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Environmental light that animal receives (i.e., photoperiod and light intensity) has recently

been shown that it affects avian central nervous system for the physiological responses

to the environment by up or downregulation of dopamine and serotonin activities, and

this, in turn, affects the reproductive function and stress-related behavior of birds. In

this study, the author speculated on the intriguing possibility that one of the proposed

avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the

dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for

the behavior and physiological responses of birds by light. Specifically, the author has

shown that the direct light perception of premammillary nucleus dopamine-melatonin

(PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although

further research is required to establish the functional role of Opn4 in the ventral tegmental

area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and

physiological responses of birds, it is an exciting prospect because the previous results

in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may

play significant roles on the light-induced welfare of birds.

Keywords: light, melanopsin (Opn4), premammillary nucleus, ventral tegmental area, raphe nucleus, dopamine,

serotonin, welfare

INTRODUCTION

Light perception and integration of photic information in the diurnal animals are critical for their
proper adaptation to the environment, and therefore, animals can respond to daily and annual
environmental change (Chmura et al., 2019; Hussein et al., 2021). Light plays a central role in
modulating animal behavior and is a critical environmental factor that can affect the physiological
processes, performance, and welfare of many animals and birds (Wilson and Cunningham, 1980;
Manser, 1996; Deep et al., 2010; Fernandes et al., 2013; Aulsebrook et al., 2021). The physiological
roles and effects of light include facilitating sight, regulating reproductive hormone release, and
affecting social behavior. The most visible physiological effects of light on birds are the effect of
photoperiod and light intensity on the seasonal reproduction, health, and behavior of birds (Deep
et al., 2010; Olanrewaju et al., 2018; ViviD and Bentley, 2018).

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.723454
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.723454&domain=pdf&date_stamp=2021-10-21
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:swkang@uark.edu
https://doi.org/10.3389/fphys.2021.723454
https://www.frontiersin.org/articles/10.3389/fphys.2021.723454/full


Kang Avian Melanopsin for Light Perception

Several studies provide evidence that light can affect the
central physiology of animals independent of retinal function
(Chiu et al., 1975; Routtenberg et al., 1978; Underwood et al.,
1984; Wade et al., 1988; Fernandes et al., 2013). In avian species,
photoperiodic synchronization is achieved independently of the
pineal melatonin through direct light perception by avian deep-
brain photoreceptors (DBPs), which project directly to the
median eminence near the pars tuberalis (PT) in the anterior
pituitary (Kang et al., 2010; Nakane et al., 2010; Chmura et al.,
2019). However, evidence is not available regarding the pathway
used by the photoperiodicmessage to reach the PT independently
of pineal melatonin in mammals. The melatonin-independent
photoperiodic entrainment of the annual thyroid-stimulating
hormone (TSH) rhythm was reported in the European hamster,
suggesting the presence of the non-visual DBPs in mammals
(Saenz De Miera et al., 2018). Interestingly, encephalopsin
(Opn3) was found to be expressed in different areas of the rodent
brain, indicating a potential role of Opn3 in the non-visual photic
process due to the changes in light (Blackshaw and Snyder, 1999;
Nissila et al., 2012).

The initiation of light-induced physiological change is
particularly important for diurnal animals such as mammals
and birds. However, those within the avian brain have not
been studied extensively. In this study, the author explored and
derived how non-visual photoreceptive cells in the avian brain
may connect to circuits controlling the aspects of feeding and
emotional behaviors, which will provide an intriguing perspective
on how environmental light can be a critical cue for the welfare
of birds.

EFFECT OF LIGHT ON THE BEHAVIOR
AND PHYSIOLOGY OF BIRDS

Light information characterizing the particular day length (i.e.,
photoperiod) and intensity can be stored within the organism
and subsequently used to provide time signals for the adjustments
of the physiological behavior of animals (Farner and Wingfield,
1980; Gwinner, 1989; Brandstatter et al., 2000). Animals must
be able to discriminate between short and long days to
perform photoperiodic time measurement. The differences of
circadian changes related to the reproductive activation between
mammals and avian species were well-reviewed by recent reports
(Ikegami and Yoshimura, 2013; Kuenzel et al., 2015; ViviD
and Bentley, 2018). In comparison with mammals, the avian
circadian pacemaking system seems to be more complicated,
being composed of at least three major components containing
autonomous circadian oscillators as follows: the pineal gland, the
retina, and a central nervous hypothalamic component possibly
equivalent to the mammalian suprachiasmatic nucleus (SCN).
The avian pineal organ contains photoreceptors with different
photopigments including melanopsin (Opn4, an opsin-based
photopigment), and synthesizes and secretes melatonin which is
regulated by light (Sato, 2001; Kang et al., 2007, 2010).

The effects of artificial light on wild birds are critical for
their various biological responses. Especially, artificial light at
night alters natural light/dark cycles to be problematic for

many avian species, suggesting that disrupting circadian rhythms
causes multiple direct and indirect physiological consequences
of birds because the unnatural sleep deprivation is associated
with cardiovascular disease and endocrine disruption and has a
profound effect on the circadian expression of genes associated
with the immune and stress response (Dominoni et al., 2016).

Light intensity has a significant effect on the behavior, diurnal
activity, and immune function of chickens (Blatchford et al.,
2009). When birds are in the higher light intensity, they show
a more dramatic circadian rhythm, spending more time active,
eating and drinking, walking, foraging, and preening during the
photophase (light), and resting more time during the scotophase
(dark) compared with birds kept at lower light intensities (Alvino
et al., 2009; Blatchford et al., 2009; Rault et al., 2017). The
rhythms of the multiunit neuronal activity in the premammillary
nucleus (PMM) of the caudal hypothalamus of temperate zone
bird were demonstrated to show the photoperiod-dependent
durations of high activity (Kang et al., 2007; El Halawani et al.,
2009). Moreover, in the follow-up confirmation study, low
light intensity (10 lux) could not activate PMM in the turkey
hypothalamus even in long-day photoperiod (Moore et al., 2018),
indicating that light intensity is also a key stimulant of initiation
of avian reproductive function as well as photoperiod in avian
species. Melanopsin (Opn4) is one of the DBPs which was
characterized in the PMM of female turkey (Kang et al., 2007,
2009, 2010; El Halawani et al., 2009; Leclerc et al., 2010).

AVIAN DBP Opn4 FOR LIGHT PERCEPTION

The primary system to detect avian photoperiodic information
has been thought to be non-retinal, non-pineal DBPs (Benoit
and Assenmacher, 1953; Menaker et al., 1970; Yokoyama et al.,
1978). Three DBPs (i.e., Opn4, Opsin 5, and Vertebrate ancient
opsin) were proposed in the avian brain that responds to
photoperiodic information affecting the onset and development
of the reproductive function, and all three types of DBPs appear
to be involved in priming the neuroendocrine system to activate
the reproductive functions of birds (Halford et al., 2009; Kang
et al., 2010; Nakane et al., 2010; Kang and Kuenzel, 2015). In this
study, the author focused only on Opn4.

Melanopsin (Opn4) was first discovered by Provencio et al.
(1998) in the photosensitive melanophores of Xenopus skin. In
situ hybridization studies demonstrated that Opn4 mRNA is
also expressed in other photosensitive tissues, such as the retina,
the magnocellular preoptic nucleus, and the SCN in the brain
(Brown and Robinson, 2004). Later, several studies make Opn4
an attractive candidate for circadian photopigment and non-
visual photic responses (Gooley et al., 2003; Hannibal et al., 2013).
In non-mammalian vertebrates, Opn4 has two isoforms, namely,
mammal-like Opn4m and Xenopus-like Opn4x (Bellingham
et al., 2006).

Avian Opn4 expression and functional role in the
photoperiodic activation of reproductive function were
reported in several avian species (Bailey and Cassone, 2005;
Kang et al., 2010; Potter et al., 2018; Nakane et al., 2019). A recent
study on Japanese quail showed the possible functional role of
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FIGURE 1 | Schematic drawings of rostral-to-caudal (A–E) coronal sections, showing the distribution of turkey Xenopus-like melanopsin (tOpn4x) expression labeled

neurons (filled circles) of the turkey hen. Coronal illustrations were drawn from an unpublished turkey brain atlas with nomenclature taken from a chicken atlas (Kuenzel

and Masson, 1988) and the revised nomenclature for avian brains (Reiner et al., 2004). Representative photomicrographs (F–J) showing the distribution of tOpn4x

mRNA labeled neurons in the PMM, VTA, nDBC, LoC, LC, and R (refer to the abbreviations given below). A specific tOpn4x cRNA probe was used for in situ

hybridization histochemistry (ISH). Darkfield photomicrographs of turkey brain sections processed for ISH with 33P-labeled tOpn4 antisense cRNA probes. Scale bar:

100µm (G,H,J), 200µm (F,I). The following abbreviations are used in the figure: Cb, cerebellum; DM, dorsomedial hypothalamic nucleus; MLF, medial longitudinal

fasciculus; GCt, mesencephalic central gray; Ipc, parvocellular nucleus Isthmi; Imc, magnocellular nucleus isthmi; IP, interpeduncular nucleus; LC, caudal linear

nucleus; LM, medial lemniscus; LoC, locus coeruleus; ML, lateral mammillary nucleus; nBOR, nucleus of the basal optic root; nDBC, nucleus decussationis

brachiorum conjunctivorum; NIII, third cranial nerve; nTS, nucleus of the solitary tract; Ov, nucleus ovoidalis; PD, pars distalis; PH, plexus of Horsley; PL, lateral

pontine nuclei; PMM, premammillary nucleus; R, raphe nucleus; Rpc, parvocellular reticular nucleus; Rt, nucleus rotundus; Ru, nucleus ruber; SCv, nucleus

subcoeruleus ventralis; TrO, tractus opticus; VTA, ventral tegmental area (Modified from Kang et al., 2010).

Opn4 in the mediobasal hypothalamus by evaluating an action
spectrum for the expression of photoperiodically controlled beta
subunit of TSH in the PT of the pituitary gland (Nakane et al.,
2019). Interestingly, it has been suggested that Opn4 may have
additional physiological roles beyond the reproductive system in
the Pekin duck (Van Wyk and Frakey, 2021).

In mammals, specific populations within PMM were
genetically defined as dopaminergic (DAergic) neurons and
activated in specific social contexts and functions via glutamate
release to regulate social interactions; moreover, mammalian
PMM has a projection of the catecholaminergic input from locus
coeruleus (LoC) (Sobrinho and Canteras, 2011; Soden et al.,
2016).

Avian PMM neurons co-express both dopamine and
melatonin (DA-MEL, Kang et al., 2007) and are activated by
light provided during the photosensitive phase for reproductive
stimulation (Thayananuphat et al., 2007b). The regulation of
rhythmic DAergic/melatoninergic (MELergic) activity may
involve clock genes, which localize and cycle rhythmically
within DA/MEL neurons (Leclerc et al., 2010). Moreover, light
pulses that are provided during the photosensitive phase for
reproductive stimulation activate these neurons, as indicated
by the induction of c-fos (Thayananuphat et al., 2007a) and
the upregulation of Cry1 and Per3 genes (Leclerc et al., 2010).

Dopamine and MEL expressing neurons of avian PMM have
been shown to have dual functionality, which consists of sensory
of light information by Opn4 and neurosecretory functions by
the diurnal activities of DA and MEL (Kang et al., 2007, 2009,
2010; Figures 1A,F), suggesting that PMM may be a conserved
dual sensory-neurosecretory unit in avian species as suggested in
the lower vertebrates (Tessmar-Raible et al., 2007; Conzelmann
et al., 2013).

Opn4 EXPRESSION IN THE
DOPAMINERGIC AND SEROTONERGIC
NUCLEI AND ITS POSSIBLE ROLES IN THE
WELFARE OF BIRDS

Photoreceptor Opn4 was observed in the brain areas that
are associated with DA and serotonin [5-hydroxytryptamine
(5-HT)] in birds (Kang et al., 2010), which were not
appreciated hitherto (Figures 1B–E,G–J). It may be of interest
to speculate that direct light perception may be involved in
the physiological function of DA and 5-HT neurons in the
avian brain. Light-induced feed intake in birds may be directly
stimulated by central Opn4 because tryptophan hydroxylase
2 (TPH2: rate-limiting enzyme of serotonin biosynthesis) in

Frontiers in Physiology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 723454

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kang Avian Melanopsin for Light Perception

the dorsal raphe nucleus (DRN) is also associated with food
intake and energy balance (Flores et al., 2018; Liu et al.,
2021).

Dopamine is predominantly synthesized in the ventral
tegmental area (VTA) and substantia nigra (SN) of the
midbrain. Dopaminergic neurons in the VTA integrate complex
inputs to convert multiple signals that influence motivated
behaviors via various neural projections underlying the different
functions of these neurons in psychological processes and
brain diseases (Beier et al., 2015; Bouarab et al., 2019). In
mammals, the important roles of DA neurons were discovered
in numerous behavioral or psychological processes other than
rewards, such as aversion, depression, fear, social behavior,
stress, and movement coordination (Pani et al., 2000; Bromberg-
Martin et al., 2010; Zweifel et al., 2011; Lammel et al.,
2012; Chaudhury et al., 2013; Matsumoto and Takada, 2013;
Friedman et al., 2014; Walsh et al., 2014; Grace, 2016; Holly
and Miczek, 2016). The major brain structures associated
with positive emotion are the amygdala complex and nucleus
accumbens (Janak and Tye, 2015). Importantly, the nucleus
accumbens is the terminal site of the DAergic mesolimbic
axis originating in the VTA (Ikemoto, 2007; Holly and
Miczek, 2016). Ventral tegmental area neurons have long
been implicated in feeding behaviors, and major neurons
are DAergic neurons (about 60% of VTA neurons) (Ungless
and Grace, 2012; Meye and Adan, 2014). In addition to
DAergic neurons, VTA also contains gamma-aminobutyric acid
(GABA) and glutamate neurons that account for about 35
and 2–3% of VTA neurons, respectively (Nair-Roberts et al.,
2008; Taylor et al., 2014; Miranda-Barrientos et al., 2021).
Besides DA, GABA, and glutamate neurons, several studies
reported serotonergic (5-HTergic) neurons in the VTA of
mammalian and avian brains (Kang et al., 2009; Carkaci-Salli
et al., 2011; Morales and Margolis, 2017; Smith et al., 2019).
Interestingly, the optogenetic activation of VTA GABAergic
neurons stimulates food intake and anxiety-like behavior in mice
(Chen et al., 2020).

The avian VTA contains cell bodies that label positively
for tyrosine hydroxylase (TH; the rate-limiting enzyme
in catecholamine biosynthesis) but not DA-β-hydroxylase
(which is involved in converting DA to norepinephrine),
indicating that the major population of avian VTA is DAergic
neurons (Kang et al., 2009, Figure 2). The electrophysiological
and pharmacological properties of VTA neurons have been
studied using whole-cell recordings in the brain slices of birds
(zebra finch) (Gale and Perkel, 2006), showing that zebra
finch VTA DAergic neurons possess physiological properties
very similar to those of mammalian DAergic neurons and
also contain non-DAergic neurons similar to GABAergic
neurons in the mammalian VTA. In addition, avian VTA
DAergic neurons densely innervate the striatal areas of
the basal ganglia and project more moderately to several
other regions of the telencephalon, and the pharmacological
agents and lesions targeting the DAergic system have many
similar behavioral effects in birds and mammals (Durstewitz
et al., 1999). Therefore, these results provide strong evidence
for anatomical, physiological, and functional similarities

FIGURE 2 | Schematic overview of extraocular light perception in the midbrain

and brain stem of avian species for the physiological response. The following

abbreviations are used in the figure: 5-HT, serotonin; DA, dopamine; CRN,

caudal raphe nucleus; DRN, dorsal raphe nucleus; n, neuron; PMM,

premammillary nucleus; VTA, ventral tegmental area.

between the VTA DAergic systems of mammals and birds
(Gale and Perkel, 2006).

The distribution of 5-HT immunoreactivity and TPH2mRNA
expression was reported in the avian brain such as VTA,
DRN, and caudal raphe nucleus (CRN) (Cozzi et al., 1991;
Challet et al., 1996; Kang et al., 2009). The presence of TPH2-
positive neurons in the VTA may provide an area of further
investigation involving interactions between 5-HTergic and
DAergic systems within the VTA (Carkaci-Salli et al., 2011).
Serotonin is one of the main neurotransmitters to regulate
the parasympathetic nervous system (PNS) and is involved in
emotional states caused by stress, pain, or the availability of
food (Chamas et al., 1999; Mosienko et al., 2012), while DA
acts on the sympathetic nervous system (SNS). Serotonergic
neurons can be identified based on the presence of TPH2
mRNA expression, and thereby the TPH2 expression levels can
be used as a specific marker for 5-HT generation (Chamas
et al., 1999; Kang et al., 2009, 2020; Carkaci-Salli et al.,
2011; Liu et al., 2021). The DRN is a heterogeneous brain
stem nucleus located in the midbrain and pons, which is
involved in the control of various physiological functions,
such as learning and memory (Michelsen et al., 2008). The
most abundant neurotransmitter in the DRN is serotonin,
and the TPH2 mRNA expression was observed in the avian
DRN such as nucleus decussationis brachiorum conjunctivorum
(nDBC), LoC, and caudal linear nucleus (LC) (Kang et al., 2009,
Figure 2).
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The presence of both DA and 5-HT systems in the VTA
indicates that avian VTA is the critical area of the midbrain
involved in the welfare of avian species (Kang et al., 2009,
2020; Carkaci-Salli et al., 2011). Several studies have proposed
that DA and 5-HT could serve as positive indicators of animal
welfare (Algers et al., 2007; Boissy et al., 2007; Polter and
Kauer, 2014). Stress and negative experience alter the 5-HT
metabolism in the brain by stimulating 5-HT turnover in the
areas innervated by 5-HTergic neurons (Clement et al., 1993;
Inoue et al., 1994; Amat et al., 1998). In mammals, repeated
immobilization stress increased the TPH2 gene expression
levels in the raphe nuclei of the brain stem (Chamas et al.,
1999; Walther et al., 2003), indicating the elevation of 5-HT
metabolism. In the recent study of DA and 5-HT activity,
5-HTergic and DAergic activities respond differently to light
intensity and light intensity preference, and these results
suggest the beneficial effects of dual intensity lighting program
on the protection of the central nervous system of birds
(Kang et al., 2020).

PERSPECTIVE

Animals explore their surroundings to secure resources such as
food, water, and shelter, and the regulation of their reproductive
system for producing offspring depends on the environment
day-and-night light condition.

The data discussed in this study and the previous light
intensity study (Kang et al., 2020) suggest the possible roles
of Opn4 in the VTA and DRN/CRN on the direct light
perception for the physiological responses of birds such as

feeding behavior and welfare. Although this observation
makes the hypothesis that Opn4 is a positive candidate
photoreceptor associated with direct light perception in
the ancient brain (i.e., hypothalamus and brain stem) of
birds, the functional role of Opn4 should be tested in the
future study.
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