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Traditional pain assessment approaches ranging from self-reporting methods, to

observational scales, rely on the ability of an individual to accurately assess and

successfully report observed or experienced pain episodes. Automatic pain assessment

tools are therefore more than desirable in cases where this specific ability is negatively

affected by various psycho-physiological dispositions, as well as distinct physical

traits such as in the case of professional athletes, who usually have a higher pain

tolerance as regular individuals. Hence, several approaches have been proposed

during the past decades for the implementation of an autonomous and effective pain

assessment system. These approaches range from more conventional supervised and

semi-supervised learning techniques applied on a set of carefully hand-designed feature

representations, to deep neural networks applied on preprocessed signals. Some of the

most prominent advantages of deep neural networks are the ability to automatically

learn relevant features, as well as the inherent adaptability of trained deep neural

networks to related inference tasks. Yet, some significant drawbacks such as requiring

large amounts of data to train deep models and over-fitting remain. Both of these

problems are especially relevant in pain intensity assessment, where labeled data is

scarce and generalization is of utmost importance. In the following work we address

these shortcomings by introducing several novel multi-modal deep learning approaches

(characterized by specific supervised, as well as self-supervised learning techniques) for

the assessment of pain intensity based on measurable bio-physiological data. While the

proposed supervised deep learning approach is able to attain state-of-the-art inference

performances, our self-supervised approach is able to significantly improve the data

efficiency of the proposed architecture by automatically generating physiological data and

simultaneously performing a fine-tuning of the architecture, which has been previously

trained on a significantly smaller amount of data.
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1. INTRODUCTION

The area of research specific to the development of autonomous
and objective pain assessment andmanagement systems has been
attracting a lot of interest from both medical and engineering
research communities lately (Argüello Prada, 2020; Eccleston
et al., 2020; Walter et al., 2020). This is due to the fact that an
automatic and effective pain assessment system is more than
desirable in the context of telemedicine and remote patient
monitoring (Schobel et al., 2021), as well as in cases where
an individual is unable to accurately assess and successfully
report some currently experienced or observed pain episode.
The inability to properly assess and effectively report specific
pain episodes can be caused by various factors ranging from

psychological or cognitive impairments, to physical and cultural
predispositions. In such cases, the reliance on self-reporting
tools such as the Visual Analogue Scale (VAS) (Hawker et al.,
2011) or the Numerical Rating Scale (NRA) (Eckard et al., 2016)
would potentially lead to some unsuitable and inadequate pain
relief therapy. Meanwhile, suitable information stemming from

an autonomous and objective pain assessment system based on
measurable behavioral, anatomical and physiological parameters
could provide some additional and relevant insight regarding
the underlying pain episode, therefore helping to significantly
improve both pain assessment and management.

In concordance with the aforementioned increasing interest,

as well as technological advances in such areas as sensor systems
and data persistence (which enables researchers to proceed
with the recording of a diverse set of measurable autonomic
parameters using a plethora of advanced sensor systems
and wearables), a gradually growing amount of approaches
are being proposed for the development of automatic pain
assessment systems. Most of these approaches consist of various
machine learning methods built upon different types of collected
audiovisual and bio-physiological data, that are optimized and
subsequently applied in both clinical and experimental settings.
Depending on the amount and diversity of sensors used during
the data collection phase, several signals have been assessed
and evaluated in various settings for the development of pain
assessment systems. Some of the most prominently used signals
constitute of the audio signal (e.g., paralinguistic vocalizations)
(Tsai et al., 2016, 2017; Thiam et al., 2017; Thiam and Schwenker,
2019), the video signal (e.g., facial expressions) (Rodriguez et al.,
2017; Werner et al., 2017; Tavakolian and Hadid, 2019; Thiam
et al., 2020b), specific bio-physiological signals such as the
Electrodermal Activity (EDA), the Electrocardiogram (ECG),
the Electromyography (EMG), or the Respiration (RSP) signal
(Walter et al., 2014; Campbell et al., 2019; Thiam et al., 2019a),
and also bodily expression signals (Dickey et al., 2002; Olugbade
et al., 2019; Uddin and Canavan, 2020).

According to the variety of data collected, different types

of machine learning approaches have also been proposed and
assessed to perform a specific and effective pain assessment
task. The proposed approaches range from uni-modal techniques
which rely on a single modality (or channel) to perform the
underlying inference task, to multi-modal techniques which rely
on a set of multiple and diverse modalities to perform the

underlying pain assessment task. Typical uni-modal approaches
consist of extracting relevant information in the form of a
specific feature representation from the underlying modality and
subsequently using the feature representation to perform the
optimization of a specific inference model (Sharma et al., 2019,
2020). Multi-modal approaches on the other hand, are designed
to perform an aggregation of a set of information stemming from
multiple and heterogeneous modalities by applying a specific
information fusion technique, in order to improve both the
performance as well as the robustness of an inference system.
Rather than relying on a single channel, an effective and
smart combination of complementary information stemming
from multiple channels mitigates the drawbacks specific to each
single channel, while improving the generalization ability of the
optimized inference system in comparison to one based on a
single modality (Kächele et al., 2016; Bellmann et al., 2018; Thiam
et al., 2018).

In the following work, a multi-modal information aggregation
approach based on Deep Denoising Convolutional Auto-
Encoders (DDCAEs) is proposed for the assessment of pain
intensities based on bio-physiological signals, and subsequently
evaluated in terms of classification, regression and data efficiency
performances. The proposed approach is characterized by
a concurrent and autonomous optimization of the feature
representations specific to the involved channels, as well as the
simultaneous optimization of a feed-forward neural network
performing the underlying inference task. The contribution of
the current work is four-fold: first of all, a multi-modal DDCAE
architecture (originally proposed in Thiam et al., 2020a) is
proposed and described, for the assessment of different levels
of pain elicitation based on a set of diverse bio-physiological
modalities. Secondly, a gating layer is also proposed and used in
combination with the multi-modal DDCAE architecture in order
to perform the aggregation of the information stemming from the
underlying modalities before being subsequently used to perform
a specific inference task. The resulting architecture is consistently
evaluated and further extended with an attention mechanism in
order to significantly improve the performance of the designed
inference system. Next, the resulting model is further extended
by introducing a novel Self-Supervised Learning approach to
improve the data efficiency of the designed deep architecture.
Self-Supervised Learning (SSL) (Jing and Tian, 2020; Jaiswal
et al., 2021) is a form of representation learning (Bengio et al.,
2013), where the aim is to learn a meaningful representation
to improve a final supervised learning task. Our SSL method
is based on an information-theoretic approach which enables
Variational Auto-Encoders (VAEs) (Kingma and Welling, 2014)
to learn a meaningful and compressed data representation. This
representation is then used to generate new data which in
turn is utilized to perform a final fine-tuning step. To further
improve the generalization ability of the deep model, we apply
an information-processing constraint on the Auto-Encoders, the
fusion gate, and on the classifier. A consistent benchmark of
the designed approaches is provided based on both the BioVid
Heat Pain Database (Walter et al., 2013) and the SenseEmotion
Database (Velana et al., 2017), where we were able to show
that our SSL approach produces results that are only marginally
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lower compared to data augmentation while only using a fraction
of the data.

The remainder of the present work is structured as follows.
Section 2 provides an overview of some related work involving
multi-modal approaches for pain assessment based on bio-
physiological signals. This includes conventional as well as deep
learning approaches. The proposed approaches, as well as the
data used for the assessment of the proposed approaches are
described in section 3. The results specific to the performed
experiments are depicted and described in section 4. Finally, a
discussion of the achieved results, as well as a description of
potential future works is provided in section 5, and the work is
concluded with an outlook in section 6.

2. RELATED WORK

Multi-modal information fusion approaches are designed with
the primary goal of significantly improving the performance
of an inference model by effectively combining complementary
information stemming from a set of diverse modalities (Kittler
and Roli, 2000; Kuncheva, 2004; Palm and Schwenker, 2009; Roli,
2009). Conventional information fusion approaches therefore
rely on a set of carefully designed hand-crafted features (extracted
individually from each input channel) in combination with
an information aggregation approach in order to perform the
underlying inference task. Hence, the overall performance of the
resulting inference model depends on both the relevance of the
extracted feature representations (with regards to the underlying
inference task), as well as the ability of the designed aggregation
approach to effectively combine the information stemming from
the resulting heterogeneous set of hand-crafted features. Some of
the most prominently used fusionmethods consist of early fusion
and late fusion approaches.

Early fusion consists of concatenating the extracted feature
representations specific to the underlying modalities into a
single and high dimensional feature representation, which is
subsequently fed into a classification (or regression) model in
order to perform the corresponding inference task. The authors
in Walter et al. (2014) extract various features from each
input channel [EMG, ECG, Skin Conductance Level (SCL)] and
perform the classification of several levels of heat-induced pain
intensity using early fusion in combination with a Support Vector
Machine (SVM) classification model (Abe, 2010). Similarly,
the authors in Chu et al. (2014) extract features from similar
modalities and use a combination of early fusion and Linear
Discriminant Analysis (LDA) (Fisher, 1936) to perform the
classification of several levels of electrical pain stimulation. In
Chu et al. (2017), the authors also perform an early fusion of a set
of features extracted individually from each modality including
SCL, ECG, BloodVolume Pulse (BVP), and subsequently selected
using genetic algorithms. The classification is subsequently
performed using either a SVM, a k-Nearest Neighbor (k-NN)
algorithm or a LDA model. The authors in Werner et al. (2014)
and Kächele et al. (2015) extract various features from each input
channel and perform the classification of several levels of heat-
induced pain intensity using early fusion in combination with

a Random Forest (RF) classification model (Breiman, 2001). In
Ricken et al. (2020), the authors use the same approach in order
to perform the classification of different levels of thermal and
electrical pain stimuli, based on a similar set of modalities.

Late fusion on the other hand, consists of the combination
at a higher level of aggregation of the outputs of a diverse set
of inference models trained on various feature representations.
In Kessler et al. (2017), the authors designed and assessed
an hierarchical fusion architecture consisting of an Artificial
Neural Network (ANN) and the Moore-Penrose Pseudoinverse
aggregation rule (Schwenker et al., 2006) for the aggregation
of several base classifiers’ outputs (consisting of RF models), in
order to perform the classification of several levels of artificially
induced pain elicitation based on several bio-physiological
signals including remote Photoplethysmography (rPPG), ECG,
and RSP. In Bellmann et al. (2020), the authors propose a
dominant channel fusion approach consisting of first identifying
the most relevant input channel and using a subsequent
combination of the identified most relevant channel and the
remaining ones to create an ensemble of classifiers. The final
output of the resulting ensemble is computed by applying an
average (Mean) aggregation rule. The approach is assessed on
several data sets comprising bio-physiological modalities such as
EMG, ECG, EDA, and RSP. In Bellmann et al. (2021), a novel
late fusion approach consisting of a combination of mixture of
experts and stacked generalization approaches is proposed and
assessed on different data sets involving the bio-physiological
modalities EMG, ECG, and EDA. The authors in Kächele
et al. (2016), Thiam and Schwenker (2017), and Werner et al.
(2019) use a combination of RF classification models (trained
individually on various feature representations), and a Moore-
Penrose Pseudoinverse aggregation approach in order to perform
the underlying pain related classification tasks. In Lim et al.
(2019), the authors propose a bagged ensemble of Deep Belief
Networks (DBNs) (Lopes and Ribeiro, 2015) for the assessment of
patient’s pain level during surgery, using photoplethysmography
(PPG). The ensemble of bagged DBNs is also trained on a set of
handcrafted features.

Meanwhile, the processes involved in the manual engineering
of feature representations and the selection of relevant features
for a specific modality are complex and time consuming.
Some specific expert knowledge in the area of application
is needed in order to ensure that the resulting and final
feature representation is relevant for the task at hand.
Moreover, since each single feature representation is specific
to the corresponding channel and generated independently
from the other task-related modalities, finding a suitable
information aggregation approach, that effectively combines the
complementary information stemming from the channels, can
be very tedious. Thus, a growing amount of work has been
investigating the application of deep learning approaches with
the goal of enabling a system to autonomously learn not only
suitable feature representations, but also effective information
aggregation parameters, directly from the corresponding and
preprocessed raw input signals. The authors in Thiam et al.
(2019a) propose a deep neural network for the classification
of different levels of nociceptive pain based on ECG, EMG,
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and EDA signals, characterized by a weighted aggregation layer
performing the combination of the outputs of modality specific
Convolutional Neural Networks (CNNs) (LeCun et al., 2015).
The whole architecture is trained in an end-to-end manner and
was able to attain state-of-the-art classification performances on
the BioVid Heat Pain Database. In Thiam et al. (2020a), the
authors perform a benchmarking of different types of multi-
modal DDCAE architectures, each model characterized by a
specific joint representation learned simultaneously from various
input modalities. In Subramaniam and Dass (2021), the authors
propose a hybrid deep learning network consisting of shallow
CNNs that extract information from the raw input signals,
and the resulting feature representations are subsequently fed
to a Long Short-Term Memory (LSTM) recurrent neural
network (Hochreiter and Schmidhuber, 1997) that performs
the aggregation of the extracted information followed by the
classification of different levels of pain elicitation. The approach
is also evaluated on The BioVid Heat Pain Database, with the
ECG and EDA modalities as input signals.

Self-Supervised Learning has seen some recent attention in the
machine learning community. Most algorithms and approaches
fall into the category of image classification and generation (Tung
et al., 2017) and language modeling (Lan et al., 2020), but the
principle is general enough to be applied to a variety of learning
problems (Baevski et al., 2020; Ravanelli et al., 2020; Sekar
et al., 2020). Generative models [e.g., Generative Adverserial Nets
(Goodfellow et al., 2014), Variational Auto-Encoders (Kingma
and Welling, 2014), and Boltzmann Machines (Salakhutdinov
and Hinton, 2009)] have been recently successfully applied
to learn feature representations (Pathak et al., 2016; Donahue
et al., 2017; Zhang et al., 2017), as generative models are a
natural example of SSL models as the main goal is to find a
representation that produces realistic data, e.g., photo-realistic
images. However, there has been only little prior work that
utilizes SSL in the context of automatic pain assessment and
related fields. The work of Tavakolian et al. (2020) proposes a
SSL approach to facial recognition for automatic pain assessment.
They implement a novel similarity metric and train a Siamese
Network on video streams to optimize the metric, distill the
network, and then fine-tune the network on pain assessment
training data. The authors of Das et al. (2021) introduce an
explainable Self-Supervised Representation Learning paradigm
to learn temporal facial patterns. They apply their method to
predict speech behavior from stuttering adults. Both methods
we discussed are specific to their application, whereas our SSL
method is general enough to be applied to any learning problem.
At the time of publication of this study there were no further
SSL applications to automatic pain assessment to the best of
our knowledge.

The information-theoretic SSL principle we propose is based
on two main ideas: (i) variational Auto-Encoders with adaptive
priors and (ii) a encoder-decoder hierarchy. Adaptive VAEs
have been first introduced by Hihn et al. (2018) as a way to
learn a data dependent prior that can be use to generate new
samples efficiently. Although evaluated only on small scale data
it has shown promising results, as the introduced information
processing constraint enforces abstract latent representations

retaining only information that is useful for the task at
hand. The idea of using information processing constraints
has been investigated extensively in the reinforcement learning
community (Houthooft et al., 2016; Galashov et al., 2019; Grau-
Moya et al., 2019; Hihn et al., 2019; Leibfried et al., 2019). We
extend this idea to the supervised learning setting and combine it
further with a encoder-decoder structure used for classification.
In Peng et al. (2017), the authors introduce an information-
theoretic formalization of a encoder-decoder hierarchy that is
based on bounded rationality (Genewein et al., 2015). The
authors show how such policies can be learned in an on-line
manner. They evaluate their method in a reinforcement learning
setting using a simulated humanoid robot platform and show that
it is able to learn ameaningful representation of the environment.

The current work aims at improving the performance of a
pain assessment model by enabling a specific ANN to perform
autonomously and simultaneously both the extraction of feature
representations specific to the input modalities, as well as the
aggregation of the information stemming from the generated
representations. Moreover, a self-learning approach is proposed
as an alternative to conventional data augmentation approaches
and assessed in the context of multi-modal pain assessment based
on bio-physiological signals.

3. MATERIALS AND METHODS

Similarly to conventional Auto-Encoders (AEs) (Hinton and
Zemel, 1994; Hinton and Salakhutdinov, 2006), a DDCAE
consists of an encoder and a decoder. Both encoder and
decoder are Convolutional Neural Networks (CNNs), whereby
the encoder maps its input into a low dimensional latent space,
while the decoder is optimized to reconstruct the encoder’s input,
based on the computed latent space representation. Moreover,
the encoder’s input consists of a corrupted signal (which is
generated by adding a noisy signal to the clean and unaltered
input signal). The parameters of both encoder and decoder are
therefore optimized to reduce the reconstruction error between
the decoder’s output and the unaltered original input signal. The
resulting robust bottleneck representation can be subsequently
used to train a specific inference model.

3.1. Multi-Modal Deep Denoising
Convolutional Auto-Encoder
In the current work, an information fusion architecture based
on DDCAEs is proposed to perform the aggregation of
information stemming from a set of diverse bio-physiological
channels in the context of pain assessment. The proposed
architecture, which is depicted in Figure 1, consists of learning
a single latent representation for each input channel, while
simultaneously optimizing a gating layer to generate a single
weighted representation based on the generated channel specific
latent representations. The generated weighted representation is
subsequently used to optimize an inference model performing
either the classification or the regression task at hand (the
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FIGURE 1 | Multi-modal deep denoising convolutional auto-encoder (DDCAE) architecture.
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inference model in this case is a feed-forward neural network).
The whole architecture is trained in an end-to-end manner.

In the following paragraph, the parameter i points at the ith
input channel with i ∈ N and n ∈ N depicts the total number
of input channels (1 ≤ i ≤ n). The parameter j points at the
jth training sample and N ∈ N depicts the total number of
training samples (1 ≤ j ≤ N). Therefore, the training set specific
to the ith input channel can be represented as follows: {Xi,j ∈

R
1×m}Nj=1 (the parameterm ∈ N depicts the dimensionality of the

training samples, since each of them consists of a 1-dimensional
bio-physiological signal).

For each channel i ∈ N, a set of noisy input signals

{X̃i,j ∈ R
1×m}Nj=1 is first generated by altering the original signals

{Xi,j ∈ R
1×m}Nj=1. Each noisy signal is subsequently fed into

the corresponding encoder fθi in order to generate the latent
representation hi,j:

hi,j = fθi (X̃i,j) (1)

with θi corresponding to the set of trainable parameters of
the encoder specific to the ith channel. The generated latent
representation is further fed into the decoder gφi , which generates
an output X̃i,j

′:

X̃i,j
′ = gφi (hi,j) (2)

Subsequently, a gating layer, which is depicted in Figure 2, is
used to generate a single weighted representation based on the
generated modality specific latent representations hi,j ∈ R

di . This
approach requires that all latent representations have the same
dimensionality: ∀i ∈ {1, 2, · · · , n}, di = η ∈ N. Each latent
representation hi,j is first normalized by going through a layer
with an hyperbolic tangent activation function (tanh):

ĥi,j = tanh(Ŵihi,j + b̂i) (3)

where the trainable parameters of the normalization layer consist
of Ŵi ∈ R

η×η and b̂i ∈ R
η .

The resulting normalized outputs are subsequently

concatenated into a single vector ĥj =

[
ĥ1,j, · · · , ĥn,j

]

(ĥj ∈ [−1, 1]n·η) and fed into a layer with a softmax activation
function, in order to generate the weights specific to each
specific feature:

wk =
exp(Wk̂hj + bk)∑n·η
l=1

exp(Wl̂hj + bl)
(4)

where the trainable parameters specific to the softmax layer
consist of Wk ∈ R

n·η and bk ∈ R, with 1 ≤ k ≤ n · η. The
final weighted representation is subsequently generated through
a weighted sum of all channel specific latent representation (hi,j),
using the computed weights (w = {wk}

n·η
k=1

):

hj =

n⊕

i=1

ŵi ⊙ hi,j (5)

where ŵi ∈ R
η and ŵi ={

w(i−1)·η+1,w(i−1)·η+2, · · · ,w(i−1)·η+η

}
. Also, ⊙ denotes

the element-wise product, while ⊕ denotes the element-wise
sum. hj ∈ R

η is the resulting weighted representation, which
is further fed into an inference model f9 to perform either a
classification or regression task [yj = f9 (hj)].

The parameters of the DDCAEs are optimized to minimize
the reconstruction error between each decoder’s output X̃i,j

′

and the original unaltered signal Xi,j. In the current work, the
reconstruction error consists of the mean squared error function:

Ei =
1

N

N∑

j=1

∥∥Xi,j − X̃i,j
′
∥∥2
2
+ λ ‖Wi‖

2
2 (6)

where λ ‖Wi‖
2
2 represents a regularization term, with Wi =

{θi,φi} representing the set of all trainable parameters of the
DDCAE specific to the ith modality. The parameters of the
inference model are optimized accordingly to the task at hand. In
the case of a classification task, the corresponding loss function is
the categorical cross-entropy loss:

Lf9 = −

c∑

cl=1

ycllog(ŷcl) (7)

where ycl is the ground-truth value of the clth class and ŷcl is the
corresponding classification output value (c ∈ N corresponds to
the total number of classes). In the case of a regression task, the
corresponding loss function is the mean squared error function:

Lf9 =
1

N

N∑

j=1

∥∥f9 (hj)− yj
∥∥2
2

(8)

Since the entire architecture is trained in an end-to-end manner,
the entirety of the parameters are optimized by minimizing the
following objective function:

L =

n∑

i=1

αiEi + α9Lf9 (9)

where the parameters αi and α9 are regularization weights
assigned to the loss functions specific to each of the models.

3.2. Attention Mechanism
Inspired by the dynamics involved in visual perception (Luck
and Ford, 1998), artificial attention mechanisms consist of
approaches designed in order to perform the assessment and
selection of relevant visual cues, accordingly to the underlying
visual task. An intelligent selective processing of specific regions
of interest has proven to be very effective and able to significantly
improve the performance of deep neural networks for visual
computing tasks in areas such as visual image captioning (Chen
et al., 2017), object detection (Woo et al., 2018), and image
segmentation (Zhao et al., 2020). Inspired by such approaches,
the previously described DDCAEs (see section 3.1) are extended
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FIGURE 2 | Gating layer.

FIGURE 3 | Attention mechanism.

with a 1-dimensional attention mechanism, in order to focus
on the most relevant feature descriptors accordingly to the
task at hand, therefore improving the overall performance
of the inference model. The proposed attention mechanism
(which is depicted in Figure 3) consists of an extension to
1-dimensional feature maps of a spatial attention module
for 2-dimensional feature maps originally proposed in Woo
et al. (2018). The attention mechanism aims at generating
a weighted representation of the optimized feature maps (or
feature representations) according to the relevance of each
feature descriptor for the specific task at hand.

This is done by generating a specific weighting mask through
a channel-wise aggregation of information, followed by a specific
convolution operation with a sigmoid activation function,
therefore highlighting the relevance of specific regions of interest

within the feature maps and weighting these regions accordingly.
The attention mechanism consists of first applying average-
pooling and max-pooling operations over the channel axis of a
set of feature maps stemming from an intermediate convolution
layer. The resulting feature maps from both pooling operations
are subsequently concatenated and fed into a convolution layer
with a sigmoid activation function in order to generate an
attention map (see Equation 10). Finally, weighted feature maps
are generated by performing an element-wise multiplication of
the initial feature maps with the computed attention map (see
Equation 11).

More specifically, given a set of feature maps F ∈ R
1×W×C

(where W ∈ N>0 depicts the length of the feature maps and
C ∈ N>0 depicts the number of feature maps) stemming from an
intermediate convolution layer, an attention feature map Fatt ∈
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R
1×W is generated by using both max-pooling and average-

pooling operations applied across the channels of the set of
feature maps as follows:

Fatt = σ

(
f 1×kernel size

([
AvgPool(F),MaxPool(F)

]))
(10)

where f 1×kernel size depicts a 1-dimensional convolution operation
with a filter size of 1 × kernel size (which is applied on a
concatenation of the feature maps resulting from both average-
andmax-pooling operations) and σ depicts the sigmoid function.
The weighted feature maps Fw ∈ R

1×W×C are subsequently
generated as follows:

Fw = F ⊗ Fatt (11)

where ⊗ depicts an element-wise multiplication. During this
operation the values of the attention map are broadcasted
along the channels of the feature maps. This specific attention
mechanism is integrated into the previously described multi-
modal DDCAE architecture (see Figure 1) and is applied
following each convolution layer in the modality specific
encoder architectures.

3.3. Self-Supervised Learning of
Physiological Signals
In the well-known supervised learning setting, the learner faces a
data set D = {(xi, yi)}

N
i=1 consisting of N pairs of training data

x and corresponding labels y and must find a hypothesis that
minimizes some loss on the dataset. Collecting labels is expensive
and time consuming, especially in the context of pain assessment,
as additional experiments have to be conducted. To remedy this,
relaxations of supervised learning have been proposed, such as
semi-supervised learning (Schwenker and Trentin, 2014), where
we only have label information for a subset of data points,
and unsupervised learning (Barlow, 1989), where no labels are
available. A new approach is Self-Supervised Learning (Jing and
Tian, 2020; Jaiswal et al., 2021), which is a form of representation
learning (Bengio et al., 2013). Such Self-Supervised Learning
algorithms usually consist of a pretext task, that we use to learn
a data representation and a downstream task that is the final
supervised learning task.

In this study, we follow this line of work and propose an
information-theoretic approach to learn such an informative
representation. To this end, we propose three additions to the
architecture introduced so far. Firstly, we introduce Adaptive
Variational Auto-Encoders (AVAE) for self-supervised learning,
that learn a data dependent prior over their latent representation
as opposed to using a fixed prior (Kingma and Welling, 2014).
We argue, that this information-processing bottleneck enforces
an optimal trade-off between representational capacity and
information-processing cost as measured by the Kullback-Leibler
divergence (DKL) between the latent posterior p(h|x) and its prior
p(h). This idea has been introduced by Hihn et al. (2018) and has
shown promising results on low dimensional data. Secondly, we
propose to use information processing constraints on the gating
layer and the classifier based on a theory of bounded rationality
(Ortega et al., 2015). To this end, we follow the work of Hihn

and Braun (2020b), where they introduce and motivate such
constraints and show their favorable effects on generalization in
themeta-learning setting (Hihn and Braun, 2020a).We show that
these types of constraints enable efficient representation learning,
which is the pretext task. Lastly, we propose to use the learned
representation to generate artificial data and use this data to
fine-tune the model, which is the downstream task.

3.3.1. Adaptive Variational Auto-Encoders
In the following sections we introduce the Adaptive Variational
Auto-Encoder and its self-supervised learning application, in
order to improve automatic pain assessment while requiring less
data points then conventional data augmentation techniques.

Variational Auto-Encoders (VAE) (Kingma and Welling,
2014) are generative models that build on deterministic Auto-
Encoder networks. They are best understood as variational
Bayesian inference in a latent variable model p(x|h) with a
prior distribution p(h), where x represents the observable data,
and h the latent variable that explains the data. The goal is to
find a set of parameters ϕ∗ that maximize the data likelihood
pϕ(x) =

∫
pϕ(x|h)p(h)dh. We can draw samples from pϕ(x) by

first sampling h and then draw x from pϕ(x|h). As maximum
likelihood optimization is intractable due to the integral, we
express the likelihood in a different form by defining a variational
distribution q(h|x) [also known as Evidence Lower Bound
(ELBO)], such that

log pϕ(x) ≥

∫
q(h|x) log

pϕ(x|h)p(h)

q(h|x)
dh = : F(ϕ). (12)

Assuming q(h|x) is expressive enough to approximate the true
posterior distribution pϕ(h|x) well, we can directly maximize the
lower bound F(ϕ) by gradient descent. In VAEs, q(h|x) is the
encoder network that generates a latent representation h given
and input x, and p(x|h) is the decoder that reconstructs x from h.
We assume all distributions to be isotropic Gaussians.

We extend this approach by removing the fixed prior p(h)
and allow for an adaptive prior. To learn a prior that allows for
efficient information processing by minimizing the DKL between
pϕ(h|x) and p(h), we define p(h) to be the marginal of pϕ(h|x)
over the inputs x:

p(h) =

∫

x∈X
pϕ(x|h)dx. (13)

This term is not tractable as the data generating distribution
p(x) is unknown. We approximate the true marginal by running
an exponential running mean with window length τ (Hihn and
Braun, 2020b; Leibfried and Grau-Moya, 2020):

qt+1(h) = (1−
1

τ
)qt(h)+

1

τ
pϕ(h|xt), (14)

where qt(h) is the approximated marginal after observing t
samples. To find the optimal parameters ϕ∗, we optimize the
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following variational Auto-Encoder objective:

ϕ∗ = argmax
ϕ

Ex∼p(x),h∼pϕ (h|x)

[
log pϕ(x|h)

]

−
1

β1
DKL

[
pϕ(h|x)||q(h)

]
, (15)

where β1 governs a trade-off between maximizing the log-
likelihood and keeping the variational posterior close to the prior
q(h). We will refer to q(h) as p(h) to keep notation consistent.
There are different interpretations of this approach, e.g., learning
with information constraints (Hihn et al., 2018, 2019; Hihn
and Braun, 2020b), meta-learning (Hihn and Braun, 2020a),
tempered posteriors in variational Bayes applications (Aitchison,
2021), and learning disentangled representations (Higgins et al.,
2016). The additional degree of adaptivity introduced allows to
learn data dependent priors which can improve the quality of
generated samples, as we will show empirically in section 4.3.

3.3.2. Representation Learning
We can interpret the architecture introduced in section 3.1 as
an encoder-decoder structure thats maps a high dimensional
input signal x to a low dimensional latent representation
h. Classification is then performed only using a non-linear
combination of the low dimensional representation. Training this
architecture in an end-to-end fashion will produce values of h
that both minimize the reconstruction error (in other words,
capture the data well) and the classification error. To further
improve this coupling, we propose to impose information-
processing constraints on the latent representation, the gating
layer, and on the classifier. We argue that such constraints
encourage the system to learn representations that discover
regularities in the data by discarding all unnecessary information
(Hihn and Braun, 2020b). To this end, we formulate an
information-theoretic coupling as a two stage hierarchical system
(Genewein et al., 2015) with the following objective function:

max
p(w|h),p(y|w,h)

E
[
L(x, y)

]
−

1

β2
I(W;H)−

1

β3
I(Y|W;H), (16)

whereL(x, y) is a loss function, x ∈ X the input, y ∈ Y the output,
h ∈ H the latent representations produced by the Auto-Encoders,
W the weights of the gating layer (see Equation 4), and I(X;Y) is
the mutual information between random variables X and Y . The
hyper-parameters β2 and β3 are Lagrange multipliers that govern
the trade-off between information-processing cost and utility as
measured by the loss L. Note that the classifier output y depends
on the combined latent variables h, as described by Equation (5).
We can rewrite Equation (16) into

max
θ ,ϑ

E

[
L(x, y)−

1

β2
log

pθ (w|h)

p(w)
−

1

β3
log

pϑ (y|w, h)

p(y)

]
, (17)

where h is the latent representation, x the input, y the output,
p(w|h) is some fusion policy and p(y|w, h) is the output of a
decision-maker (e.g., a classifier), and θ ,ϑ are the parameters.
This formulation allows us to perform updates in an on-line
manner. As outlined earlier, the optimal priors to find an optimal

trade-off are the marginals of the posterior policies p(w|h) and
p(y|w, h), which we approximate by a running mean average.
Combining VAE and representation learning losses we have the
following objective function allowing us to train the system
end-to-end (see Figure 4):

max
ϕ,θ ,ϑ

E

[
L(x, y)− log pϕ(x|h)−

1

β1
log

pϕ(h|x)

p(h)

−
1

β2
log

pθ (w|h)

p(w)
−

1

β3
log

pϑ (y|w, h)

p(y)

]
. (18)

3.3.3. Self-Supervised Fine Tuning
The method we propose aims to find a representation that allows
us to generate informative data samples, without having to go
through an expensive data generation and labeling process. The
self-supervised fine tuning algorithm we propose consists of a
training phase (called the pretext task), followed by a generative
and fine tuning phase (also called the downstream task). Firstly,
we train the whole system, namely an adaptive variational Auto-
Encoder for each modality and the classifier (see Figure 1) using
the full (but not augmented) dataset (see Tables 5, 6 for an
account of samples used and generated). The main goal of this
phase is for the generative models to learn a latent representation
h per modality that is beneficial to the classification task that
uses a combination of the latent representations of the Auto-
Encoders, i.e., p(y|w, h), where y is the output label, h represents
the latent variables, and w represents the weights computed by
the gating layer. In this way the learned posterior p(h|x), where h
is the latent variable and x the input signal, optimizes both the
signal reconstruction architecture and the classification model
simultaneously, by optimizing the Auto-Encoder’s objective
function given by Equation (15). The resulting representation
thus captures the structure of the data, as well as the semantic
information, making it a suitable candidate for a data generation
process. We give an overview of our technique in Algorithm 1.

3.4. Data Sets
The BioVid Heat Pain Database (Part A) (Walter et al., 2013)
is a multi-modal data set consisting of 87 healthy participants
subjected to four levels of gradually increasing and individually
calibrated thermal pain elicitation (T1,T2,T3,T4). Several
modalities were recorded during the experiments including
video streams, EDA, ECG, and EMG signals. Each single
level of pain elicitation was randomly elicited a total of 20
times, with each elicitation lasting 4 s (sec), followed by a
recovery phase of randomized duration (lasting between 8 and
12 s). During this recovery phase, a baseline temperature T0

of 32◦C was applied (see Figure 5). The data set specific to
each participant consists of a total of 20 × 5 = 100 samples,
summing up to a database of 87 × 100 = 8, 700 samples.
Each sample is labeled with its corresponding level of thermal
pain elicitation (T0,T1,T2,T3,T4). The proposed approaches
are evaluated uniquely on the physiological signals EMG,
ECG, and EDA.

Analogously to the BioVid Heat Pain Database, the
SenseEmotion Database (Velana et al., 2017) consists of 45
healthy individuals subjected to 3 levels of individually calibrated
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FIGURE 4 | An overview of our model for self-supervised fine-tuning and the corresponding information-processing constraints, where n is the number of modalities.

FIGURE 5 | Recorded physiological data (BioVid Heat Pain Database, thermal pain elicitation). From top to bottom: stimuli (T1: pain threshold temperature, T2: first

intermediate elicitation temperature, T3: second intermediate elicitation temperature, T4: pain tolerance temperature); EDA (µS); EMG (µV); ECG (µV).
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Algorithm 1We split Self-Supervised Learning into three phases:
(i) training, (ii) self-supervised fine-tuning, and (ii) evaluation.
D−j denotes the dataset without data from subject j.

1: Input: Dataset D with data from Ns subjects with L
modalities

2: Hyper-parameters: prior penalty parameters β1, β2, β3,
number of samples K to generate, training episodes N, fine-
tuning training episodesM

3: for j = 1, 2,..., Ns do

4: Initialize Auto-Encoders and classifier parameters
5: Train Auto-Encoders and classifier for N episodes using

subset D−j with parameters β1,β2,β3

6: Dself-super = ∅

7: for i = 1, 2,..., K do

8: for l = 1, 2, ..., L do

9: Generate latent representation hl using prior
pl(h)

10: Reconstruct samples X̃l by using the decoders
gφl

(h)
11: end for

12: Combine all X̃l into X̃i

13: Classify sample using fϕ(h), where h is the output of
the gating layer, to obtain label ỹi

14: Dself-super = Dself-super ∪ (X̃i, ỹi)
15: end for

16: Fine-tune system using only Dself-super for M episodes
with parameters β1,β2,β3

17: Evaluate data from subject j and collect metrics
18: end for

19: return evaluation metrics

and gradually increasing thermal pain elicitation (T1, T2, T3)
and a baseline level T0 set identically for all participants to
32◦C (corresponding to no pain elicitation). The modalities
recorded during the performed experiments consist of audio
signals, 3 video streams, the trapezius EMG signal, RSP, ECG,
and EDA signals. The performed experiments consist of two
40 min sessions, during which the piece of hardware used
to perform the thermal pain elicitations was attached to a
specific forearm (once on the right forearm and once on the
left forearm). The calibration of the temperatures of elicitation
as well as the thermal elicitation procedure were carried out
identically to the BioVid Heat Pain Database, with the only
difference being the total number of stimuli per pain level.
Each pain level was randomly elicited a total of 30 times
with a pause of about 8–12 s between the elicitations. Due to
technical issues during the experiments 5 participants were
excluded from the data set because of missing or erroneous
data. We therefore evaluate the proposed approaches on
a reduced subset consisting of 40 participants and a data
set consisting of a total of 40 × 30 × 4 × 2 ≈ 9, 600
samples. The assessment of the proposed approaches is
performed uniquely on the physiological signals EMG, ECG,
EDA, and RSP.

3.5. Data Preprocessing
Similar preprocessing operations were applied on the recorded
physiological signals of both datasets. First of all, the sampling
rate of the recorded signals was reduced to 256 Hz in order to
significantly reduce the amount of computational requirements.
Next, the amount of noise and artifacts within each signal was
reduced by applying specific signal processing techniques. For
both datasets, a low-pass Butterworth filter of order 3 with a
cut-off frequency of 0.2 Hz was applied on the EDA signals.
Concerning the BioVid Heat Pain Database, EMG signals were
filtered using a fourth order bandpass Butterworth filter with a
frequency range of [20, 250] Hz, while ECG signals were filtered
with a third order bandpass Butterworth filter with a frequency
range of [0.1, 250] Hz. Subsequently, piecewise detrending of the
filtered ECG signals was performed, by subtracting a fifth degree
polynomial least-squares fit from the filtered signals (as proposed
in Thiam et al., 2019a). Concerning the SenseEmotion Database,
the RSP signals were smoothed using a third order low-pass
Butterworth filter with a cut-off frequency of 0.8 Hz. Both EMG
and ECG signals were preprocessed by applying a third order
bandpass Butterworth filter with respective frequency ranges
of [0.05, 25] and [0.1, 25] Hz, followed by a similar piecewise
detrending as in the case of the BioVid Heat Pain Database.
The resulting filtered signals were subsequently segmented, and
each segment in combination with its corresponding level of
pain elicitation was used to perform the assessment of the
proposed approaches.

In the case of the BioVid Heat Pain Database, the assessment
is performed on windows of length 4.5 s with a shift of 4 s from
the elicitations’ onset (see Figure 6). Analogously, in the case
of the SenseEmotion Database, the assessment of the proposed
approaches is performed on widows of length 6.5 s with the
same shift of 4 s from the elicitations’ onset. Each signal within
these specific windows consists of a one-dimensional array of
size m = 4.5 × 256 = 1, 152 for the BioVid Heat Pain
Database, and m = 6.5 × 256 = 1, 664 for the SenseEmotion
Database. Moreover, since a huge amount of parameters specific
to the multi-modal DDCAE architectures has to be optimized,
data augmentation was performed by shifting the 4.5 s (6.5 s,
respectively) window of segmentation backward and forward in
time with small shifts of 250 ms and a maximum total window
shift of 1 s in each direction. These shifts were performed, starting
from the initial position of the windows (as depicted in Figure 6).
This procedure was performed uniquely during the training
phase of the proposed architectures, resulting in generating nine
times the total amount of training samples specific to the initial
windows of segmentation. Following the optimization of the
multi-modal DDCAE architectures, the evaluation of the trained
architectures was performed on the initial windows of 4.5 s (6.5
s, respectively) with a shift of 4 s from the elicitations’ onset.

4. RESULTS

In the following section, a description of the results relative to
the proposed multi-modal DDCAE architecture is provided. An
assessment of the performance of the architecture is performed
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FIGURE 6 | Signal segmentation (BioVid Heat Pain Database). Experiments are carried out on windows of length 4.5 s with a temporal shift of 4 s from the elicitations’

onset.

and a comparison of the results achieved with and also without
the proposed attention mechanism is conducted. Finally, the
results specific to the proposed self-learning algorithm as
well as a comparison of the achieved results between self-
learning approaches and fully supervised learning approaches are
described and discussed.

4.1. Experimental Settings
In the current work, the multi-model DDCAE architecture
consists of one-dimensional convolutional operations. The
Exponential Linear Unit (ELU) (Clevert et al., 2016) function
defined in Equation (19) (with α = 1) is used in both
convolutional and fully connected layers as activation function,
except for the output layer of both classification and regression
models. In the case of a classification model, a softmax activation
function is used, while a linear activation function is used in the
case of a regression model.

eluα (x) =

{
α

(
exp (x) − 1

)
, if x < 0

x, if x ≥ 0
(19)

Similar encoders’ and decoders’ architectures are used for each
physiological signal, with the only difference being the size of
the convolutional kernel for each modality specific DDCAE:
in the case of EDA, a fixed convolutional kernel with a size
of 3 and a stride of 1 is set empirically. In the case of EMG,
ECG and RSP, the size of the convolutional kernel is set to 11
with a stride set also to 1. The dimensionality of the resulting
latent representation specific to each modality specific DDCAE
is set empirically to η = 256. The designed architectures are
summarized inTable 1. The convolutional kernel of the attention

TABLE 1 | DDCAE architecture: the MaxPooling and UpSampling operations are

performed with an identical pooling size set to 2 and a stride set to 2.

Encoder

Layer No. kernels/Units

2 × Conv1D and MaxPooling 8

2 × Conv1D and MaxPooling 16

2 × Conv1D and MaxPooling 32

Flatten −

Fully connected 256

Decoder

Layer No. kernels/Units

Fully connected 576

Reshape −

2 ×Conv1D and UpSampling 32

2 ×Conv1D and UpSampling 16

2 ×Conv1D and UpSampling 8

1 ×Conv1D 1

Inference (classification or regression)

Layer No. kernels/Units

Fully connected 128

Dropout −

Fully connected c

The Dropout rate is set empirically to 0.25. Concerning the underlying inference task,

in case of a classification task c depicts the number of classes, while in the case of a

regression task, c = 1.

mechanism (see Equation 10) is set empirically to 3 with a stride
of 1 (kernel size = 3).

All architectures are trained using the Adaptive Moment
Estimation (Adam) (Kingma and Ba, 2015) optimization
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algorithm with a fixed learning rate set empirically to 10−5. The
training process is performed through a total of 100 epoches. The
batch size is set to 40 in the case of a 2 Classes classification task
and 100 in the case of a 5 Classes classification task, for the BioVid
Heat Pain Database. Concerning the SenseEmotion Database, the
batch size is set to 120 for 2 Classes classification tasks, and 480
for 4 Classes classification tasks. The same batch sizes are used
for regression tasks. The regularization parameter in Equation
(6) is set as follows: λ = 10−3. The regularization weights of
the objective function defined in Equation (9) are set as follows:
α1 = α2 = α3 = 0.2 and α9 = 0.4, for the BioVid Heat Pain
Database; α1 = α2 = α3 = α4 = 0.15 and α9 = 0.4, for the
SenseEmotion Database. The regularization weight specific to the
inference model is set higher than the others in order to focus
more on the inference performance of the whole architecture.
Moreover, noisy signals are generated by adding some Gaussian
noise to the unaltered original signals. The parameters of the
distribution specific to the Gaussian noise consist of a standard
deviation set to 0.1 and a mean set to 0. The implementation and
the evaluation of the proposed approaches were performed with
the libraries Tensorflow (Abadi et al., 2016), Keras (Chollet et al.,
2015), and Scikit-learn (Pedregosa et al., 2011). The evaluation of
the approaches was performed by applying a Leave One Subject
Out (LOSO) cross-validation evaluation, which means that the
data specific to each single participant is used once to evaluate
the performance of the trained model and is never seen during
the training process, while the data specific to the remaining
participants is used to optimize or train the model. This results
in a total of 87 experiments in the case of the BioVid Heat Pain
Database, and 40 experiments in the case of the SenseEmotion
Database. The results specific to each inference task that are
depicted in the following sections are therefore averaged across
the totality of the performed experiments.

4.2. Multi-Modal Deep Denoising
Convolutional Auto-Encoder: Results
In the current section, an assessment of the classification
performance of the proposed multi-modal DDCAE approach is
performed and described. The assessment consists of performing
several binary and multi-class classification tasks based on
both BioVid Heat Pain Database and SenseEmotion Database.
A comparison of the achieved performances of the multi-
modal DDCAE approach, respectively without (w/o) and with
the proposed attention mechanism, is also provided. The
performance measures used to conduct the assessment are
described in Table 2.

In the case of a binary classification task (e.g., T0vs.T4),
true positives (tp) correspond to the number of correctly classified
samples of the positive class (e.g., T4), while true negatives
corresponds to the number of correctly classified samples of
the negative class (e.g., T0). Analogously, false positives (fp)
correspond to the number of incorrectly classified samples of
the negative class, while false negatives (fn) correspond to the
number of incorrectly classified samples of the positive class.
These values stem from the confusion matrix of an evaluated

TABLE 2 | Classification performance measures.

Measure Binary classification Multi-class classification

Accuracy tp+tn
tp+tn+fp+fn

1
c

∑c
i=1

tpi+tni
tpi+tni+fpi+fni

Precision tp
tp+fp

1
c

∑c
i=1

tpi
tpi+fpi

Recall tp
tp+fn

1
c

∑c
i=1

tpi
tpi+fni

F1-Score 2×Precision×Recall
Precision+Recall

In the case of multi-class classification experiments: tpi corresponds to true positives,

tni corresponds to true negatives, fpi corresponds to false positives and fni corresponds

to false negatives in the confusion matrix associated with the ith class. Since the data

sets used to perform the evaluation of the proposed approaches are balanced, the

macro-averaged F1-score is used in the case of multi-class classification.

classification model and are used to define and compute the
performance measures.

First of all, a summary of the results specific to the
signal reconstruction performance of the proposed approach
in terms of Mean Squared Error (MSE) averaged across the
performed LOSO cross-validation evaluation (∀i, MSEi =

1
T

∑T
j=1

∥∥∥Xi,j − X̃
′

i,j

∥∥∥
2

2
, with T ∈ N>0 being the size of the testing

set specific to the ith modality) is provided inTable 3. Concerning
the BioVid Heat Pain Database, the attention mechanism
improves the performance of the DDCAE architectures and in
most cases significantly, with regards to both EDA and ECG
signals. Concerning the EMG signal, both DDCAE architectures
(without and with attention mechanism) perform similarly,
with the approach without attention mechanism slightly
outperforming the one with the attention mechanism, however
not significantly. Concerning the SenseEmotion Database, the
DDCAE architectures with the attention mechanism outperform
those without attention mechanism in most cases, with regards
to the EDA, ECG, and EMG signals. The reconstruction error
of the RSP signal is significantly higher than those of the
other signals, regardless of the applied approach. A similar
reconstruction error performance between both approaches with
and without attention mechanism can also be seen across all
classification tasks. Overall, the proposed attention mechanism
has a positive effect on the reconstruction performance of the
multi-modal DDCAE architecture, and helps further reducing
the MSE between the output of the model and the original
unaltered input signals.

Furthermore, the performance of the jointly trained
classification model for each classification task is depicted in
Figure 7 for the BioVid Heat Pain Database and in Figure 8

for the SenseEmotion Database. Moreover, a summary of the
classification results is provided in Table 4. Concerning the
BioVid Heat Pain Database, the proposed attention mechanism
improves the performance of the multi-modal DDCAE across
all classification tasks. The performance improvement is also
significant in most cases in terms of F1-score. Concerning the
SenseEmotion Database, the attention mechanism significantly
improves the performance of the proposed approach regarding
the binary classification task T0vs.T3.

In the case of the binary classification task T1vs.T3, the
attention mechanism also improves the overall performance
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TABLE 3 | Signal reconstruction performance [Mean Squared Error (MSE)] comparison in a Leave One Subject Out (LOSO) cross-validation evaluation setting: Average

MSE in % (standard deviation in %).

BioVid Heat Pain Database (Part A)

Task T0vs.T4 T1vs.T4 T0vs.T1vs.T2vs.T3vs.T4 (5 Classes)

Model
DDCAE DDCAE DDCAE

W/o attention With attention W/o attention With attention W/o attention With attention

EDA 04.82 (05.26) 03.61 (03.90)∗ 05.13 (05.47) 03.79 (04.46)∗ 03.18 (04.14) 03.14 (04.14)

ECG 09.23 (07.12) 08.57 (07.32)∗ 09.31 (07.54) 07.75 (06.92)∗ 06.25 (05.81) 05.92 (05.72)∗

EMG 17.38 (32.39) 17.40 (32.65) 17.37 (31.80) 17.13 (31.63) 16.28 (31.34) 16.89 (31.50)

SenseEmotion Database

Task T0vs.T3 T1vs.T3 T0vs.T1vs.T2vs.T3 (4 Classes)

Model
DDCAE DDCAE DDCAE

W/o attention With attention W/o attention With attention W/o attention With attention

EDA 03.75 (04.32) 03.46 (03.88) 04.03 (04.73) 03.86 (04.50) 03.81 (04.37) 03.77 (03.85)

ECG 05.83 (02.91) 05.52 (03.13)∗ 05.74 (03.09) 05.43 (03.32)∗ 05.61 (03.23) 05.54 (03.23)

EMG 07.42 (09.05) 07.62 (09.41) 07.32 (08.32) 07.04 (08.72)∗ 07.53 (09.31) 07.77 (08.40)

RSP 34.71 (89.97) 33.63 (87.89) 34.37 (82.40)∗ 35.11 (86.38) 35.39 (94.68) 35.97 (97.17)

The best achieved performance is depicted in bold. An asterisk (∗) depicts a significant performance improvement. The significance test is performed using a two-sided

Wilcoxon-Signed-Rank test with a significance level of 5%.

FIGURE 7 | BioVid Heat Pain Database (Part A): classification performance comparison in a Leave One Subject Out (LOSO) cross-validation evaluation setting. Within

each box plot, the mean and the median classification performance are depicted respectively with a dot and a horizontal line. (A) T0vs.T4, (B) T1vs.T4, (C) 5 classes.

of the proposed architecture. In the case of the multi-class
classification task (T0vs.T1vs.T2vs.T3), the improvement of the
performance can only be seen in terms of accuracy. Overall,
the proposed attention mechanism improves the performance
of the designed multi-modal DDCAE across all classification
tasks. Moreover, the depicted results show that applying a
gated approach for the generation of a single weighted latent
representation is not only beneficial for the reduction of the
dimensionality of the final representation, but also, due to the
optimized weighting parameters, the generated representation
can significantly improve the performance of the classification
system. In summary, the proposed gating layer is able to
successfully perform an aggregation of the latent representations
specific to each of the modalities and the resulting aggregated

representation can be jointly used to optimize an effective
inference model. Moreover, the proposed attention mechanism
is able to improve the overall performance of the proposed
multi-modal DDCAE model in terms of classification accuracy
as well as reconstruction MSE. In the following sections, if not
mentioned otherwise, the experiments are carried out with a
version of the multi-modal DDCAE extended with the proposed
attention mechanism.

4.3. Self-Supervised Approach: Results
To evaluate our self-supervised learning (SSL) algorithm we
perform experiments on two datasets in the self-supervised
setting: the BioVid Heat Pain Database (Part A) (Walter et al.,
2013) (see Table 5) and the SenseEmotion Database (Velana
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FIGURE 8 | SenseEmotion Database: classification performance comparison in a Leave One Subject Out (LOSO) cross-validation evaluation setting. Within each box

plot, the mean and the median classification performance are depicted, respectively with a dot and a horizontal line. (A) T0vs.T3, (B) T1vs.T3, (C) 4 classes.

TABLE 4 | Classification performance comparison in a Leave One Subject Out (LOSO) cross-validation evaluation setting: Average Performance in % (Standard Deviation

in %).

BioVid Heat Pain Database (Part A)

Task T0vs.T4 T1 vs. T4 T0 vs. T1 vs. T2 vs. T3 vs. T4 (5 Classes)

Model
DDCAE DDCAE DDCAE

W/o attention With attention W/o attention With attention W/o attention With attention

Accuracy 83.99 (15.58) 84.25 (13.82) 76.29 (16.09) 76.81 (15.08) 33.31 (09.35) 35.44 (08.66)∗

F1-Score 78.66 (25.43) 81.48 (20.55)∗ 68.18 (29.08) 71.92 (24.81)∗ 30.31 (09.30) 31.04 (07.91)

SenseEmotion Database

Task T0 vs. T3 T1 vs. T3 T0 vs. T1 vs. T2 vs. T3 (4 Classes)

Model
DDCAE DDCAE DDCAE

W/o attention With attention W/o attention With attention W/o attention With attention

Accuracy 78.76 (11.37) 81.05 (10.73)∗ 77.19 (11.70) 78.26 (10.21) 40.48 (06.88) 40.77 (07.00)

F1-Score 76.64 (15.99) 79.78 (13.30)∗ 75.26 (15.70) 75.95 (14.71) 36.53 (06.61) 35.75 (06.69)

The best achieved performance is depicted in bold. An asterisk (∗) depicts a significant performance improvement. The significance test is performed using a Two-Sided

Wilcoxon-Signed-Rank test with a significance level of 5%.

et al., 2017; Thiam et al., 2019b) (see Table 6). In all our SSL
experiments we kept the architecture as described inTable 1, with
the exception of the output layer of the encoder network, where
we have 512 units [256 for the mean and 256 for the log-variance
of p(h|x)].

We designed the experiments to investigate the influence of

our self-supervised tuning method in combination with adaptive
variational Auto-Encoders on the number of training samples
required. To this end, we evaluate our approach with an adaptive
prior as described in section 3 and with a fixed prior, i.e., a
standard normal distribution as p(h). We evaluate the adaptive
prior approach on the original data, on the augmented data (see
section 3.5 for details) and in a self-supervised learning scenario,
while we show results for the fixed prior on the augmented
dataset. In all settings we trained the model for 100 epochs on
the fully augmented data and evaluated on test data [Leave One
Subject Out (LOSO) cross-validation evaluation]. For the self-
trained setting, we trained the model on non-augmented data

for 100 epochs, generated 25% additional data using the learned
variational priors and classified them using model predictions,
and fine tuned the previously trained model for 100 additional
epochs using only the generated data. In the case of regression
experiments, the performance measures are both Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE), defined
as follows:

MAE =
1

T

T∑

j=1

∣∣yj − ŷj
∣∣ (20)

RMSE =

√√√√√ 1

T

T∑

j=1

(
yj − ŷj

)2
(21)

where yj is the ground-truth class value of the jth sample, ŷj is the
corresponding regression output value, and T is the number of
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TABLE 5 | Results for the BioVid dataset in the binary, five classes, and regression setting in a Leave One Subject Out (LOSO) cross-validation evaluation setting: average

performance in % (standard deviation in %).

BioVid Heat Pain Database (Part A)

Task T0vs.T4

Model DDCVAE DDCAE

VAE prior Adaptive Fixed N/A N/A

method Orig. data Aug. data Self-trained self-trained Aug. data Orig. data

Samples 3,440 30,960 3,440 + 860 3,440 + 860 30,960 3,440

Accuracy 69.3 (14.7) 84.0 (15.2) 83.0 (15.9)† 76.1 (16.8) 84.2 (13.7)† 69.0 (15.0)

F1-Score 63.8 (22.4) 80.0 (23.0) 78.0 (24.5) 65.8 (28.9) 81.5 (20.0)∗ 63.6 (22.9)

Task T0vs.T1vs.T2vs.T3vs.T4

Model DDCVAE DDCAE

VAE prior Adaptive Fixed N/A N/A

method Orig. data Aug. data Self-trained self-trained Aug. data Orig. data

Samples 8,600 77,400 8,600 + 2,150 8,600 + 2,150 77,400 8,600

Accuracy 25.8 (5.0) 35.5 (7.9) 32.9 (6.8) 29.0 (6.9) 35.4 (8.6)∗ 25.1 (5.5)

F1-Score 15.8 (5.0) 31.6 (7.5) 20.0 (6.0) 16.9 (5.7) 31.0 (7.9)∗ 17.5 (5.6)

Task Regression

Model DDCVAE DDCAE

VAE prior Adaptive Fixed N/A N/A

Method Orig. data Aug. data Self-trained self-trained Aug. data Orig. data

Samples 8,600 77,400 8,600 + 860 8,600 + 860 77,400 8,600

MAE 1.21 (0.08) 0.97 (0.18) 1.00 (0.18) 1.03 (0.18) 0.97 (0.19)∗ 0.99 (0.21)

RMSE 1.41 (0.09) 1.16 (0.20) 1.18 (0.20)† 1.20 (0.16) 1.16 (0.21)† 1.17 (0.18)

† p-Value of two-sided Wilcoxon-Signed-Rank Test is not signifying a statistically significant difference.

∗p-Value of one-sided W-Test is signifying a statistically significant difference. For classification the alternative.

is “greater” and for regression “less”.

Bold font signifies the best result. The Wilcoxon-Signed-Rank tests have been carried out between the results of the self-supervised fine-tuning approach using only the original dataset

(“DDCVAE Adaptive Prior Self-Trained”) and the DDCAE approach using the augmented dataset (“DDCAE Aug. Data”).

samples. In all self-supervised fine-tuning experiments we used
β1 = 0.001,β2 = 0.001,β3 = 0.001, λ = 0.9995. All Gaussian
distributions were assumed to be isotropic, i.e., independent
dimensions, which allows us to learn only the diagonal of the
covariance matrices instead of the full matrix. We compute
the variance of the Gaussian priors via the soft-plus activation
of the corresponding output of encoder network, defined by
softplus(x) = log[1+ exp(x)].

In all three settings (binary classification, all-vs.-all, and
regression) we were able to achieve results that are only
marginally lower compared to the fully augmented dataset,
while only using a fraction of the samples (see column labeled
“Self-Trained” of Tables 5, 6), thus showing the effectiveness
of our method. All classification results were in the margin
of 1–3% while only requiring an additional 25% of data
points. The performance in terms of accuracy concerning the
binary classification task of the BioVid Heat Pain Database
was not significantly worse compared to the fully augmented
case. Importantly, this does not hold for the fixed prior: the
performances drop significantly compared to adaptive priors.We
argue that this shows that our self-supervised approach enables
the system to learn a informative representation for each of the
modalities. Additionally, through the coupling introduced by

the information-processing constraints, these representations are
tuned in such a way that they improve the overall classification
and regression performance, by discovering regularities in the
data that can be exploited efficiently.

5. DISCUSSION

We introduced and evaluated a novel approach to deep multi-
modal pain intensity assessment. We evaluated our approach
on two complex pain intensity assessment datasets and were
able to achieve results comparable to current state-of-the-art
methods (see Table 7). The results specific to the proposed multi-
modal DDCAE architecture show that the joint optimization
of a single latent representation for each specific input channel
and a gating layer (with trainable parameters) to generate a
weighted latent representation (that is subsequently fed into
a jointly trained model to perform an inference task), can
improve the overall performance of an entire architecture by
multiple percent. Additionally the reconstruction of the input
signals is also performed at a satisfactory extent. Furthermore,
when combined with an appropriate attention mechanism, the
performance of the entire architecture can be further significantly
improved. Therefore, feature learning can be considered as
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TABLE 6 | Results for the SenseEmotion dataset in the binary, four classes, and regression setting in a Leave One Subject Out (LOSO) cross-validation evaluation setting:

average performance in % (standard deviation in %).

SenseEmotion Database

Task T0vs.T3

Model DDCVAE DDCAE

VAE prior Adaptive Fixed N/A N/A

method Orig. data Aug. data Self-trained self-trained Aug. data Orig. data

Samples 4,680 42,120 4,680 + 1,170 4,680 + 1,170 42,120 4,680

Accuracy 77.7 (11.3) 79.0 (11.0) 78.5 (11.4) 68.1 (11.8) 81.0 (10.7)∗ 52.3 (4.9)

F1-Score 74.2 (16.4) 75.5 (15.9) 73.8 (17.9) 51.8 (22.6) 79.8 (13.3)∗ 65.4 (7.9)

Task T0vs.T1vs.T2vs.T3

Model DDCVAE DDCAE

VAE prior Adaptive Fixed N/A N/A

method Orig. data Aug. data Self-trained self-trained Aug. data Orig. data

Samples 9,314 83,835 9,314 + 2,328 9,314 + 2,328 83,835 9,314

Accuracy 38.4 (6.6) 40.1 (6.5) 39.1 (5.9) 34.8 (6.3) 40.8 (7.0)∗ 31.5 (6.8)

F1-Score 30.0 (5.4) 36.6 (5.6) 27.4 (4.5) 23.3 (6.1) 35.8 (6.7)∗ 21.3 (10.8)

Task Regression

Model DDCVAE DDCAE

Prior Adaptive Fixed N/A N/A

method Orig. data Aug. data Self-trained self-trained Aug. data Orig. data

Samples 9,314 83,835 9,314 + 2,328 9,314 + 2,328 83,835 9,314

MAE 0.82 (0.10) 0.80 (0.10) 0.81 (0.11) 0.85 (0.09) 0.80 (0.10)∗ 1.04 (0.07)

RMSE 0.97 (0.11) 0.96 (0.11) 0.96 (0.12) 1.01 (0.11) 0.96 (0.11)∗ 1.18 (0.09)

†p-value of two-sided Wilcoxon-Signed-Rank Test is not signifying a statistically significant difference.

*p-value of one-sided W-Test is signifying a statistically significant difference. For classification the alternative.

hypothesis is “greater” and for regression “less”.

The Wilcoxon-Signed-Rank tests have been carried out between the results of the self-supervised fine-tuning approach using only the original dataset (“DDCVAE adaptive prior self-trained”) and the

DDCAE approach using the augmented dataset (“DDCAE Aug. Data”).

a sound alternative to manual feature engineering, since the
designed architecture is able to autonomously generate a set of
relevant parameters without the need of expert knowledge in
this particular area of application. As potential future work, an
investigation of the temporal aspect of the physiological signals
through the introduction of recurrent neural networks such as
LSTMs should be undertaken. Moreover, since we set most of the
hyper-parameters involved in the performed assessment of the
proposed approaches empirically, methods designed to perform
the fine-tuning of such hyper-parameters (Feurer and Hutter,
2019)may automate this step. The introduction and investigation
of generative models [such as Generative Adversarial Networks
(GANs)] for data augmentation in the case of bio-physiological
data should also be undertaken and a comparison of the
performances achieved by such approaches, with those achieved
through SSL approaches could provide further insights into the
dynamics involved in multi-modal inference tasks.

In the Self-Supervised Learning setting we showed that our
approach is able to drastically reduce the required number
of training samples compared to classic data augmentation
techniques. We achieved this by training a Deep Denoising
Convolutional Adaptive Variational Auto-Encoder on each
modality during a primary training period. We then use the
learned latent prior for each modality to artificially generate

new data samples, classify them with hard labels and perform
a second fine-tuning training phase. Our method requires only
25% additional data with only a small performance loss. In
an ablation study we were able to show that our adaptive
VAE outperforms a classic VAE with a fixed prior, indicating
that the additional flexibility allows to learn disentangled
representations [encoded by their prior p(h)] for each modality.
Given that we are working with temporal data it could
be a promising research direction to investigate recurrent
neural networks in the representation learning part, as these
are known to be able to extract temporal dependencies in
data. Furthermore, our self-supervised fine-tuning approach
is independent of the underlying problem structure and we
can therefore apply it to a variety of learning tasks. As
potential future work one could investigate our method in the
reinforcement learning setting to improve sample efficiency.
A drawback of our method is that it requires careful tuning
of the hyper-parameters β1,β2, and β3, as they have a
drastic impact on the results. Chosen too small, the posterior
can never diverge from the prior and thus no learning is
possible, while a large value leads to large divergence and thus
rendering the prior useless, as it does not capture the posterior.
Meta-learning techniques may prove useful to automatically tune
these hyper-parameters.
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TABLE 7 | Classification performance comparison with previous works (BioVid

Heat Pain Database: T0 vs. T4).

BioVid heat pain database (Part A)

Approach Accuracy (%)

Early fusion with random forests (Werner et al.,

2014)

74.10

Multi-modal DDCAE with a shared latent

representation (Thiam et al., 2020a)

76.90

Multi-modal DDCAE with a concatenated latent

representation (Thiam et al., 2020a)

77.24

Early fusion with random forests (Kächele et al.,

2016, 2017)

82.73

Deep neural network ensemble with a weighted

aggregation layer (Thiam et al., 2019a)

84.40

Multi-modal DDCAE with a gated latent

representation (w/o attention)

83.99

Multi-modal DDCAE with a gated latent

representation (with attention)

84.25

Multi-modal DDCVAE with a gated latent

representation & SSL

83.00

The performances of the proposed multi-modal DDCAE approaches are compared

to other information fusion architectures involving the exact same modalities with an

evaluation performed in a Leave One Subject Out (LOSO) cross-validation evaluation

setting.

6. CONCLUSION

Even though the results depicted in the current work are very
promising, pain recognition remains a very complex inference
task. Several parameters have to be taken in consideration in
order to ensure the effectiveness of the developed approaches. In
the current work, the assessment of the proposed approaches is
performed on data sets characterized by thermal pain elicitations.
However, the outcome of the performed experiments can be
biased by both the nature of the stimuli applied and the types
of sensors used to perform the recordings. An assessment of the
proposed approaches in diverse settings, using different types of
painful stimuli such as pressure, cold or electrical stimuli, should
therefore be conducted. Moreover, both data sets were recorded
in controlled environments. Hence, the implementation and
evaluation of the proposed approaches in real world settings
would provide valuable insights and bring the whole research
community one step further toward the goal of autonomously
and effectively performing the assessment of different levels
of pain. Such a technology would substantially improve the
effectiveness of pain management in a clinical setting.
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