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Red blood cells (RBCs) deformability refers to the cells’ ability to adapt their shape to
the dynamically changing flow conditions so as to minimize their resistance to flow.
The high red cell deformability enables it to pass through small blood vessels and
significantly determines erythrocyte survival. Under normal physiological states, the
RBCs are attuned to allow for adequate blood flow. However, rigid erythrocytes can
disrupt the perfusion of peripheral tissues and directly block microvessels. Therefore,
RBC deformability has been recognized as a sensitive indicator of RBC functionality.
The loss of deformability, which a change in the cell shape can cause, modification of
cell membrane or a shift in cytosol composition, can occur due to various pathological
conditions or as a part of normal RBC aging (in vitro or in vivo). However, despite
extensive research, we still do not fully understand the processes leading to increased
cell rigidity under cold storage conditions in a blood bank (in vitro aging), In the
present review, we discuss publications that examined the effect of RBCs’ cold storage
on their deformability and the biological mechanisms governing this change. We first
discuss the change in the deformability of cells during their cold storage. After that, we
consider storage-related alterations in RBCs features, which can lead to impaired cell
deformation. Finally, we attempt to trace a causal relationship between the observed
phenomena and offer recommendations for improving the functionality of stored cells.

Keywords: red blood cells, RBC deformability, transfusion, RBC storage lesion, RBC storage

INTRODUCTION

The primary physiological role of red blood cells (RBCs) is the supply of oxygen to tissues. To
accomplish this task, RBCs have unique flow-affecting properties, which play a crucial role in
blood circulation in health and disease (Yedgar et al., 2002; Barshtein et al., 2007), and thereby
define the RBC hemodynamic functionality, namely their capacity to affect blood circulation
(Barshtein et al., 2018b). One of the main characteristics that determine the behavior of cells in
the bloodstream is their deformability. RBC deformability is the cells’ ability to adapt their shape to
the dynamically changing flow conditions to minimize their resistance to flow. This is particularly
important for their passage through the capillaries, which are narrower than the RBCs. Reduced
deformability (increased rigidity) results in impaired perfusion and oxygen delivery to peripheral
tissues (Parthasarathi and Lipowsky, 1999; Sakr et al., 2007; Matot et al., 2013), because rigid
RBCs can directly block capillaries (McHedlishvili, 1998). RBC deformability is also a significant
determinant of their ability to pass through the splenic vasculature; thus, reduced deformability,
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which is always the case in aged RBCs, hinders their transit and
increases splenic RBC sequestration and destruction (Warkentin
et al., 1990; Mohandas and Chasis, 1993; An and Mohandas, 2008;
Huang et al., 2014).

Under normal physiological conditions, the RBC
deformability enables adequate blood flow. However, under
cold storage conditions (in vitro aging), cells lose their
deformability, and this alteration can influence their after-
transfusion performance (Matot et al., 2013; Barshtein et al.,
2016, 2017). The observed increase in the stiffness of RBCs is
usually associated with changes undergone by the cell membrane
and the cytosol; in particular, alteration of their shape, elevation
of the membrane rigidity, and the cytosol viscosity (Dao et al.,
2003; Kuzman et al., 2004; Huisjes et al., 2018).

This review analyzes the effect of RBCs’ cold storage on
their deformability and the biological mechanisms governing this
change. We first discuss the change in the deformability of cells
during their cold storage. After that, we consider storage-related
alterations in RBCs features, which can lead to impaired cell
deformation. Finally, we attempted to trace a causal relationship
between the observed phenomena and offered recommendations
for improving the functionality of stored cells.

COLD STORAGE OF RBCs AND CELL
DEFORMABILITY

It was repeatedly demonstrated that damage to RBCs caused
by storage becomes prominent at the beginning of the 2nd
week of storage (Kozlova et al., 2015, 2017; Xu et al., 2018).
Furthermore, this damage was noted to progress with increasing
storage duration (D’Almeida et al., 2000; Bennett-Guerrero et al.,
2007; D’Amici et al., 2007; D’Alessandro et al., 2012, 2015;
Gevi et al., 2012; Santacruz-Gomez et al., 2014; Kozlova et al.,
2017). As a part of the storage lesion, donated RBCs lose their
deformability- reported for the first time (as far as we know) by
Kucera et al. (1985). In his study, Kucera et al. (1985) used the
filtration technique to characterize the deformability of cells.

Over the years, there have been methods for determining
the deformability of cells have become more sophisticated
(Mason and Weitz, 1995; Amin et al., 2007; Musielak, 2009;
Zheng et al., 2013; Tomaiuolo, 2014; Huisjes et al., 2018).
The available experimental methods can be divided into two
categories: instruments that measure RBC suspensions (filtration,
viscosimetry, and ektacytometry) and single-cell techniques
(optical tweezers, microrheology, or micropipette aspiration).
Both of these classes have advantages and disadvantages. When
measurements are carried out for tens of cells, this makes
it possible to characterize the mechanical characteristics of
individual cells. However, on the other hand, it does not allow
obtaining statistically reliable results due to the significant
variability of characteristics. At the same time, both filtering
and ektacytometry allow getting averaged features and do
not say anything about the distribution of deformability in
the RBC population. Characterization of RBCs deformability
in flow-systems (flow-chamber) is an alternative method that
allows both to assess the features of an individual cell and

determine the distribution of indexes in a substantial population
(Figure 1). Using of flow-chamber/microfluidic approach allows
direct visualization of deformed cells and the distribution of RBC’
deformability in a population from hundreds (Kwan et al., 2013;
Cluitmans et al., 2014) to thousands (Relevy et al., 2008; Zheng
et al., 2014; Barshtein et al., 2020a,b) of cells.

In the initial period of studying the effect of cold-storage on
the deformability of PRBCs was carried out using the filtration
method (Kucera et al., 1985; Wegner and Kucera, 1989) and
ektacytometry (Cluitmans et al., 2012; Sosa et al., 2014; Marin
et al., 2021; van Cromvoirt et al., 2021). In the last decade,
measurements with a flow chamber (Relevy et al., 2008; Barshtein
et al., 2014, 2020b; Orbach et al., 2017) or microfluidic systems
(Guruprasad et al., 2019; Islamzada et al., 2020; Man et al., 2020)
have become more frequently used.

Microrheology has been widely applied for measuring
single-cell viscoelasticity. This technique accounts for various
passive and active particle-tracking methods developed to
measure viscoelasticity at a subcellular level by analyzing
particle trajectories. A mean-squared displacement (MSD) is
determined from particle trajectories and relates to the creep
compliance based on the generalized Stokes-Einstein relation
(Mason and Weitz, 1995).

The reader can find a detailed analysis of techniques for
characterizing erythrocyte deformability in the following reviews
(Musielak, 2009; Zheng et al., 2013; Tomaiuolo, 2014; Huisjes
et al., 2018).

What Do We Know About the
Deformability of Stored RBCs?
Over the current decade, the number of publications devoted
to studying changes in the deformability of RBCs during
storage and identifying the factors affecting this process has
significantly increased. Moreover, the problem of storage lesion
is simultaneously considered from the purely practical (quality
control of packed RBCs units), optimization of the storage
protocol, and so on) and the scientific (identification of
mechanisms behind this phenomenon, etc.) points of view.

Table 1 presents the results of several selected studies in which
changes in the deformability of packed red blood cells (PRBCs)
during storage are discussed. Despite the wide variety of methods
used by different authors for characterizing PRBC deformability,
the predominant conclusion is to confirm the results established
by Kucera et al. (1985). The general implication from most of
the cited publications is that cell deformability begins to decrease
after 14–21 days of storage. However, the significance of this effect
strongly varies.

Raat et al. (2005) explained this discrepancy by the inherent
difficulty in comparing results obtained by different experimental
conditions and the lack of an appropriate calibration standard.
As follows from the data presented in Table 1, the authors of
publications have used different storage mediums and methods
of PRBCs unit preparation.

Moreover, as follows from the data in Table 1, there is a
significant variation in the sample sizes of the tested blood
units between publications. The statistical reliability of the
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FIGURE 1 | An illustrative micrograph of PRBCs [adhered to glass slide of the flow-chamber (Barshtein et al., 2020b)] under a flow-induced shear stress of
3.0 Pa. Distribution of RBC deformability, expressed by their Elongation Ratio, in RBC population (8’000–10’000 cells), presented by the percentage of RBCs in a
discrete elongation ratio value.

results obtained determines the adequacy of the conclusions
reached by the authors.

Several publications, which report no change in the RBC
deformability during cold storage, clearly stand apart from the
rest (Raat et al., 2005; Cluitmans et al., 2012; Zheng et al., 2014;
Barshtein et al., 2020b; Islamzada et al., 2020). The authors
of these publications did not record any deterioration in cell
deformability for the entire group (Raat et al., 2005; Cluitmans
et al., 2012; Zheng et al., 2014) of the study samples or some of
them (Barshtein et al., 2020b; Islamzada et al., 2020).

Thus, taking into account the relevant reservations, and based
on the results obtained by various research groups, the following
general conclusions can be formulated:

• In an overwhelming number of published studies,
regardless of the measurement method, RBC storage leads
to a decrease in their deformability. However, the ability
of PRBCs to maintain their deformability during storage
varies significantly between donors.
• A noticeable deterioration in PRBCs deformability begins

after the end of the 2nd week of storage.
• The slightest damage to the deformability of RBCs

during storage is caused when leukofiltration
is implemented during the preparation of the

unit, and the storage is carried out in SAGM
(saline–adenine–glucose–mannitol) solution.
• Deformability of RBC at all stages of processing/storage in

the blood-banking practice possesses significant donor-to-
donor variation.
• The gender and the donor’s age have a significant impact

on the ability of RBCs to maintain their deformability
during storage.
• The ability of RBCs to retain their deformability during

storage depends mainly on the anti-oxidative status of the
donated blood unit.
• Treatment of RBCs with a rejuvenating solution (e.g.,

Rejevisol) or with the human serum allows a partial
restoration of cell deformability’s initial (pre-storage) level.

In the following sections of the review, we will consider some
specific aspects associated with the deformability of PRBCs.

Unit-to-Unit Variability of RBC
Deformability
In recent years, the literature has widely discussed the unit-to-
unit variability of PRBCs features (Tarasev et al., 2014, 2015;
Sparrow, 2017; Barshtein et al., 2020b; Melzak et al., 2021).
PRBCs from different units differ significantly depending on the
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TABLE 1 | Deformability of packed RBC during their storage.

Storage
medium

Leukofiltration
YES/NO

Irradiation Number of
tested units

Conclusion References

MAP No X-ray 5 The deformability of PRBC was reduced during storage, and the
decrease was further enhanced by x-ray irradiation. In addition,
irradiation of the PRBCs unit leads to an increase in the proportion of
non-deformed cells

Suzuki et al.,
1996

MAP No Gamma 5 The decreased deformability of γ-ray-irradiated PRBCs during storage
was predominantly caused by cell dehydration

Cicha et al.,
2000

SAGM No No 6 The deformability of PRBCs is not affected during storage in the blood
bank for up to 5 wks

Raat et al.,
2005

SAGM or
PAGGSM

Yes No 20 Decreased RBC deformability was similar for both additive solutions Zehnder et al.,
2008

CPDA-1 No No & Yes 6 Deformability PRBCs are sensitive to cold storage and irradiation, which
accelerates cell damage

Relevy et al.,
2008

SAGM Yes No 10 The deformability of the PRBC did not change during storage Henkelman
et al., 2010

CPDA-1 Yes No 40 The concentration of ATP is not a valid marker for red cell deformability
and may not reflect the in vivo survival of TRBCs

Karger et al.,
2012

AS-5 No No 24 RBCs suspensions showed a progressive decrease in erythrocyte
deformability. There were no statistically significant differences in
erythrocyte deformability between cells from male and female donors

Daly et al.,
2014

SAGM Yes No 5 The deformability of PRBCs is not affected during storage in the blood
bank

Cluitmans
et al., 2014

SAGM No No 5 The deformation index of RBCs under folding does not change
significantly over blood storage

Zheng et al.,
2014

SAGM No No 8 The deformability of PRBCs demonstrated statistically significant
variability among donors and storage capacity

Matthews et al.,
2015

AS1 or AS3 Yes No 34 The deformability of PRBC decreased with storage duration and was
not correlated with oxidative stress markers

Nagababu
et al., 2016

SAGM No No 7 PRBCs stored up to 21 days were able to restore their deformability
and ATP level to values close to those of donated RBCs, whereas older
RBCs (28–42 days), even after recovery, had significantly low
deformability and ATP level than donated RBCs

Xu et al., 2018

SAGM No No 3 The most substantial decrease in PRBC deformability occurs during the
4th week of storage. The authors discuss the relationship between
morphological changes in PRBCs and their deformability

Geekiyanage
et al., 2020

SAGM NO No 12 The deformability of PRBCs showed a significant alteration with storage
while donor gender did not reach a significant effect

Mykhailova
et al., 2020

SAGM Yes No 20 The deformability of freshly collected RBCs exhibited marked variability
already on the day of donation. In addition, the aging curve of packed
RBC deformability varies significantly among donors

Barshtein et al.,
2020b

SAGM Yes No 8 The aging curve of RBC deformability varies significantly across donors
but is consistent for each donor over multiple donations

Islamzada
et al., 2020

AS-3 Yes No 9 Small subpopulations of poorly deformed red blood cells significantly
reduce the ability of entire populations of PRBCs to cross microfluidic
networks and significantly increase the frequency and duration of red
cell blockage events

Piety et al.,
2021

donor, the condition of the collection and processing of blood,
and the PRBC unit storage conditions. Despite ongoing efforts
to minimize variations in the processing of units (Garraud and
Tissot, 2018), the significant disparity is still present.

Recently, much attention has been invested in identifying the
effect of donor-related factors on the functionality of collected
PRBCs and the stability of cells during cold storage (Daly
et al., 2014; Hazegh et al., 2020; Mykhailova et al., 2020;
Nemkov et al., 2020; Tzounakas et al., 2020). In these studies,
it was found that the age, gender, body weight (as well as
other characteristics) of the donor could significantly impact

the functionality of donated RBCs and their stability during
storage. The identified relationship between age, sex, body
weight, and additional donor parameters, on the one hand, and
the properties of donated RBCs, on the other hand, lead to
significant variability in PRBCs functionality (Dern et al., 1966;
Tarasev et al., 2014, 2015; Tzounakas et al., 2016; D’Alessandro
et al., 2019; van Cromvoirt et al., 2021). One possible explanation
of this phenomenon is that the properties of each blood unit are
affected by both genetic (D’Alessandro et al., 2015, 2017; Nemkov
et al., 2016) and non-genetic (Tzounakas et al., 2016) donor-
related factors (Garraud and Tissot, 2018). Garraud and Tissot
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(2018) have described additional donor-to-donor variations: the
time of donation (morning and afternoon), after a meal or
following fasting, drug, and dietary supplement intake, menstrual
cycle (for non-menopausal women), diet, and many others
(Tzounakas et al., 2016).

Research directly targeting unit-to-unit variations in PRBCs
deformability has only recently been initiated, with several
authors have demonstrated the significance of this phenomenon
(Frank et al., 2013; Matthews et al., 2015; Guruprasad et al.,
2019; Jeon et al., 2019; Barshtein et al., 2020b; Islamzada et al.,
2020; van Cromvoirt et al., 2021). It was found that two factors
primarily cause variability among units: the difference in the
initial properties of donated RBCs and the differing ability of the
cells to retain their deformability during storage (Barshtein et al.,
2020b; Islamzada et al., 2020).

There are two types of "aging curves" describing the kinetics
of change in the cell deformability during storage (Barshtein
et al., 2020b; Islamzada et al., 2020). So, Barshtein et al. (2020b),
by visualization of cells in the flow-chamber, demonstrated
that in one case, the percentage of low-deformable cells (%
LDFC) significantly changes after 2 weeks of storage, while the
other with the % LDFC remains stable throughout the entire
storage duration. The ratio between the number of blood units
belongs to the first or the second type was 1:1 (Barshtein et al.,
2020b). Similar results were obtained by Islamzada et al. (2020)
using cell sorting.

Interim Conclusions
So far, from the results presented above, we can conclude
that donated blood is characterized by high donor-to-donor
variability in RBC deformability and that this variability applies
to the PRBC units as well. It follows that for analysis of PRBCs
stability during storage, it is more justified to consider not the
average (over the entire pool of units) but an individual (per-unit)
“aging-curves.” Thus, the patterns described above support those
authors who considered the reliability of storage duration (age)
as a sole factor defining a unit quality (Koch et al., 2019; Yedgar
et al., 2019). With that in mind, there is a reason to hope that
the joint efforts of various research groups will lead to developing
a clinically applicable model of the bag’ inventorying in a blood
bank, based on scientific criteria instead of the FIFO principle
universally utilized today.

Reversibility of Storage-Related
Impairment in RBC Deformability
When a recipient is transfused with PRBC, erythrocytes with
a specific set of properties are injected into his bloodstream.
Heavily damaged senescent cells are removed from the
bloodstream shortly after transfusion (Luten et al., 2008; Bosman,
2013; Nagababu et al., 2016; Barshtein et al., 2017). This type of
cell includes low-deformable RBCs (Barshtein et al., 2017).

However, most transfused red blood cells (TRBCs) remain in
the recipient’s circulation (more than 75% according to Bosman
(2013) and Roussel et al. (2018) in a state that differs significantly
from storage conditions and partially recovers their properties
(Barshtein et al., 2018a). This allows them to stay in the recipient’s

blood for an extended period. Since the duration of the post-
transfusion restoration can be regulated by several physiological
factors, the period needed for full recovery varies widely from
several hours to several days (Valtis, 1954; Beutler and Wood,
1969; Valeri and Hirsch, 1969; Enoki et al., 1986; Heaton et al.,
1989). However, long recovery times (tens of minutes) increase
the likelihood that the spleen will clear TRBCs from circulation.

Ichikawa et al. (2019, p. 125) compared the deformability
of patients’ RBCs before and after cardiac surgery with
cardiopulmonary bypass. They demonstrated that RBCs
deformability decreased during surgery, but the most significant
elevation in cell rigidity occurred after PRBC transfusion. Frank
et al. (2013) compared the deformability of the recipient’s cells
before and after PRBCs transfusion. The authors (Frank et al.,
2013) demonstrated that the deformability of the patients’
red cells has decreased during transfusion (compared to pre-
transfusion state) and that this abnormality was not reversed and
got worse (in the case of moderate transfusion volume) over the
subsequent 3 days. These data indicate there’s no restoration of
the deformability of transfused RBCs in vivo. However, under
conditions described by the authors, several processes co-occur,
such as removing erythropoiesis, restoring TRBC, and, possibly,
bleeding, and the balance between these processes will determine
the observed result. Due to the complexity of the simultaneous
processes taking place after the transfusion of PRBCs in vivo,
several authors examined the recovery of cell deformability
under in vitro conditions.

Key Factors Capable of Improving the Cell
Deformability
One of the critical reasons for improving PRBCs deformability
may be the restoration of the intracellular level of ATP, which
is significantly reduced during cold storage (Hess, 2014). And
although there are conflicting data (Weed et al., 1969; Karger
et al., 2012; Huisjes et al., 2018) on the relationship between
intracellular ATP content and RBC deformability, some authors
have tested the effectiveness of restoring the expected level of
ATP in reducing PRBC stiffness. Thus, Xu et al. (2019) examined
whether stiffness of PRBCs can be restored in human serum (at
temperatures below 37◦C) and the role of storage duration in this
process. Authors demonstrated that PRBCs could recover their
deformability and ATP concentration in human serum, with the
extent of recovery decreasing as a function of storage duration
(Xu et al., 2019). Moreover, the recovery processes took place on
a scale of tens (10 – 90 min) of minutes, and in the case of a more
extended storage period, a longer recovery was required.

Unlike, Barshtein et al. (2018a) and Xu et al. (2019) carried out
experiments in the Rejuvesol medium. This medium is a sterile,
non-pyrogenic aqueous solution of sodium pyruvate, inosine,
adenine, dibasic sodium phosphate, and monobasic sodium
phosphate being used for extracorporeal rejuvenation of PRBC
units. Rejuvenation is accomplished by incubating the contents
of one 50 mL vial of Rejuvesol with one unit of PRBC for 60 min
at 37◦C. PRBC rejuvenated before 6 days of storage may achieve
ATP levels over 1.5 times normal. Thus, Meyer et al. (2011)
conclude that Rejuvesol can restore ATP levels in PRBCs stored
up to 120 days in AS-1 or AS-3.

Frontiers in Physiology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 722896

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-722896 September 16, 2021 Time: 17:5 # 6

Barshtein et al. Deformability of RBC

Barshtein et al. (2014, 2018a) demonstrated that Rejuvesol
treatment causes partial repair of PRBC deformability and the
degree of reversal is inversely proportional to the extent of
damage, where some of the changes could no longer be reversed.
In contrast, D’Almeida et al. (2000) observed a complete (up to
the control levels) restoration of RBC deformability following
treatment of PRBCs with Rejuvesol.

Interim Conclusions
Thus, we can summarize that due to an increase in the
intracellular level of ATP, there is a complete or partial restoration
of PRBCs original deformability. The degree of recovery is
inversely proportional to the severity of damage sustained by
the erythrocytes during storage. The development of irreversible
changes in the deformability of PRBCs may be mainly associated
with the process of vesiculation (see below), which leads to
permanent alteration in the membrane composition/structure
and the shape of the cell.

CAUSAL RELATIONSHIP BETWEEN THE
RED CELL LESION AND THE DECREASE
IN ITS DEFORMABILITY

The cellular morphology, in addition to the surface/volume
ratio, membrane elasticity, and cytoplasmic viscosity, must be
considered the main factors affecting the red cell’s response
to deforming forces (Huisjes et al., 2018). Most of these
characteristics change at one stage or another during the cold
storage of PRBCs, increasing cell stiffness. In this section, we will
not go into a detailed discussion of specific mechanisms. Still,
we will rather attempt to outline a general cause-consequence
relationship between the biochemical/morphological properties
of PRBCs (that change during storage) and their deformability.

The Alteration of RBC Membrane
Composition/Structure During Cold
Storage
Among several hypotheses, the oxidative stress/free-radical
theory offers the best mechanistic explanation of in vitro aging
of erythrocytes (Pandey and Rizvi, 2010). Erythrocyte aging is
accompanied by the inactivation of cellular enzymes (including
the anti-oxidative defense enzymes) and many membrane
transporters (Bartosz, 1996). Storage conditions lead to (1) cell
shape changes from discocytes to spherocytes, (2) increased
density, (3) decreased volume, and (4) an increased membrane
fragility (Antosik et al., 2015). These alterations are induced
by conformational changes of cell proteins (such as band-
3, hemoglobin, and spectrin) and by the reduction in lipid
fluidity, which influences the cortex viscoelasticity and the
bilayer structure.

Comparative analysis of the membrane viscoelasticity of (1)
young RBC (discocytes) and (2) aged RBC (spherocytes) under
the same experimental conditions is shown in Figure 2. This
figure shows the frequency sweep data in accumulation and loss
moduli versus angular velocity extracted from microrheological

measurements (Amin et al., 2007; Park, 2007). Storage modulus
quantifies the storage energy, while the loss modulus quantifies
the energy dissipation caused by the cell membrane structural
changes under thermal fluctuations.

As follows from the given figure, spherocytes are characterized
by higher values of the storage modulus in comparison with
discocytes at the same angular velocities, which indicates a
greater stiffens of their membrane. In addition, for spherocytes,
higher values of the loss modulus (vs. the angular velocity)
were obtained and a decrease in the storage modulus (at
higher angular velocities), which indicates their more fragile
membrane compared to discocytes. Rheological response of
the RBC membrane under microrheological experiments can
be considered within three viscoelastic regimes depending on
angular velocity (i.e., corresponding time scale), as was shown
schematically in Figure 3.

The reduction in lipid fluidity, in its turn, is caused by
(1) lipid peroxidation (Lukyanenko et al., 2004) and (2)
phosphatidylserine (PS) externalization (Koshkaryev et al., 2020).
Koshkaryev et al. (2020) have outlined the inter-relations
between PS externalization and the rearrangement of band-3
molecules. The rearrangement of band-3 molecules influences
cortex viscoelasticity by reducing spectrin filaments’ flexibility
(Pajic-Lijakovic, 2015). This flexibility depends on the number of
attached band-3 molecules per single filament. Band-3 molecules
form two types of complexes: those in the form of tetramers
creating higher affinity complexes with ankyrin (dissociation
constant of ∼5 nM) (Tomishige et al., 1998; Kodippili et al.,
2012) and located near the center of the spectrin tetramers, and
those in the form of dimers, creating lower affinity complexes
with adducin (dissociation constant of ∼100 nM) (Franco
and Low, 2010; Kodippili et al., 2012). The rest of band-3
molecules (∼30%) exist as monomers that are freely mobile
under the isotonic conditions, as is the case of young erythrocytes
(Tomishige et al., 1998). This mobile fraction of band-3 is capable
of forming low-affinity complexes with spectrin.

Oxidative stress induces an increase in the volume fraction of
free band-3 molecules and their clustering during aging (Arese
et al., 2005). All types of band-3 subpopulations (through these
complexes) contribute to the spectrin conformational changes
by reducing its mobility, leading to the cortex stiffening (Pajic-
Lijakovic, 2015). Hemoglobin (Hb) molecules’ binding to band-3
also induces cortex stiffening, prominent in aged erythrocytes
(Kang et al., 2008). This phenomenon is induced by changing
the conformational and oxidative states of Hb molecules and
their clustering. The average initial Hb concentration for a
single intact erythrocyte is 7.3 mol/m3 (Delano, 1995). The
Hb concentration and the viscosity of its solution increase
with a decrease in the cell volume induced by aging. The
cell volume decreases by ∼15% for aged erythrocytes as a
result of (1) changes in the membrane viscoelasticity and (2)
reduction in the K+ outflow caused by inactivation of membrane
transporters (Nash and Meiselman, 1983). The K+ outflow
reduction leads to the loss of osmotic water and, as a result,
to dehydration of aged erythrocytes. The membrane structural
changes result in a decrease in zeta-potential from about −14
mV for young cells to about −10 mV in the aged ones
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FIGURE 2 | Storage and loss moduli vs. angular velocity for spherocytes and discocytes extracted from microrheological data published by Park (2007) and Amin
et al. (2007).

FIGURE 3 | Viscoelasticity of RBC obtained by the microrheological
measurements: Storage and loss moduli (G’ and G”) vs. angular velocity.

(Chen et al., 2007), with a feedback impact on the distribution of
band-3 and Hb molecules.

The spectrin inter-and intra-filament interactions, band-3
rearrangements, and lipid lateral movement under thermal
fluctuations influenced by the activity of ATP activity induce an
anomalous nature of energy dissipation quantified by fractional
derivatives (Pajic-Lijakovic, 2015). Betz et al. (2009) reported
that the membrane fluctuates as in thermodynamic equilibrium
(i.e., thermal fluctuations) at short timescales (lower than 100
ms). At longer timescales, the equilibrium breaks down, and
fluctuation amplitudes are higher by 40% than the membrane
equilibrium theory predicted. This increase of the amplitudes
was related to ATP activity. Sleep et al. (1999), Yoon et al. (2008),

Yoon et al. (2011), and Betz et al. (2009) reported that changes
in the non-linear cortex stiffening represent the consequence
of breaking of a fraction of actin-spectrin junctions during
the deformation process driven by ATP activity. ATP depleted
cells (echinocytes) are stiffer than discocytes for the same
angular velocities (Pajic-Lijakovic and Milivojevic, 2014). Pajic-
Lijakovic and Milivojevic (Pajic-Lijakovic and Milivojevic, 2014)
developed a constitutive model that accounts for: the cortex
viscoelasticity, bilayer viscoelasticity, and mechanical coupling
by considering the timescale from milliseconds to seconds.
They accounted for thermal fluctuations dominant at a short
timescale and ATP activity dominant at a long timescale
(Pajic-Lijakovic and Milivojevic, 2014). As defined by its shear
modulus, the age-induced cortex stiffening is quantified by
values one order of magnitude higher than those for young
cells. Consequently, intensive energy dissipation caused by
the cortex and the bilayer rearrangements in the young cells
is also quantified by values one order of magnitude higher
than those measured in the aged cells. The damping effects
caused by the membrane structural changes under thermal
fluctuations, which influence viscoelasticity, also increase cell
aging (Pajic-Lijakovic and Milivojevic, 2014).

Interim Conclusions
In this section, we have demonstrated that a change in the
conformational state of band-3 molecules, their clustering, and
space distribution (Antonelou et al., 2010; Bosman et al., 2010)
can be considered one of the main factors which influence
the viscoelasticity of the cortex and the lipid bilayer, leading
to a decrease in cell deformability that occurs during RBC
storage. We suggest that the reduction in deformability may
be due to the altered coupling between the actin-spectrin
cortex and the bilayer, which induces a change in membrane
organization with an increased PS exposure. Consequently,
(1) the distribution of band-3 molecules, (2) viscoelasticity of
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the cortex, and (3) viscoelasticity of the bilayer altered by
ATP activity cause an increase in cell stiffness. Thus, even
though we have a general understanding of the relationship
between the rearrangement of the membrane (induced by cold
storage) and the cell deformability, we still cannot propose a
relevant, complex causal model. Therefore, one of the obvious
goals of future experimental and numerical studies is to
create such a model.

Vesiculation of RBC Membranes During Cold Storage
Microvesicles generation is an integral part of the lesion of
RBCs during cold storage. These particles, 100 microns in size,
contain lipid raft proteins and oxidized or reactive signaling
components associated with senescent erythrocytes (Kriebardis
et al., 2008). Thus, vesiculation can contribute to removing
damaged areas of the membrane, which would otherwise lead
to accelerated phagocytosis of RBCs (Bosman et al., 2008;
Bosman, 2013).

Although the triggers and mechanisms of microvesicles
formation are mainly unknown, there is already a definite
view of the forces driving this process. Thus, Freitas Leal
et al. (2020) suggests that changes in the organization
of membranes, caused by the altered conformation of the
membrane protein, constitute the primary mechanism of
vesiculation, and precede changes in the organization of
lipids. Moreover, Salzer et al. (2008) demonstrated the role
of a stomatin-specific, raft-based process in storage-associated
vesiculation. The same authors propose a model of RBC
vesiculation under cold storage conditions, which considers the
raft-stabilizing properties of stomatin and the previously reported
storage-related changes in the cytoskeletal organization. At the
same time, it has been noted that the low temperature of cell
storage stimulates the aggregation of rafts. Microvesicle counts
in the RBCs bag are sensitive to the donor characteristics, unit-
processing methods, and storage duration (Almizraq et al., 2018;
Gamonet et al., 2020).

In this way, microvesicles generation may affect RBC
deformability via a dual mechanism: First, it is associated
with RBC cytoskeletal reorganization and loss of membrane
lipids and proteins such as stomatin and flotillin, which
influence the membrane viscoelasticity (Salzer et al., 2008;
Orbach et al., 2017). Second, the generation of EVs, which
are high in surface but low in volume, can be expected
to reduce RBC area-to-volume ratio, which in turn would
lead to an increase in the residual stress accumulation
within the membrane and to a decreased cell deformability
(Salzer and Prohaska, 2001; Baskurt and Meiselman, 2003;
Ciana et al., 2017).

Regardless of the possible mechanism of the cause-and-
effect interaction, the authors of three experimental studies
demonstrated a relationship between the concentration of
vesicles in a unit of PRBC and red cell deformability (Acker et al.,
2018; Almizraq et al., 2018; McVey et al., 2020). It is important
to emphasize that in the two cited publications, the studied blood
units were prepared using non-identical protocols, and different
techniques were implemented to characterize the deformation
of erythrocytes.

Interim Conclusions
The above research results indicate that during cold storage
of PRBCs, there is an intensive formation of microvesicles
(accumulated in the medium) of various sizes and compositions.
This phenomenon, leading, in particular, to a decrease in the cell
surface and a change in the membrane viscoelasticity, causes an
elevation of PRBC rigidity.

DEFORMABILITY OF CELLS AS A
QUALITY MARKER OF PRBCs

As noted above, the functionality of PRBCs from different
units varies greatly (Dern et al., 1966; Tarasev et al., 2014,
2015; Tzounakas et al., 2016; D’Alessandro et al., 2019),
leading to the significant difference in the effectiveness of
transfusion. Moreover, not all PRBC units provide identical
post-transfusion benefits (Barshtein et al., 2016, 2017; DeSimone
et al., 2020). In particular, transfused RBCs from some
units can function for long periods, while others are rapidly
eliminated from the recipient’s bloodstream (Bosman, 2013;
Dinkla et al., 2014; Tzounakas et al., 2016; Roussel et al., 2018).
This situation is highly undesirable for chronic transfusion
recipients because of potential adverse effects, such as iron
overload (Lal, 2020). Therefore, there is a need to develop
reliable biomarkers to attest to the quality of PRBCs and
to optimize the management of units stored in the blood
bank. The presence of such biomarker (s) will make it
possible to identify units containing RBCs capable of adequate
long-term functioning in the recipient’s bloodstream (Yedgar
et al., 2019). Furthermore, with the help of such biomarker
(s), it will be possible to identify those donors who can
consistently provide high-quality units and thus make significant
progress toward a transition to personal transfusion medicine
(Islamzada et al., 2020). A unit of PRBCs with higher
functionality can be highly beneficial for patients requiring
repeated, life-long transfusions (such as those suffering from
thalassemia or sickle cell anemia), in whom the reduction
in transfusion requirements (Barshtein et al., 2017) would
diminish the side effects associated with continuous blood-
products therapy.

For a long time, the storage duration of a blood unit was
regarded as the only criterion for PRBCs quality. However,
many researchers have questioned this statement (Matthews
et al., 2015; Sparrow, 2017; Roussel et al., 2018; Koch et al.,
2019; Yedgar et al., 2019). For example, Koch and colleagues
(Koch et al., 2019) conclude in their review that the storage
duration ("calendar age") is not an appropriate measure of
PRBCs quality and that "a functional measure of stored RBC
quality « real age » may be better than the calendar age." In
concordance with this opinion, Yedgar et al. (2019) suggested
that the hemodynamic functionality of erythrocytes, particularly
their deformability, can be used as a marker of PRBC quality
and as a critical indicator of RBC quality and post-transfusion
viability. In several additional publications, authors reach the
same conclusion (Cluitmans et al., 2014; Barshtein et al.,
2016, 2017; Roussel et al., 2018; Geekiyanage et al., 2020;
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Islamzada et al., 2020). Thus, by in vitro experiments, Piety
et al. (2021) demonstrated that small subpopulations of low-
deformable stored cells significantly decrease the ability of
PRBCs to traverse microfluidic networks and increase the
occurrence of plugging.

The most prevalent hypotheses for red cell clearance
mechanism(s) are the externalization of phosphatidylserine,
expression of neoantigens on RBC surface, and elevation of cells
rigidity (Thiagarajan et al., 2021). Red cells with greater than
normal stiffness have an increased chance of being eliminated
by the spleen (Cranston et al., 1984; Duez et al., 2015;
Klei et al., 2017; Safeukui et al., 2018), the main red cells
quality-controlling organ (Mebius and Kraal, 2005; Deplaine
et al., 2011). In addition, the stiffness of RBC has been
shown to serve as an indicator for macrophages to initiate
phagocytosis leading to RBC clearance (Fens et al., 2010;
Sosale et al., 2015).

The existence of a relationship between the deformability
of cells and their ability to pass through the spleen has
been shown using both numerical modelings (Li et al., 2018)
and in vitro (Deplaine et al., 2011) and ex vivo experiments
(Safeukui et al., 2018). However, since an elevation in RBC
rigidity is not the only reason that makes it difficult for
them to pass through thin slits (Thiagarajan et al., 2021),
the authors of several numerical (Pivkin et al., 2016; Li
et al., 2018) and in vitro (Deplaine et al., 2011) studies
discussed the specific weight of this factor. Thus, if not an
ultimatum criterion for cell survival, the deformability of cells is
undoubtedly an essential factor determining their clearance from
the bloodstream.

Moreover, several reports of clinical studies suggest that RBC
deformability may serve as a potential biomarker of various types
of red cell pathology (Saha et al., 2018; Farber et al., 2020; Lu et al.,
2020; Tan et al., 2020; Porro et al., 2021). However, as far as we
know, testing this hypothesis in a clinical setting has only recently
begun (Barshtein et al., 2016, 2017).

For example, Barshtein et al. (2016, 2017) have examined
the correlation between deformability of transfused PRBCs and
transfusion-related outcome for β-thalassemia major patients.
In this study, to characterize PRBC deformability, a cell flow
analyzer was used to measure the elongation index (under a
shear stress of 3.0 Pa) of individual cells and the distribution
of this parameter in the population of 6000–8000 cells. The
authors demonstrated that deformability of transfused PRBCs
define transfusion-related outcome (Barshtein et al., 2016, 2017).
Thus, the proportion of low-deformable cells was inversely
correlated to the transfusion-induced increment in hemoglobin
value (Barshtein et al., 2017) and improved recipient blood skin
flow (Barshtein et al., 2016).

Interim Conclusions
The above results indicate that cell deformability can be
implemented as a potential biomarker when assessing the
quality of PRBC units. This will allow the quality of each
collected unit of PRBC to be quantified. The introduction
of such an approach into the blood banking practice will
enable optimizing the process of inventorying units and

proceed toward a personal approach when selecting units
for each recipient.

LIMITATIONS

The number of publications on this topic is constantly growing,
and in the last decade, more than a hundred studies have
been published annually (PUBMED). Consequently, the review
presented here is not intended to cover the full range of
problems associated with PRBC deformation. We have focused
only on those aspects that seem to us to be the most
important for this issue.

In addition, we deliberately left out of the discussion of
methods used by different authors for determining the cell
deformation and their influence on the results obtained by them,
since this issue has been extensively covered in the literature
(Baskurt et al., 2009; Musielak, 2009; Nemeth et al., 2015; Depond
et al., 2019).

Still, despite the above limitations, we believe that our review
will allow the reader to get acquainted with the main directions of
research in the deformation of stored PRBCs and the key factors
that may regulate this function. In addition, we attempted to
outline some of the possible directions for future research in this
area. Moreover, our explicit intention was to draw attention to
the significance of the variability of cell deformability both among
donors and PRBC bags, stressing the controversy of the first-in-
first-out approach universally accepted in blood banking practice
for the management of stored PRBCs.

FUTURES PERSPECTIVES

The question of the effect of storage on cell deformability has a
long history. As mentioned above, research in this area began in
the mid-1980s. At present, with the advent of new approaches
(microfluidics) which enable us to determine the distribution
of deformability in the cell population (Relevy et al., 2008;
Guruprasad et al., 2019; Barshtein et al., 2020b; Islamzada et al.,
2020; Man et al., 2020), the scientific interest in this field has
increased. This led to an increase in the number of research
groups working in this area.

Most researchers observed a significant deterioration in cell
deformability after 2 to 3 weeks of storage (see Table 1). At
the same time, for several units, the stability of deformability
was observed throughout storage (Barshtein et al., 2020b;
Islamzada et al., 2020). There was also significant variability
in the deformability of the red cells, both between different
donors and between PRBC units. In addition, it was found that
the preparation of the PRBC unit causes an alteration in the
deformability of cells (Barshtein et al., 2020a).

The deformability of PRBCs is interesting not in themselves
but because of their physiological role (Cluitmans et al., 2014,
p. 26; Roussel et al., 2018, p. 57; Geekiyanage et al., 2020, p. 54;
Islamzada et al., 2020, p. 105; Islamzada et al., 2020, p. 34)
and how this feature affects the post-transfusion benefit of the
blood unit recipient. Thus, several researchers (Luten et al., 2008;
Bosman, 2013; Nagababu et al., 2016; Barshtein et al., 2017) have
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shown that cell deformability determines the removal rate TRBCs
from the recipient’s circulation after transfusion. This concept
was later strengthened by a study reported by Barshtein et al.
(2016, 2017), showing that RBC deformability and transfusion
outcomes in β-thalassemia patients are correlated.
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