequency stimulation (HF
DBS) might be suitable to induce long-lasting therapeutic effects.
To date, experimental studies on temporally randomized HF
DBS mostly focus on acute intra-operative effects. Furthermore,
it is still a matter of debate whether temporal randomization
improves the acute effects of HF DBS. In a study by Brocker et al.
(2013), it was reported that irregular HF DBS led to improved
performance of PD patients in a finger-tapping task (Brocker
et al., 2013). However, other studies reported that, in contrast to
regular HF DBS, temporally randomized HF DBS was ineffective
in providing symptom alleviation (Dorval et al., 2010; Birdno
et al., 2012). To the best of our knowledge, no results on the long-
lasting outcome of temporally randomized HF DBS have been
presented to date.

In our recent study on CR stimulation, we observed that
long-lasting effects are sensitive to the number of stimulation
sites (Kromer et al., 2020). This suggest that the employment
of recently developed DBS electrodes comprising large numbers
of stimulation contacts (Krauss et al., 2020; Steigerwald et al.,
2019) might actually require complicated parameter adjustment
procedures. Here, we observe a similar parameter sensitivity
for SCR stimulation, see Figures 3, 4, 7. However the long-
lasting effects of stimulation patterns with random jitters, i.e.,
NCR and SNCR stimulation, are much more robust with respect
to parameter changes, e.g., the number of stimulation sites
used for stimulus delivery, see Figures 3, 4, 7. This provides
evidence that NCR and SNCR stimulationmight bemore suitable
for employing multisite stimulation electrodes for inducing
long-lasting therapeutic effects. However, to date, there are
no studies on the long-term use of such multisite stimulation
electrodes available.

In DBS, the therapeutic outcome depends on the accurate
placement of electrodes (Voges et al., 2002; Saint-Cyr et al., 2002).
These electrodes typically have multiple stimulation contacts
that, in some designs, can be activated independently (Krauss
et al., 2020). Other designs allow for simultaneous co-activation
of a subset of the stimulation sites to form an arbitrary number
of co-activated subpopulations (Steigerwald et al., 2019). A
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common target area for DBS in Parkinson’s disease is the
STN (Krack et al., 2003). While the spatial extension of the
entire STN is of the order of several millimeters to about one
centimeter (Mavridis et al., 2013), the STN possesses a non-
uniform somatotopic organization (Hartmann-von Monakow
et al., 1978; Nambu et al., 1996; Nambu, 2011). In addition,
based on incoming cortical projections, the STN is divided
into sensorimotor, associative, and limbic parts (Nambu, 2011;
Tewari et al., 2016). Depending on the patient’s symptoms only
a small portion of the STN is considered a suitable target area.
For instance, a recent paper showed that while electrodes were
placed such that a total of eight stimulation contacts where in
the vicinity of the STN, only activation of a few contacts led
to a reduction of pathological beta oscillations (Tamir et al.,
2020). Thus, only a small number of contacts may be available
for delivering multisite stimulation to the target area. In this
context, it is encouraging that our results indicate that even
multisite stimulation using just a small number of stimulation
sites is capable of inducing long-lasting desynchronization
effects that are robust with respect to variations of the
stimulation frequency, fCR. However, our results also indicate
that stimulation protocols with spatial randomization might
be more suitable as they improve frequency-robustness for
moderate to strong stimulations. Given the small anatomical
target dimensions of, e.g., the STN, our results indicate that
qualitatively different lead topologies comprising a larger number
of smaller stimulation contacts with tighter spacing are not
required to induce robust long-lasting desynchronization with
the stimulation patterns studied here.

To conclude, multichannel CR stimulation has shown
great promise for inducing long-lasting desynchronization and
therapeutic effects when delivered through DBS electrodes (Tass
et al., 2012b; Adamchic et al., 2014; Wang et al., 2016) or through
vibrotactile fingertip stimulators (Pfeifer et al., 2021). Our results
suggest that the robustness of long-lasting effects with respect
to changes of the stimulation frequency and other parameters
might be increased by adding jitters to the stimulus delivery

times. In contrast, shuffling the sequence of stimulus deliveries
does not increase parameter robustness. In our model, acute
after-effects of stimulation are strongly correlated with long-
lasting effects. This suggests that acute after-effects might be
suitable for predicting long-lasting effects of the stimulation.
We hope that our results will lead to more clinical studies on
stimulation protocols with random jitters to improve parameter
adjustment procedures for brain stimulation as a treatment for
neurological disorders.
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APPENDIX

Neuronal Network Model
In our LIF model the spiking occurs when the membrane
potential vi crosses a dynamic threshold potential vthi ; where the
membrane and the threshold potentials of neuron i obeys:

Ci
dvi

dt
= gleak(vrest − vi)+ I

syn
i (t)+ Istimi (t)+ Inoisei (t).

τth
dvthi
dt

= (vthrest − vthi ). (A1)

Here I
syn
i (t) is the synaptic input current, Istimi (t) the stimulation

current, Inoisei (t) the noisy input current, Ci is the membrane

capacitance, τth is the threshold time constant and vthrest the
stationary threshold potential, vrest the resting potential, and gleak
is the leak conductance.

Spike times are recorded at each threshold crossing. After a
spike, the membrane potential is set to vspike for a time period of
tspike; then, we perform an instantaneous reset: vi → vreset and

vthi → vth
spike

.

We use the same parameters as in Kromer et al. (2020) and
Khaledi-Nasab et al. (2021b): vrest = −38 mV, τth = 5 ms,
vthrest = −40 mV, tspike = 1 ms, vspike = 20 mV, Vreset = −67 mV,

and gleak = 0.02 mS/cm2. The capacitances Ci follow a normal
distribution with mean value of 〈Ci〉 = 3 µF/cm2 and standard
deviation of 0.05〈Ci〉.

Each neuron i receives noisy input, Inoisei , which is obtained by
feeding presynaptic Poisson spike trains with firing rate fnoise =

20 Hz into excitatory synapses (Ebert et al., 2014)

Inoisei = gnoisei (vsyn − vi), (A2)

τsyn
dgnoisei

dt
= −gnoisei + D

∑

ki

δ(tiki − t).

Here the noise intensity is controlled by the parameterD = 0.026
mS/cm2 scaling the strength of the Poisson input. vsyn = 0 mV
is the synaptic reversal potential, τsyn = 1 ms the synaptic time
scale, and gnoisei (t) the synaptic conductance.

I
syn
i (t) is the excitatory synaptic input to neuron i, and it is

given by

I
syn
i = g

syn
i (vsyn − vi), (A3)

τsyn
dg

syn
i

dt
= −g

syn
i +

κ

N

∑

j∈Gi

wji

∑

lj

δ(t − t
j

lj
− td),

where κ = 8 mS/cm2 is the coupling strength, g
syn
i is the synaptic

conductance, wji ∈ [0, 1] is the weight of the synapses between
presynaptic neuron j and postsynaptic neuron i. The first sum
runs over all presynaptic neurons, and the second sum runs over
the presynaptic spikes of neuron j. We consider homogeneous
synaptic delays of td = 3 ms.
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