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Solving optimization problems is a recurrent theme across different fields, including

large-scale machine learning systems and deep learning. Often in practical applications,

we encounter objective functions where the Hessian is ill-conditioned, which precludes

us from using optimization algorithms utilizing second-order information. In this paper, we

propose to use fractional time series analysis methods that have successfully been used

to model neurophysiological processes in order to circumvent this issue. In particular,

the long memory property of fractional time series exhibiting non-exponential power-law

decay of trajectories seems to model behavior associated with the local curvature of the

objective function at a given point. Specifically, we propose a NEuro-inspired Optimization

(NEO) method that leverages this behavior, which contrasts with the short memory

characteristics of currently used methods (e.g., gradient descent and heavy-ball). We

provide evidence of the efficacy of the proposed method on a wide variety of settings

implicitly found in practice.

Keywords: optimization, time series processes, iterative optimization algorithms, long memory time series,

fractional calculus

1. INTRODUCTION

Many problems in today’s world can bemodeled as optimization problems where we seek to find the
solution to an unconstrained optimization problem with an objective function f :Rn → R (Bishop,
2006; Sra et al., 2012), which is a real-valued function of n real variables. For instance, in a learning
problem, we aim to minimize a loss index that measures the performance of a neural network
(NN) on a data set. Often, the loss index is composed of an error term and a regularization term
that evaluates how well the NN fits the data set and discourages overfitting, respectively (Scholkopf
and Smola, 2001). Besides controlling overfitting, the regularization term can also be designed to
control the complexity of a NN, e.g., by reducing the number of non-zero weights w ∈ R

n (LeCun
and Bengio, 1995).

Notwithstanding the above, most optimization problems do not possess numerically viable
closed-form solutions (Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006). Furthermore,
due to the ever-increasing dimensionality of data used to test a variety of optimization problems,
iterative algorithms need to be employed to attain an approximate solution. At the core of the
iterative algorithms, we can commonly find three key ingredients (Bertsekas, 1997; Nocedal and
Wright, 2006): (i) a descent direction d ∈ R

n, (ii) a learning rate (or, step) α ∈ R; and (iii) local
spatial information across different variables (i.e., w ∈ R

n). In a nutshell, the iterative algorithms
can be written as

wk+1 = wk + αkdk, k = 0, 1, . . . , (1)
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where the descent direction dk ∈ R
n and the step αk ∈ R might

change over time step k. Descent directions can be computed
using one of the following options:

• Gradient descent, dk = −∇f (wk), where ∇ denotes the
first-order derivative (Nocedal and Wright, 2006);
• Stochastic gradient descent, dk = −∇̃f (wk), where sampled

points and the approximate notion of the derivative are used to
determine a possible descent direction and where ∇̃ represents
the first-order derivative calculated from either a single point
in the data set or an arbitrarily selected subset of the entire
data set (an approach referred to in the literature as mini-
batch, Saad, 2009);
• Newton’s method, dk = −(Hf (wk))

−1∇f (wk), where Hf (wk)
denotes the Hessian matrix at wk, i.e., the second-order
derivative (Boyd and Vandenberghe, 2004); and
• Quasi-Newton methods, dk = −B−1k

∇f (wk), where the B
is an approximation of the Hessian matrix, e.g., using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Dennis
and Schnabel, 1996).

Simply speaking, the second-order derivative captures (local)
spatial properties of the function through its cross-derivatives
and geometrically corresponds to a quadratic function
approximation of the function that we are optimizing.
Subsequently, first-order iterative methods (e.g., gradient descent
and stochastic gradient descent) are slower than second-order
iterative methods (e.g., Newton and quasi-Newton) but require
less computational power and memory storage. Recent literature
in this direction has been largely focused on the hybridization of
these techniques in context-based scenarios (Schraudolph et al.,
2007; Roux et al., 2012; Johnson and Zhang, 2013; Cevher et al.,
2014; Defazio et al., 2014; Byrd et al., 2016; Moritz et al., 2016;
Rodomanov and Kropotov, 2016; Zhang and Gu, 2016; Mokhtari
et al., 2018; Paternain et al., 2019).

An alternative to speeding up the convergence while not
resorting to second-order methods is to consider memory in the
iterative process. Specifically, consider

wk+1 = wk + αkdk +m(wk−1, . . . ,wk−T), k = 0, 1, . . . , (2)

where m :R
n×T → R

n is a function of the previous
instances of the parameters up to T time steps in the past. A
particular case is the so-called heavy-ball method proposed by
Polyak (Polyak, 1964) that builds on momentum-based physical
intuition (that actually might not converge, Lessard et al., 2016)
and later made more formal by Nesterov in today’s celebrated
accelerated convergence methods (Nesterov, 2013). Nesterov’s
proof techniques abandoned physical intuition and devised
the method of estimate sequences to verify the correctness
of these momentum-based methods. Nonetheless, researchers
have struggled to understand the foundations and scope of the
estimate sequence methodology since the proof techniques are
often viewed as “algebraic tricks” that are only applicable to some
classes of functions.

Consequently, a more complete arsenal of tools is needed to
understand the convergence of first-order methods that consider
memory. To address this issue, recent literature has leveraged

insights and tools available in dynamical systems theory, as, in
the limit, the iterative algorithm is a dynamical system in which
evolution is described by ordinary differential equations (Su et al.,
2014; Hardt et al., 2016; Lessard et al., 2016; Wilson et al., 2016;
Hu and Lessard, 2017; Fazlyab et al., 2018; Zhang et al., 2019).
These accelerated methods are also often driven by an exogenous
signal (or control input) that regulates both the asymptotic
convergence to the minimum and also the convergence rate.

In this paper, we seek to leverage fractional-order
calculus (Oldham and Spanier, 1974; Baleanu et al., 2011,
2012; Ortigueira, 2011) to develop a new iterative optimization
algorithm. Fractional derivatives and fractional-order processes
have been widely used to model phenomena having long-term
memory in the context of neurophysiological data (Lundstrom
et al., 2008; Xue et al., 2016). Additionally, autoregressive
fractionally integrated moving average (ARFIMA) time
series processes are successfully able to model and explain a
wide variety of biological phenomena (Ionescu et al., 2017),
particularly phenomena with long-term memory and power
law dependence of trajectories (Miller et al., 2009), and have
been used in contexts such as the prediction and forecasting
of financial market data (Bukhari et al., 2020). We are inspired
by the recent spate of successes that fractional-order based
models have enjoyed in the context of neuronal data (Teka et al.,
2014) as well as increasing evidence presented to explain the
intricate relationships between the neural-like architectures used
with great success in deep learning and their relationships with
systems neuroscience (Richards et al., 2019).

Consequently, we propose a novel iterative method termed as
NEO (NEuro-inspired Optimization). At each step, NEO models
the local evolution (i.e., determines the ARFIMA model that
best describes the local curvature) and takes the argument that
attains the lowest predicted values as the next iteration point.
We provide the proof of convergence of the proposed method
and numerical evidence of the efficacy of NEO on a variety of
problem settings implicitly found in practice. Additionally, we
notice that NEO only requires the values of the objective at the
points, without the need to compute derivatives, and without the
explicit need to tune a step size. Furthermore, our simulations
suggest that the major advantages of NEO lie in cases where
the Hessian is ill-conditioned, which is particularly important in
the context of several real-world problems, for instance, neural
networks (Saarinen et al., 1993).

2. FRACTIONALLY INTEGRATED TIME
SERIES PROCESSES

A class of stationary long-term processes zt modeled as
autoregressive fractionally integrated moving average (ARFIMA)
processes are described by

φ(B)(1− B)dzt = θ(B)at , (3)

for d ∈ R, d being the fractional differencing parameter. Here, at
is a white noise sequence having zeromean and bounded variance
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σ 2
a , the polynomial equations

φ(B) = 1−
p∑

i=1
φiB

i = 0 (4)

and

θ(B) = 1+
q∑

i=1
θiB

i = 0 (5)

have roots that are greater than unity in absolute value, and B is
the backward shift operator with the property Bmzt = zt−m. The
general form of the processes that can be represented using (3)
are called ARFIMA(p, d, q) processes (Box et al., 2015).

For d > −1, we can employ the binomial expansion formula
to explicitly expand the operator (1− B)d as

(1− B)d =
∞∑

j=0
πjB

j, (6)

with π0 = 1, and πj = Ŵ(j−d)
Ŵ(j+1)Ŵ(−d) , j = 1, 2, . . . , with

Ŵ(·) being the Gamma function defined byŴ(x) =
∫∞
0 sx−1e−s ds

for all complex numbers x with R(x) > 0. We note that the
weighting coefficients πj can be defined recursively in j. Further,

even though the binomial expansion of the operator (1 − B)d

consists of an infinite number of terms, in practice we will always
consider an approximation that still preserves the dependency of
parameters described.

More generally, ARFIMA processes can generalize ordinary
autoregressive moving average (ARMA) models in the following
way. Given a time series, we can carry out the following steps to
obtain the parameters in (1):

• Apply fractional differencing on the original time series and
note the order of the fractional difference d thatmakes the time
series (close to) wide-sense stationary;
• Determine the ARMA parameters p, q, {φi}

p
i=1, and {θi}

q
i=1

using the (fractionally) differentiated time series;
• Perform a forecast for a requisite number of steps ahead in

time with these ARMA terms; and;
• Fractionally integrate the forecasted ARMA data to obtain

the forecast of the ARFIMA process. Note that fractional
integration may be interpreted as fractional differentiation but
with a fractional differencing parameter of−d.

3. THE NEURO-INSPIRED OPTIMIZATION
(NEO) METHOD

In what follows, we outline the details of the NEO iterative
optimization method that seeks to determine the solution to an
unconstrained optimization problem. At each step, NEO models
the local evolution (i.e., determines the ARFIMAmodel that best
describes the local curvature) and takes the argument that attains
the lowest predicted values as the next iteration point.

In order to develop the intuition about the NEO method, let
us consider a pedagogical example – i.e., we seek to determine

the solution to the following unidimensional unconstrained
optimization problem

x⋆ = argmin
x∈R

x2. (7)

Furthermore, let us consider an initial point x0, and let us
generate a time series that considers a discretization step h > 0,
the number of steps of memory P ∈ N, and the corresponding
functional values f (x0), f (x0 − h), . . . , f (x0 − (P− 1)h). Next, we
investigate the sample autocorrelation function (sACF) obtained
from the aforementioned values. The sACF profile is shown
in Figure 1. First, we notice that the sample autocorrelation
function (sACF) obtained from the aforementioned values and
depicted in Figure 1 suggests slower than exponential algebraic
decay and statistically significant (for a significance level of
5%) dependency on past lags, with a large area enclosed
by the composite sACF curve and the horizontal axis. This
suggests that the ARFIMA(p, d, q) processes described above
can successfully predict the behavior of the functional values
obtained. Furthermore, although the dependency on past lags is
shown here for a quadratic function, other functions will exhibit
similar behaviors, which are likely associated with properties
related to the local curvature of the objective function at any
given point. As such, we can use the determined (or learned)
ARFIMA(p, d, q) model to predict the values that the function
will take in a ‘descending direction’ to then consider the
argument that attains the lowest predicted value. Then, we take
the value of this argument as the initial point and proceed
similarly to the above-mentioned point until a desirable stopping
criterion is attained. It is worth mentioning that while using
ARFIMA(p, d, q) processes, we do not explicitly need to know the
function f (·), but instead, only the functional values.

NEO is described in its general form in Algorithm 1

and a schematic overview is presented in Figure 2 for the
unidimensional unconstrained case, which can be applied to
solve multiple dimensional problems as well by iteratively
running it over each individual dimension. In what follows,
the steps corresponding to the NEO method are described in
more detail.

First, we consider the pre-specified values of p and q along
with the Whittle estimation procedure (Whittle, 1961) (see
details in the Appendix in the Supplementary Material) to find
the fractional differencing parameter d and the autoregressive
and moving average coefficients {φi}

p
i=1 and {θi}

q
i=1, respectively,

from the functional values f (xk), f (xk − h), . . . , f (xk − (P − 1)h),
for k = 0, 1, 2, . . .. From numerical experimentation, particularly
the one presented in Figure 1, we can see from the sACF of the
functional values that the latter are correlated over time, which is
then directly associated with the curvature of the function in the
optimization landscape.

Next, we employ the above estimated parameters to perform
an ARFIMA time series prediction, P′ steps into the future, in
order to obtain the time series y1, y2, . . . , yP′ . As depicted in
the Figure 2, we find that our ARFIMA time series predictions
are limited in their predictive capabilities since they can only
capture information about the local behavior of the function
upto a certain finite number of time steps into the future. Since
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FIGURE 1 | sACF plot of the functional values f (x0), f (x0 − h), . . . , f (x0 − (P− 1)h), with f (x) = x2, x0 = −1, P = 500, and h = 0.01.

FIGURE 2 | Schematic representation of the NEO method. (1) The functional values f (x0), f (x0 − h), . . . , f (x0 − (P− 1)h), with pre-specified values of x0,P, and h, used

by the Whittle estimator. (2) The Whittle estimator, which takes the aforementioned values as input and outputs the fractional differencing parameter d and the

autoregressive and moving average coefficients {φi}pi=1 and {θi}qi=1, respectively. (3) The ARFIMA time series predictor, which predicts P′ steps into the future. (4)

Illustration of the largest possible value of P′′ ≤ P′, such that P′′ satisfies y1 ≥ y2 ≥ . . . ≥ yP′′ ≤ yP′′+1. (5) Update step for the iterate xk .

many descent methods in the optimization literature require us
to satisfy f (xk+1) ≤ f (xk), we select the largest possible value of
P′′ ≤ P′, such that P′′ satisfies y1 ≥ y2 ≥ . . . ≥ yP′′ ≤ yP′′+1. If, at
this stage, f (xk + P′′h) > f (xk), we update the discretization step
h by h/2 until the condition f (xk+P′′h) ≤ f (xk) is satisfied. Once
that is obtained, we update the current iterate as

xk+1 =

{
xk + P′′h, if f (xk + P′′h) ≤ f (xk)

xk − P′′h, if f (xk − P′′h) ≤ f (xk)
. (8)

The method terminates when |f (xk+1) − f (xk)| ≤ ε, where
ε ∈ R

+ is a specified tolerance.

4. SIMULATION RESULTS

In this section, we generalize the NEO method shown
for unidimensional problems in Algorithm 1 to
two-dimensional problems.
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FIGURE 3 | (Left) Steps taken in the two-dimensional plane when the NEO method is used to find the global minimum of the function f (x, y) = x2 + 0.01y2. The initial

point (denoted by the red asterisk) x0 is arbitrarily selected on the unit circle. We use ARFIMA(4,d, 0) time series predictions. (Right) The initial point (denoted by the

red asterisk) x0 = [1/2
√
3/2]T. We use ARFIMA(4,d, 0) time series predictions and use a constant value of d averaged out after the first 10 iterations of the method.

Algorithm 1: The NEO method for unidimensional
unconstrained optimization problems.

Result: Finding the global minimum x⋆ of a unidimensional
unconstrained optimization problem
x⋆ = argminx∈R f (x)

Initialize x0, P, h, P
′, ε, p, q;

while |f (xk+1)− f (xk)| > ε do
For each point xk, k = 0, 1, 2, . . ., obtain the functional
values f (xk), f (xk − h), . . . , f (xk − (P − 1)h);
Use the functional values
f (xk), f (xk − h), . . . , f (xk − (P − 1)h), the autoregressive
parameter p, and the moving average parameter q, in
order to estimate the fractional differencing parameter d
using the Whittle estimation method;
Perform an ARFIMA(p, d, q) time series prediction P′

steps into the future, in order to obtain the time series
values y1, y2, . . . , yP′ ;
Obtain the largest possible P′′ ≤ P′ that satisfies
y1 ≥ y2 ≥ . . . ≥ yP′′ ≤ yP′′+1;
while f (xk + P′′h) > f (xk) do

h← h/2 ;
end

if f (xk + P′′h) ≤ f (xk) then
xk+1 ← xk + P′′h ;

else if f (xk − P′′h) ≤ f (xk) then
xk+1 ← xk − P′′h ;

end

4.1. Results on Two-Dimensional
Optimization Problems
In the first example, we show the performance of our method in
finding the global minimum of the function f (x, y) = x2+ 0.01y2

in Figure 3 (left). The starting point x0, denoted by the red
asterisk, is chosen to be an arbitrary point on the unit circle.
Convergence is obtained in 56 iterations using ARFIMA(4, d, 0)
time series predictions. We use P = 100 steps of memory and
an initial grid discretization step of h = 0.01, settings we will
preserve for the remainder of the paper.

We also consider the problem setting where we use our
method in order to find the global minimum of the functions
f (x, y) = xTQx, with x = [x y]T and Q = diag(1, κ), with κ ∈
{1, 0.1, 0.01, 0.001}. For each case, we use 12 different equispaced
starting points initialized on the unit circle. To highlight the
differences, we compare our approach against gradient descent
implemented with inexact backtracking line search (Bertsekas,
1997; Nocedal and Wright, 2006), which we use to tune the step
size of gradient descent. The results, in terms of iterations taken
to convergence as well as running time averaged over the entire
run, are provided in Table 1.

We see from Table 1 that significant advantages are gained
by using our approach for more ill-conditioned optimization
problems, i.e., functions with a lower value of κ . Specifically, our
method performs better where small changes in the inputs to
the function cause significant changes to the functional value,
owing to the function being very sensitive to its inputs. From
the comparative study, we also note that with our approach, we
have done away with the need to have a step size as an integral
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TABLE 1 | Iterations taken to convergence to find the minimum of f (x, y) = x2 + κy2 with 12 different starting points x0 initialized on the unit circle, given by

x0 = [cos θ sin θ ]T , for values of κ in the set {1, 0.1, 0.01, 0.001}, for the NEO method vs. gradient descent (GD) implemented with inexact backtracking line search (for the

same starting point in each row). ARFIMA(4,d, 0) time series predictions are used in our method for each case.

θ Iterations for NEO Time for NEO Sys. Id. (s) Time for NEO (s) Iterations for GD Time for GD (s)

κ = 1 π/6 24 5.3050e− 01 6.6400e− 05 3 3.2000e− 03

π/3 24 9.2580e− 01 5.7020e− 04 3 3.7000e− 03

π/2 22 7.0860e− 01 3.0400e− 05 3 4.2000e− 03

2π/3 9 6.3920e− 01 6.3700e− 05 30 9.6000e− 03

5π/6 51 6.5400e− 01 7.2700e− 05 3 3.9000e− 03

π 50 5.4640e− 01 2.9600e− 05 3 4.1000e− 03

7π/6 68 5.4910e− 01 5.9800e− 05 3 5.7000e− 03

4π/3 68 4.6320e− 01 6.4600e− 05 3 3.5000e− 03

3π/2 50 7.2680e− 01 3.0700e− 05 3 6.1000e− 03

5π/3 51 6.1120e− 01 8.9000e− 05 3 3.9000e− 03

11π/6 42 5.8540e− 01 6.6900e− 05 3 4.1000e− 03

2π 5 5.8140e− 01 2.7930e− 04 3 3.7000e− 03

κ = 0.1 π/6 39 3.5680e− 01 1.2690e− 04 24 7.4000e− 03

π/3 44 5.5990e− 01 8.6200e− 05 26 7.7000e− 03

π/2 21 7.1380e− 01 6.6500e− 05 25 8.9000e− 03

2π/3 56 3.1770e− 01 6.1500e− 05 26 5.6000e− 03

5π/6 84 8.2920e− 01 9.4500e− 05 24 6.5000e− 03

π 50 4.5560e− 01 4.4100e− 05 30 6.0000e− 03

7π/6 68 4.0790e− 01 6.3800e− 05 24 7.1000e− 03

4π/3 68 4.9120e− 01 9.6300e− 05 26 5.7000e− 03

3π/2 50 3.9610e− 01 4.0700e− 05 25 6.1000e− 03

5π/3 51 3.7460e− 01 1.2800e− 04 26 6.7000e− 03

11π/6 42 4.9560e− 01 8.6100e− 05 24 7.9000e− 03

2π 14 4.3690e− 01 6.3250e− 04 30 6.5000e− 03

κ = 0.01 π/6 37 4.1270e− 01 6.4600e− 05 459 2.0000e− 03

π/3 37 3.5440e− 01 2.4000e− 03 486 1.0400e− 02

π/2 38 3.4640e− 01 3.4800e− 05 492 7.7000e− 03

2π/3 35 2.9140e− 01 8.2900e− 05 486 1.0800e− 02

5π/6 64 2.4370e− 01 1.1600e− 04 459 7.8000e− 03

π 50 3.8860e− 01 3.1900e− 05 60 5.9000e− 03

7π/6 64 3.5810e− 01 1.0760e− 04 459 8.000e− 03

4π/3 33 4.2200e− 01 1.5310e− 04 486 6.3000e− 03

3π/2 24 4.9150e− 01 3.0500e− 05 492 6.5000e− 03

5π/3 40 8.0420e− 01 6.0420e− 04 486 8.7000e− 03

11π/6 47 5.2720e− 01 6.2600e− 05 459 8.000e− 03

2π 2 3.7580e− 01 7.1330e− 04 60 7.3000e− 03

κ = 0.001 π/6 41 3.4880e− 01 7.3300e− 05 3453 1.4600e− 02

π/3 44 3.5140e− 01 9.1600e− 05 3728 1.8700e− 02

π/2 42 5.5600e− 01 2.9800e− 05 3798 1.5800e− 02

2π/3 55 3.5600e− 01 6.5300e− 05 3728 1.9800e− 02

5π/6 67 4.7020e− 01 6.6900e− 05 3453 1.3100e− 02

π 50 3.2680e− 01 1.1030e− 04 60 5.8000e− 03

7π/6 58 7.9010e− 01 5.6100e− 05 3453 1.5100e− 02

4π/3 58 2.9740e− 01 8.5100e− 05 3728 1.7800e− 02

3π/2 37 3.4430e− 01 3.4900e− 05 3798 1.3600e− 02

5π/3 51 4.2040e− 01 7.6490e− 04 3728 1.6800e− 02

11π/6 43 3.1390e− 01 9.0800e− 04 3453 1.1100e− 02

2π 5 3.6100e− 01 2.9000e− 03 60 9.2000e− 03
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component of our method, thus reducing the complexities
involved in its tuning. We also do not need to use any first-order
or second-order gradient or Hessian information, with only
the functional values sufficing. All implementations are done in
MATLAB R2019b, running on an x64-based AMDRyzen 5 2500U
(with Radeon VegaMobile Gfx) processor at 2.00 GHz, with 8 GB
of RAM.

We note here that although a rich body of results is provided
in this paper for two-dimensional quadratic problems, we argue
that this important subclass of optimization problems actually
provides a diverse setting that generalizes to more complicated
scenarios. To see why this is true, consider the performance
of the gradient descent method used to minimize the function
f :Rn → R given by

f (x) =
1

2
xTAx− bTx+ c, (9)

where A ∈ R
n×n is positive definite and b, c ∈ R

n. We assume
that LI � A � ℓI, where the notation A � B signifies the partial
order (Loewner order) defined by the convex cone of positive
semi-definite matrices and that A − B is positive semi-definite.
The above problem can, of course, be analytically solved, and the
unique global minimizer is x⋆ = A−1b. Further, f (x) is convex
(actually strictly convex) since the Hessian Hf (x) = A ≻ 0,
i.e., Hf (x) is positive definite1. Consider the standard gradient
descent method

xk+1 = xk − ηk∇f (xk), (10)

for some starting point x0 and some sequence of step sizes {ηk}.
We can show that if we choose

ηk =
2

ℓ+ L
∀ k, (11)

then

‖xk − x⋆‖ ≤
(

κGD − 1

κGD + 1

)k

‖x0 − x⋆‖, (12)

where

κGD =
L

ℓ
=

σmax(A)

σmin(A)
, (13)

where σmax(A) and σmin(A) denote, respectively, the maximum
and minimum singular values of the matrix A. In other
words, we find that even for an optimization problem in
high dimensions, the maximum and minimum singular values
govern the linear convergence of the constant step-size policy
of gradient descent, which means that for a matrix A ∈
R
n×n, the convergence rate is determined by the two directions

corresponding to the semiaxes of the corresponding ellipsoid in
n dimensions.

1An n × n symmetric real matrix A is said to be positive definite (respectively,

positive semi-definite) if xTAx > 0 (respectively, xTAx ≥ 0) for all non-zero x

in R
n.

We also note from the results in Table 1 that for the NEO
method proposed in the paper, the identification of the fractional
differencing parameter d (using theWhittle estimation procedure
outlined in the Appendix in the Supplementary Material)
seems to be the key bottleneck step when it comes to the
computation of running times for the method. In practice,
however, this issue can be mitigated using a scheduling approach
where we use the average of the values of the parameter d
obtained after a few time steps and then use that value instead
of re-computing d via system identification. This approach
is tried for the function f (x, y) = x2 + 0.01y2 and the
results are shown in Figure 3 (right). Convergence is obtained
in 70 iterations with a starting point x0 = [1/2

√
3/2]T

using ARFIMA(4, d, 0) time series predictions. Additionally, we
also present, in Figure 4 (left, right), respectively, the values
of the fractional differencing parameters along the x and y
axis as estimated by the Whittle estimation procedure from
the functional values for the case of the objective function
and algorithm settings detailed in the case of Figure 3 (left,
right).

4.2. Results on the Rosenbrock Function
In this section, we demonstrate the working of the NEO method
on the Rosenbrock function (Rosenbrock, 1960), which is a non-
convex function used as a test problem for a wide variety of
optimization scenarios and algorithms. The non-convexity of
the function as well as its global minimum lying in a narrow,
flat, parabolic valley makes the minimization of the Rosenbrock
function a difficult problem to solve. The function is defined by

f (x, y) = (a− x)2 + b(y− x2)2, (14)

and has a global minimum at the point (a, a2), where f (x, y) = 0.
Hereafter, we consider a commonly used set of parameters, a = 1
and b = 100 (Shang and Qiu, 2006).

In Figure 5, we show the performance of the NEO method in
finding the global minimum of the Rosenbrock function. The
starting point x0, denoted by the red asterisk, is chosen to be
the point x0 = [0.95 0.95]T . Convergence is obtained to the point
[0.99 0.97]T in 4 iterations using ARFIMA(4, d, 0) time series
predictions. We use P = 100 steps of memory and an initial
grid discretization step of h = 0.01. It is important to note
that for the Rosenbrock function, the Hessian often possesses a
large condition number, which leads to the poor performance of
gradient-descent-like algorithms. Additionally, any optimization
method generates a unique dynamics that will be sensitive to the
chosen initial point; thus, warm starts are often desirable in the
context of non-convex optimization.

4.3. Results on Non-linear Activation
Functions
In this section, we evaluate the performance of the NEO method
on two non-linear activation functions. Such activation functions
are found in neural networks and act as non-linearities in the
same. In the same way as integrated circuits receive a multitude
of signals and then make a decision regarding whether the
output signal will be on or off (as a function of the input),
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FIGURE 4 | (Left) Values of the fractional differencing parameter α1 (along the x-axis) and α2 (along the y-axis) as estimated by the Whittle estimation procedure for

the example presented in Figure 3 (left). (Right) Values of the fractional differencing parameter α1 (along the x-axis) and α2 (along the y-axis) as estimated by the

Whittle estimation procedure for the example presented in Figure 3 (right).

FIGURE 5 | Steps taken in the two-dimensional plane when the NEO method

is used to find the global minimum of the Rosenbrock function. The initial point

(denoted by the red asterisk) x0 = [0.95 0.95]T . We use ARFIMA(4,d, 0) time

series predictions.

activation functions act as a proxy for this behavior in artificial
neural networks. However, when neural networks are used, the
particular form of the error or loss function used (which in
turn contains these non-linear activation functions), often suffers
from issues of ill-conditioning (Saarinen et al., 1993; Zhang
et al., 1995; van der Smagt and Hirzinger, 2012) due to function
optimization landscapes that are often ridden with flat areas and
saddle points.

Additionally, if methods such as Newton’s method or the
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
1963) are used to minimize the loss function, there is additional
dependence on the conditioning of the Jacobian or the Hessian
matrix evaluated at each of the iterates, and hence, there is
considerable loss of performance if either of the Jacobian or the
Hessian matrices are ill-conditioned or rank-deficient. In what

follows we look into a simple yet meaningful example where
non-linear activation functions found in neural networks are
minimized using the NEOmethod.

Assume that we have the activation function

̺GELU(s) =
s

2

(
1+ erf

(
s
√
2

))
, (15)

where the error function erf z = 2√
π

∫ z
0 e−t

2
dt for any z ∈

C. This activation function is known in the literature as a
Gaussian Error Linear Unit (GELU) (Hendrycks and Gimpel,
2016). Accordingly, for a set of weights w1 and w2 and for a
set of inputs x1 and x2, we assume that the GELU activation
function acts on the weighted sum w1x1 + w2x2 in order
to produce

̺GELU(w1x1 + w2x2) =
w1x1 + w2x2

2

(
1+ erf

(
w1x1 + w2x2√

2

))
.

(16)

We use the NEO method in order to minimize (16) and find
the weights w1 and w2 when x1 = x2 = 1. Using P = 100
steps of memory, an initial grid discretization step of h = 0.01,
ε = 10−3, with P′ = 100 steps ahead ARFIMA(4, d, 0) time
series predictions, we obtain convergence in 23 iterations with
the optimal values w⋆ = [−0.5142 − 0.2188]T and ̺⋆

GELU = −
0.1699.

Additionally, we also use the NEO method to minimize the
activation function

̺SiLU(s) =
s

1+ e−s
, (17)

with

̺SiLU(w1x1 + w2x2) =
w1x1 + w2x2

1+ e−(w1x1+w2x2)
, (18)

which is called the Sigmoid Linear Unit (SiLU) (Elfwing
et al., 2018) or Swish-1 (Ramachandran et al., 2017).
Once again, with x1 = x2 = 1, P = 100 steps of
memory, an initial grid discretization step of h = 0.01,
ε = 10−3, with P′ = 100 steps ahead ARFIMA(4, d, 0)
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FIGURE 6 | Convergence profile of the NEO method minimizing the Gaussian Error Linear Unit (GELU) activation function.

FIGURE 7 | Convergence profile of the NEO method minimizing the Sigmoid Linear Unit (SiLU) activation function.

time series predictions, we obtain convergence in 30
iterations with the optimal values w⋆ = [−2.1316 0.8362]T

and ̺⋆
SiLU = −0.2784. The convergence profiles when

the NEO method is used to minimize the GELU and
the SiLU activation functions are shown in Figures 6,
7, respectively.

5. DISCUSSION AND CONCLUSIONS

In this paper, we introduced a NEuro-inspired Optimization
(NEO) method, that is motivated by the neurophysiological
modeling capabilities possessed by fractional calculus-based

ARFIMA time series models to determine an approximation
of the argument that minimizes a given unconstrained
optimization problem. Our proposed method does not
require the computation of gradient or Hessian information,
or explicitly tuning a step size, an issue that, in spite
of receiving widespread coverage in the optimization
literature, still proves to be a bottleneck in the design of
such algorithms.

Future work will entail the automated selection of
the autoregressive and moving average orders from the
functional values at every time step [based on the Akaike
Information Criterion (AIC) (Akaike, 1974) or the Bayesian
Information Criterion (BIC) (Schwarz, 1978)] and the
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automation of determining the fractional-order coefficient,
which proved to be the most computationally intensive
step in our approach, in a wider range of optimization
benchmarks.

It is also interesting to note here the connections between
descent-like methods such as NEO with proximal algorithms
that are used to solve non-differentiable optimization
problems (Parikh and Boyd, 2014). The latter aims to consider
a regularizer with an additional quadratic term to be optimized,
which adds smoothness to the optimization problem to be
explored. That being said, it is similar to NEO, which seeks to
explore memory and local changes in the functional values to
smooth the predictions. Additionally, it can be shown that under
some mild technical assumptions, one can use averaged proximal
operators and algorithms in order to convert minimization
problems into fixed-point iterations, much like NEO looks
at minimization problems from the iterative step descent
point-of-view. It would, therefore, be interesting to establish
the relationship between proximal algorithms and the NEO
method based on the aforementioned relationships. Lastly, we
believe that the validation of our approach in the context of a
variety of real-world applications would also be interesting to
look into.
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