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A classic method to evaluate autonomic dysfunction is through the evaluation of
heart rate variability (HRV). HRV provides a series of coefficients, such as Standard
Deviation of n-n intervals (SDNN) and Root Mean Square of Successive Differences
(RMSSD), which have well-established physiological associations. However, using only
electrocardiogram (ECG) signals, it is difficult to identify proper autonomic activity,
and the standard techniques are not sensitive and robust enough to distinguish pure
autonomic modulation in heart dynamics from cardiac dysfunctions. In this proof-of-
concept study we propose the use of Poincaré mapping and Recurrence Quantification
Analysis (RQA) to identify and characterize stochasticity and chaoticity dynamics in
ECG recordings. By applying these non-linear techniques in the ECG signals recorded
from a set of Parkinson’s disease (PD) animal model 6-hydroxydopamine (6-OHDA), we
showed that they present less variability in long time epochs and more stochasticity
in short-time epochs, in their autonomic dynamics, when compared with those of the
sham group. These results suggest that PD animal models present more “rigid heart
rate” associated with “trembling ECG” and bradycardia, which are direct expressions
of Parkinsonian symptoms. We also compared the RQA factors calculated from the
ECG of animal models using four computational ECG signals under different noise and
autonomic modulatory conditions, emulating the main ECG features of atrial fibrillation
and QT-long syndrome.

Keywords: recurrence quantitative analysis, Poincaré map, Parkinson’s disease, computational ECG model, 6-
OHDA animal model, HRV (heart rate variability) and ECG-complexes, cardiac and autonomic dysfunctions
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INTRODUCTION

The autonomic nervous system (ANS) modulates cardiovascular
function via two main pathways, the sympathetic (SNS) and
parasympathetic (PNS) systems that play agonist-antagonist roles
(Cannon, 1939). In general, SNS activation increases the heart
rate and cardiac ventricle contractility, while the PNS mainly
decreases heart rate, with faster local responses in the atrium
transmitted via the vagus nerve (Hopkins and Armour, 1984;
Shivkumar et al., 2016). Since autonomic balance modulates
the heart rate (Sztajzel, 2004), the simplest way to analyze
ANS activity is to measure heart rate variability (HRV) using
ECG recordings. Traditional techniques quantify autonomic
modulations searching for frequency characteristics, namely,
low frequency (LF), high frequency (HF), and their ratio
LF/HF ranges or temporal features, standard deviation of NN
intervals (SDNN), and root mean square of successive R-R
interval differences (RMSSD), on the ECG-tachogram along the
time series constructed (most commonly) from the R-R peak
time distances (RR: interbeat intervals between all successive
heartbeats; NN: interbeat intervals from which artifacts have been
removed) (Malliani et al., 1994; Montano et al., 2009; Akselrod
et al., 2014). However, these techniques are limited and require
assumptions that are difficult to verify, especially for small ECG
samples, which make these quantifications unreliable (Mansier
et al., 1996). Some studies have used non-linear techniques such
as Poincaré Map (PM) (or First Return map) and Recurrence
Quantification Analysis (RQA) to find other ANS and ECG
characteristics associated with heart and ANS disorders (Kamen
and Tonkin, 1995; Tulppo et al., 1997). These methods have
already been applied to ANS dysfunction related to seizures and
sudden death, revealing their capacity to characterize biosignals
in a clinical context (Zbilut and Webber, 1992; Marwan et al.,
2002; Marwan, 2003; Billeci et al., 2018; Khazaei et al., 2018).

To assess the autonomic dysfunction associated with heart
rate dynamics, we propose a proof-of-concept study where
we constructed a set of four artificial ECG patterns modeling
the main ECG features related to the two most common
autonomic-cardiac dysfunctions, atrial fibrillation (AF) and
long-QT syndrome (QT), and two control ECG signals, a
complete periodic regular ECG (DET) activity without noise,
and an ECG pattern with high Gaussian noise (GN). The
AF and long-QT syndrome patterns were chosen mainly
because they are very prevalent in Parkinson’s disease (PD)
(Tysnes and Storstein, 2017).

Parkinson’s disease is a neurodegenerative disorder
characterized by decreased levels of dopamine in the striatum
and substantia nigra (Stephen et al., 1988; Poewe et al., 2017).
Although it is mainly characterized by motor manifestations,
non-motor conditions often precede motor symptoms (Braak
et al, 2003; Schapira et al., 2017). Autonomic dysfunction
(AD) is diagnosed in 80% of patients with PD, and can be
aggravated due to a denervation of autonomic pathways, causing
orthostatic hypotension and cardiac autonomic imbalance
(Orimo et al., 1999; Smit et al., 1999; Goldstein et al., 2000;
Goldstein, 2006; Evatt et al., 2009; Velseboer et al., 2011;
Schapira et al, 2017). In this way, finding a robust and

sensitive quantitative technique that can perform a better
characterization of possible electrophysiological biomarkers
from ECG signals may represent a paradigm shift in the
diagnosis and progression monitoring of this disease (van Dijk
et al., 1993; Cersosimo and Benarroch, 2013).

Through the Poincaré map and RQA factors relative to
the four artificial ECG patterns, we were able to characterize
and identify the main non-linear ECG and HRV features
associated with the AR and QT disorders (Rodrigues et al.,
2019). We then applied the Poincaré map and RQA techniques
on ECG recordings from a small set of animal models of
Parkinson’s disease, using the unilateral 6-hydroxydopamine (6-
OHDA) model that, with lesions of the nigrostriatal pathway,
produce similar motor impairments to those seen in PD and a
sham group (Ungerstedt, 1968). By projecting their non-linear
factors on the artificial ECG factors, we were able to compare
them with the same non-linear features assessed in the ECG
recordings of the PD animal models. This comparison produces
a systematic protocol for better physiological interpretation and
validation of these techniques considering the PD autonomic-
heart dysfunction scenario.

MATERIALS AND METHODS

All experiments were approved by the Animal Care and Use
Committee of the Federal University of Sao Paulo (protocol:
CAAE 6463110417), and the analysis applied to biological signals
was approved by the Ethics and Research Committee of the
Federal University of Sdo Paulo, under the protocol number
CAAE 7299310719.

To study the possible effects associated with dysautonomia,
we considered three different approaches: (i) PRQRST complex
analysis focusing on the waveform characteristics, such as
their amplitude variations; (ii) HRV analysis by evaluating
the tachogram characteristics through their Poincaré Maps;
and (iii) ECG signal analysis by evaluating their non-linear
dynamics through RQA.

To perform the RQA analysis, we built four simple distinct
artificial ECG signals (aECG), each with a predominant feature:
(1) deterministic (DET), (2) atrial fibrillation (AF), (3) long
QT syndrome (LQT), and (4) Gaussian noise (GN). We then
calculated the low-frequency and high-frequency ratio (LF/HF)
modulation from the R-R tachogram patterns of each aECG.
Finally, we added white noise with different intensities to the R-R
tachograms to simulate different degrees of dysautonomia most
prevalent in PD.

Furthermore, we consider the application of these techniques
to a set of ECG signals recorded from Wistar rats using the
unilateral 6-hydroxidopamine (6-OHDA) model to mimic PD
based on the Ungerstedt protocol (Ungerstedt, 1968). Two
independent groups of rats were studied: the experimental group
(6-OHDA, n = 3) and the control group (Sham, n = 3), which
underwent the same surgical procedure as the 6-OHDA set, free
of any drugs. We performed an exhaustive search in both sets
of ECG signals looking for epochs where the standard ECG
and HRV metrics could not distinguish 6-OHDA features from
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Sham features, but RQA could. Finally, the ECG and HRV
features described by the four aECG patterns, using different
quantification techniques, were compared with ECG signals
recorded from 6-OHDA and from sham animal models to
identify similarities between 6-OHDA models with AF, LQT,
DET, and GN, and establish a better signal interpretation.

Artificial Electrocardiogram Model

To correlate the information from RQA factors with PD
conditions, we implement four distinct computational models of
ECG (aECG), mimicking four special heart conditions that are
most prevalent in PD. These artificial ECG signals were based
on the McSharry model (Mcsharry et al., 2003), which in turn
is based on the tachogram power spectrum and calculated from
the R-R peak intervals of the aECG signals. The tachograms were
built using a heart rate of 350 bpm with a standard deviation of
50 bpm to represent the standard dynamics of rat heartbeats.

By varying the low and high frequency ratio (LF/HF), the
tachograms reflected the temporal distribution of the aECG
complexes over time. In this way, by applying the inverse Fourier
transform to the LF/HF, the power spectrum of the tachogram
is extracted, and the (artificial) ECG signal is reconstructed by
sequentially introducing a standard PQRST complex model. The
standard PQRST complexes were adapted to fit the physiological
patterns of a rat animal model (increasing HR and removing
Q waves), since the standard PQRST complex was designed for
human heart ECG (Mcsharry et al., 2003). Gaussian noise was
added considering 1% of the amplitude of the aECG signals to
describe more realistic patterns.

The aECG patterns were constructed to represent the
following four conditions: (1) a regular, deterministic ECG signal
(DET) without extra noise or any other effect to be used as a
control; (2) atrial fibrillation ECG signal (AF), built by removing
the P waves and replacing them with white noise along the PQ
interval; (3) long QT syndrome (LQT), built by stretching the QT
interval in time and decreasing its amplitude; and (4) a noisy ECG
signal (NSE), created by introducing a high-level white noise
pattern, with 100% amplitude on the DET aECG pattern. The
aECGs (1) and (4) were used as control signals while the aECGs
(2) and (3) were used to represent the heart dysfunction models
described in the literature (Oka et al., 1997; Deguchi et al., 2002;
Canga et al, 2018). Finally, for each aECG model, four noise
degrees were added to their corresponding tachograms, 0, 33, 66,
and 99% of maximum amplitude, and four different modulation
levels of the LF/HF ratio, given by 0, 0.5, 1, 1.5, to represent
different autonomic balance effects on heart dynamics. Using the
McSharry model (Mcsharry et al., 2003) we adopted:

(1) DET signal was the default model: angles 6; (degree)
[P: =70, Q: —15, R: 0, S: 15, T: 100]; a; [P: 1.2, Q: —5, R:
30, S: —7.5, T: 0.75]; b; [P: 0.25, Q: 0.1, R: 0.1, S:0.1, T: 0.4];

(2) LQT signal (long QT waves—it did not emulate arrythmia):
6; [P: —70, Q: —15, R: 0, S: 15, T: 100]; g; [P: 1.2, Q: —5, R:
30, S: —7.5, T: 0.75]; b; [P: 0.25, Q: 0.1, R: 0.1, S: 0.1, T: 0.6];

(3) AF signal (low P-wave peak): 6; [P: =70, Q: —15, R: 0, S:
15, T: 100]; a; [P: 0.2, Q: —5, R: 30, S: —7.5, T: 0.75]; b; [P:
0.125,Q: 0.1, R: 0.1, S:0.1, T: 0.4];

(4) NSE signal = (100% of gaussian noise) x DET;

Rat Electrocardiogram

Rat ECG signals were registered from a 6-hydroxydopamine
(6-OHDA) animal model based on the procedure described by
Ungerstedt (1968). This model is based on the degradation of
dopamine neurons in the substantia nigra, mimicking the PD
condition. The sham control group received the same surgical
procedure, but without the addition of 6-OHDA in the brain.

We used a total of six Wistar rats, n = 3 6-OHDA and n = 3
sham, weighing 230-300 g from the experimental animal center
of the Federal University of Sdo Paulo—UNIFESP, maintained
at a temperature of 21° £ 2°C, and light and dark cycle of
12 h with free access to food and water (for more details see
Rodrigues et al., 2019).

All ECG data were recorded using PowerLab 8/35
(Adinstruments, Australia) and recorded at a sampling
rate of 1,000 Hz for 60 min on day 14. The process and
visualization methods were performed using MATLAB™
software and a computer with 8 GB RAM, Intel® Core™ i7-6700
processor, 3.4 GHz.

To perform the analysis, all ECG signals were recorded
for approximately 2 h. Due to animal movements and
environmental interference, we opted for a conservative selection
epoch, considering 15 window samples of 20 s sparsely
(Acharya et al., 2006).

Electrocardiogram Waveform Analysis

The waveform analysis applied to the PQRST complexes was
based on Quiroga Spike Sorting (Quiroga, 2012). In this
technique, the main signal changes for a specific event are
searched via principal component analysis (PCA) decomposition.
In this approach, the PCA features correspond to the associated
time window of each PQRST complex, aligned through the
R-peaks as a reference, with an interval of 18 ms for both sides.
If their waveforms covariate along the ECG complexes, clusters
will appear, emphasizing differences and similarities.

Standard Heart Rate Variability Features

To evaluate differences in the autonomic balance activity in
each ECG group, two main features of the heart rate variability
(HRV) were calculated from their tachograms, namely, standard
deviation of NN intervals (which are the standard deviation of
normal intervals of RR, disregarding ectopic beat, known as
SDNN) and root mean square of successive differences (RMSSD).
The SDNN describes the autonomic balance for long periods of
time, whereas RMSSD provides autonomic balance data for short
periods of time (Shaffer and Ginsberg, 2017) (see Figures 1A,B).

Poincaré Map (First Return Map)

We also evaluated the autonomic balance using Poincaré Maps,
which consists of scatter plots given by past R-R intervals
(RR¢—1) against present R-R intervals (RR;) (Brennan et al,
2001). Through Poincaré maps, it is possible to characterize
the tachograms according to their scatter patterns (Woo
et al, 1992). This is done qualitatively by studying cluster
shapes and quantitatively using the deviations SD2 and SDI,
which represent the major axis and the minor axis of an
ellipse, respectively (see Figure 1C). The standard deviation
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FIGURE 1 | Methodology scheme. (A) An example of artificial ECG pattern. By quantifying the R-R intervals from the ECG signals it was built the correspondent
tachogram time-series consisted of R-R sequences. (B) From the ECG tachogram it was quantified two temporal features, standard deviation of n-n intervals
(SDNN) and root mean square of successive differences (RMSSD) and built the Poincaré Map (PM). (C) The PM represents the scatter of points from the
tachogram-space with the axis (RRn, RRs++). The phase spaces of the ECG signals were also constructed, given by the coordinates (X¢, Xt41, Xt+2+), which shows
the signal trajectory seen in (D). In (E) is shown the distance matrix, representing the Euclidian distance of each sample-point in relation to all other points in the
phase-space. (F) Shows the recurrence quantification analysis (RQA) characteristics that allowed to select an epsilon threshold. (G) Shows an example of
Recurrence Plot from the distance matrix given an epsilon. The RQA factors calculated in this work were: recurrence rate (RecR), determinism (DTM), mean diagonal
length (<D>), maximum diagonal length (Dmax), Shannon entropy (ENTR), Trapping Time (TT), laminarity (LAM), maximum vertical length (Vmax), and time type 2
(T2). (H) Principal component analysis (PCA) calculated from the RQA factors highlights the differences between PD model and sham groups. (I) ECG waveform
samples (PQRST complexes) extracted from the ECG patterns (considering its mean and SD). (J) PCA calculated from the ECG waveforms highlights the main

differences in the signal morphology.

SD2 quantifies the point distribution across the line of
identity (LOI), and the standard deviation SD1 quantifies the
point distribution across the line perpendicular to the LOI.
Both are directly associated with ECG beat-to-beat interval
distribution (Brennan et al., 2001) and autonomic balance. SD1
is strongly correlated with LE, which represents parasympathetic
modulation (Shaffer and Ginsberg, 2017).

Recurrence Quantification Analysis

To evaluate the non-linear ECG features, we applied RQA. RQA
is a technique applicable to any type of time series that allows
access to time series characteristics that standard techniques
cannot (Eckmann et al., 1995). Through RQA coeflicients, it
is possible to categorize a signal according to its level of
stochasticity, chaoticity, and determinism, which can help to
understand the type of physical coupling under its dynamics
(Marwan et al, 2002). RQA is based on signal phase-space
reconstruction, defined by

X:X(anxlaxZa R ] x‘l’m_l;xla-x2>x3a L) xm;x()axla

X2, .., Xm) (1)

where t is a parameter time delay, and the dimension
m is a dimensionality parameter. Any time series can be
described through its phase space in a two-dimensional matrix,
representing the distances from every sample point. Additionally,
a threshold € must be defined, limiting which higher values are
defined as recurrences, creating a recurrence plot (RP), defined

by:

H>0 =RP(i,j) =1

P(i,j) = H (e — DM(i, j 2
(i,)) € i,7), H<0 = RP(i,j)=0 (2)
where H(.) is the Heaviside step function and DM(.)
is the distance matrix that contains all point-to-point

Euclidian distances in the phase space (Marwan etal., 2007)
(Figures 1D,E).

All parameters, T and m and ¢, were calculated individually for
each signal, following the statistical characteristics of each one.
After, using the Sturges Formula to optimize the histogram bins,
the mutual information was determined (Sturges, 1926). Thus,
for each signal, the chosen value of t was the one that maximize
the time-lag of 10 window samples of 20 s and that minimize the
mutual information lower than 1/e (Kantz and Schreiber, 1997;
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Marwan and Webber, 2015). The dimension m was calculated
using the False Nearest Neighbors (FNN) technique, considering
the 10 window samples with the predefined tau. Following
previous studies, the chosen value of m corresponded to the first
dimension that present a FNN less than 0.1 (Fraser and Swinney,
1986; Zbilut and Webber, 1992; Marwan, 2003). Finally, the value
of ¢ is based on the maximum phase-space diameter percentage,
using the Euclidian distance, as described in Marwan et al.
(2007). That is, we chose heuristically € = 9%, from an interval
of 1-15% of the maximum diameter associated with the phase
space, given a value of t and m that maximized the differences
between the groups of interest. Additionally, the values in DM (i,f)
were normalized by the maximum diameter of the phase space
describing all data at the same scale (see Figures 1EG).

To quantify the ECG signal recurrences, we chose nine RQA
coefficients calculated on the dot structure patterns displayed
by the recurrent plots (RPs) (Marwan et al, 2007). Only
structures with more than three dots were considered as a proper
recurrence, minimizing spurious effects. All the coefficients are
based on the percentage of dots, horizontal dot-line structures,
and diagonal dot-line structures on RPs, where each one
provides information associated with time recurrences and
trajectories according to the degree of stochasticity, chaoticity,
or determinism (Zbilut and Webber, 1992; Gao, 1999; Marwan
et al., 2002, 2007; Marwan, 2003). The nine coeflicients used in
this study are defined as follows:

Recurrence rate (RecR) quantifies the density of recurrences.
This indicates the regularity of signal recurrences in the signal.
Therefore, it is associated with the determinism.

N
1 .
RecR(a,N):m § RPZ}’E (3)
S =

where ¢ is the threshold, N is the total number of elements in RP,
and RPZ']-’S are the RP j,j-elements, calculated using Equation (1),
according to the threshold ¢ and embedded in dimension m.

DTM quantifies the density of recurrence time intervals. This
indicates the regularity in the signal. It is defined by:

>, dPa(d)
Zg:dmm d RP;

where Pj(.) is the probability of finding a diagonal with length d,
calculated from a histogram, and d,,i, is the minimum acceptable
distance value (defined as three dots).

The average diagonal length (<D > ) quantifies the weighted
average length of time recurrence. This indicates divergence
of the space-phase trajectory; therefore, it is associated with
stochasticity.

DTM = (4)

_ >y, @ Pa (d)
Zf}':dm,.n P d(d)

The maximum diagonal length (Dmax) quantifies the
maximum length of a time recurrence. When inverted, it
indicates the exponential divergence of the phase-space
trajectory.

<D >

(5)

Dypax = max(d) (6)

The Shannon entropy (ENTR) quantifies the complexity of
interval recurrences. This indicates the stochasticity and
chaoticity of the signal:

N
ENTR= — > Py(d)InPy(d) 7)
d:dmin

where Py(.) is the probability of obtaining the diagonal with
length d in the diagonal length of the RP, and In(.) is the natural
logarithm of Py (d).

Laminarity (LAM) quantifies the percentage of fixed events in
each time interval of recurrences. Since it evaluates the relative
number of laminar events, it is associated with chaoticity:

Z{,\]:vmm VP, (v)
Zf/\;l vPy(v)

where v is the length of the vertical line, and v, is the minimum
length of the vertical line.

Trapping Time (TT) quantifies the mean value of fixed events
in each time interval of recurrence. This indicates fine-scale
irregularity; therefore, it is associated with determinism and
stochasticity.

LAM = 8)

Z{/\7:‘/min VPV (V)
Zf/V:vmm PV (V)
The maximum vertical length (Vmax) quantifies the maximum

vertical length, whose meaning remains unclear, but it can be
related to states with low variability, being locked at a single event:

TT = )

Vinax = maX(V) (10)

Time Type Two (T2) quantifies the average time necessary for
a given event to return to its origin point (arbitrarily close to €) in
the phase space. This indicates signal dispersion and, therefore, is
associated with stochasticity and chaoticity.

@)
Tk
=<jks1 —jk >, with Ri={x1,%p,... [Rij =1}, Vi,j, k

(11)

Statistics

We applied the Kolmogorov-Smirnov normality test to all
sample data, and because samples could not be considered from
a normal distribution, non-parametric tests were used (Massey,
2017). Group differences were assessed using cluster analysis and
the Kruskal-Wallis test, followed by the Tukey-Kramer post hoc
test (Kramer, 1956). For two-sample comparisons, we used
the Mann-Whitney test. A multifactorial analysis, clustergram,
was applied to choose which RQA metrics would be optimal
to distinguish both groups. For this analysis, the Euclidean
distance was used to quantify the similarities among the RQA
coefficients considering each condition (6-OHDA and sham).
The significance level for all statistical analyses was established
when p < a, where a = 5%, represented in figures by the
symbol “*”. All analyses were performed using the MATLAB®
software (v. R2016a).
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Principal Components for Clustering
Analysis

To highlight the global covariations and similarity effects from
the different analyses (RQA on aECG and RQA on ECG animal
models) considering the four different conditions LQT, AFR,
NSE, and DET, when subjected to different noise levels and
different LE/HF ratios, we performed a principal component
analysis (PCA). For PCA, one matrix of 84 rows and 10 columns
comprising four matrices of 41 rows (representing all 41 signal
epochs of 60 s) and 10 columns (representing all RQA factors):
one for LQT condition (41 x 10), another for AF condition
(41 x 10), another for the NSE condition (41 x 10), and one
for the DET condition (41 x 10), each column representing an
RQA factor was measured. Therefore, these RQA factors were
considered as PCA features and aECG conditions (LQT, AFR,
NSE, and DET) as trial effects. This method was repeated for each
noise level and LF/HF conditions (Figure 1H).

For all PCA spaces analyzed here, we use only the first two
components, PC1 and PC2 (Figures 1LJ), since they were able to
explain more than 80% of the data covariances (Figure 2F uses
three PCs only for a better visualization).

Finally, all RQA data from the animal models were projected
onto the RQA space previously obtained from the aECG
conditions through the PCA approach. Once an ECG pattern was
projected onto the aECG PCA space, the Euclidean distance was
calculated considering each centroid cluster related to each aECG
cluster, including the sham group.

RESULTS

To show the possible differences using traditional coefficients
(such as SDRMS) and RQA, we first evaluated the dynamics
associated with the four artificial ECG patterns by varying the
percentage of noise on their HRV with four different LF/HF
ratios. This reveals how the traditional techniques are unstable
under different conjugation of noise and LF/HF imbalance.
By applying RQA to these aECG signals, we were able to
identify and quantify non-linear features associated with each
cardio/autonomic condition. In our results, the RQA technique
has shown to be more robust and sensitive for detecting
autonomic dysfunction under different noises conjugated with
LF/HF imbalances on the aECG signals. We were able to evaluate
HRV and heart dynamics simultaneously with a better resolution
across different temporal scales and under different autonomic-
heart conditions.

Artificial Electrocardiogram

Figure 3A exhibits the electrographic traces related to the four
aECG signals, namely, AF, LQT, DET, and NSE. From their
PQRST-complexes, using R-peak as reference to centralize
them, they were superposed, and then their confidence
interval was calculated (Figure 3B). By using PCA, we were
able to separate each group according to their waveform
patterns (Figure 3C). This result suggests that their waveforms
contain distinct information associated with each heart
condition. However, despite this distinguishability, this

technique does not provide access to the dynamics of the
autonomic system.

To provide a complementary perspective on ANS dynamics,
we also applied Poincaré maps to the aECGs to evaluate their
behavior and their relationship to the different LF/HF ratios
and noise intensities. Figure 4A shows how Poincaré maps of
aECG conditions (xy-axis) vary according to their level of noise
(ellipses on z-axis). This shows that the higher the magnitude of
noise applied to the tachograms, the greater the data dispersion.
Figure 4B shows the sensitivity of the standard HRV coefficients
(SDNN, RMSSD, SD1, and SD2) under different noise levels.
Once again, higher values of noise applied to tachograms yielded
higher values of HRV coefficients, except for the NSE group,
which exhibited a parabolic fluctuation but with indistinct values
among the coefficients. Figure 4C shows the opposite effect,
focusing on how Poincaré Maps vary, for each aECG condition
(xy-axis) as a function of LF/HF modulations (z-axis). Now, the
variation in LF/HF modulations produces subtle restrictions on
the ellipsis-shaped limits. Figure 4D shows how HRV coeflicients
vary as a function of LF/HF modulations.

Figure 5A shows all phase-spaces associated with the aECG
patterns considering different regimes of noise and HRV LF/HF
ratios. LQT (blue) has lower amplitude variation than other
groups, decreasing its structure size in comparison to the other
groups. For almost all cases, AF and DET presented the same
information, distinguishing only in their P-wave structure, which
is more visible in DET than AF.

From Figure 5B, it is possible to see that when noise
and LF/HF increase, there are more irregular diagonal dot
structures on the RPs. In this regime, all four conditions
(DET, LQT, AFR, and NSE) present larger and longer periods
of recurrence, and still exhibit a trend. The RP vertical line
structures are also influenced by noise and modulation, meaning
that the ECG signals increase spurious recurrences. When the
LF/HF modulation increases, the diagonal structure sizes become
irregular owing to the fluctuation of the instantaneous heart
rate. These changes represent irregularities in ECG events that
reflect variations in HRV. Conversely, when noise increases, the
periods of the diagonal structures of the RP are irregular but
different from the LF/HF modulations, and the ECG events do
not exhibit a trend. This reflects the irregularities of the ECG
PQRST complexes, which decrease the recurrences and shorten
the rectangles in RP.

Figure 5C shows four distinct clusters for almost all
regimes of noise and LF/HF ratios. This means that RQA
non-linear features, which represent aECG recurrence over
time, are more significant than complex morphological changes
in autonomic dysfunction. It is also possible to see that
the increase in noise level yields an increase in the cluster
size, mixing them.

Application of Recurrence Quantification
Analysis to the Electrocardiogram of

Parkinson’s Disease Animal Models
To show the reliability of RQA to real ECG signals, we applied
it to a set of ECGs recorded from animal models of PD
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FIGURE 2 | RQA from animal model ECG recordings. (A) Phase space trajectories of ECG signals. (B) Phase-space mean trajectories related to both groups.

(C) RP from the ECG signals of both groups. The 6-hydroxydopamine (6-OHDA) signals are more recurrent than ECG from the sham group. (D) Statistical
comparison between each RQA factor from 6-OHDA and sham groups. All factors are revealed to be statistically different (exhibited in logarithm scale).

(E) Clustergram of RQA factors using Euclidian distance as the metric of similarity. Each group presents its own set of RQA coefficient, forming two different clusters,
6-OHDA are rats 1-3, and sham are rats 4-6. In this case, Time type 2 (T2), Shannon entropy (ENTR), Trapping Time (TT), mean diagonal length (<D>), and
maximum diagonal length (Dmax) are the main coefficients to distinguish one group from the other. (F) Principal Component Analysis from RQA factors also reveal
that both groups differ from each other, with two distinct clusters with minimal overlap between them.
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FIGURE 3 | Artificial ECG patterns. (A) Red signals represent the deterministic aECG, the green signal represents the atrial fibrillation (AF) pattern relative to the
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two first scores from a Principal Component Analysis (PCA) considering all four ECG-complexes shown in (B). Despite the clusters formed from different groups
overlaps each other, it is still possible to identify and distinguish the groups from their ECG-waveforms.

(6-OHDA) and compared their non-linear features with a sham
group and with the four artificial ECG signals. By comparing
the RQA coeflicients from the real and artificial signals, we
were able to distinguish PD ECG features from sham ECG
features more effectively than by using ECG waveforms and
traditional HRV factors.

Figure 6A shows two representative ECG signals recorded
from a 6-OHDA animal model (orange) and from a SHAM
animal (lilac). Figures 6B,C show the ECG-complex waveforms
for both groups and their PCA, respectively, highlighting the
differences between ECG waveforms from the 6-OHDA and
sham groups. It is possible to identify two clusters with an
overlap, indicating that PCA was not able to detect statistical
differences between the ECG complex shapes from 6-OHDA and

SHAM groups. Figure 6D displays the clusters from Poincaré
mapping associated with the ECG-tachograms from both groups.
It shows that the 6-OHDA group has a denser cluster than Sham
group, but both present a central dispersion tendency onto the
identity line. This effect occurs since their window samples are
presented R-R intervals do not exhibit drastic variations over
time (such as arrhythmia). Their averages are mainly stationary,
yielding this similarity with the main diagonal. These differences
were detected through the SD1 and SD2 coeflicients, and SDNN
and RMSSD, which are different for both groups (Figure 6E).
It also shows that for all HRV factors, 6-OHDA groups exhibit
significant lower values, indicating that both groups are different
in their HRV variability but not necessarily in their ECG
complex waveforms.
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For these groups, these classic HRV features were already possible effects from isolated cardiac dysfunction could be

enough to detect the effects of PD on HRV patterns. However,
since we cannot properly distinguish their ECG features, the

masked. By applying RQA we can calculate other ECG features
that highlight differences that the standard techniques cannot. As
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we will show, they are more sensible and robust under noise and

LF/HF modulations.

Figure 2A shows the phase-space of the signal embedded
dimension for both groups (6-OHDA and SHAM), highlighting

their recurrences in time. It is possible to see that the SHAM
group has more variance along cycles than 6-OHDA group.
The mean recurrences relative to each group can be seen in
Figure 2B. Even though the ECG recordings have complex
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significative difference (p < 0.05), by comparing 6-OHDA with Sham groups.

FIGURE 6 | ECG and HRV standard features from animal model. (A) ECG signals from both animal models, 6-OHDA in orange and Sham in lilac. (B) Morphologic
differences of PQRST-complexes. (C) Principal Component Analysis of PQRST complex, it is possible to see two clusters, one in orange and one in lilac.
(D) Poincaré plot of both ECG recordings, showing that 6-OHDA group has a denser cluster. (E) HRV coefficients for each group, all characteristics presented

morphological changes (as shown in Figures 6A,B), their
amplitude changes do not affect the recurrences, meaning
that their single event diameters in the phase-space are
not different on average, with minor changes along QRS
complexes. A representative RP for both groups is exhibited in
Figure 2C, where it is shown that 6-OHDA ECG recordings
are more recursive than sham ECG recordings. These
recurrences are evaluated through the RP diagonal lines
that reflect the recurrences of their PQRST complexes,
and through the RP vertical lines that reflect large-scale
temporal recurrences.

In Figure 2D, we can compare each RQA factor, all of which
reveal significant differences between the 6-OHDA and sham
groups. Except for factor T1, group 6-OHDA exhibited higher
values. Considering all RQA factors, we conclude that the 6-
OHDA group presents signals that are less stochastic and less
chaotic than those of the sham group.

The results are presented in Figure 2E corroborate the
statistical pairwise comparisons shown in Figure 2D, considering
a clustergram analysis for both animal groups and all RQA factors
as markers. It can be seen that seven RQA factors can distinguish

both groups, in this case: LAM, DET, T2, ENTR, TT, < D >, and
Dmax. These factors indicate that the main changes in 6-OHDA
ECG signals in comparison with SHAM are more relevant in their
level of periodicity (LAM, TT, T2) and in their waveforms (DET,
ENTR, < D > , and Dmax), as shown in Figure 2D. That is, the
6-OHDA group PQRST complex events stay for longer periods
of time in a single event than the SHAM group, and it takes
more time to return to a single event. This feature can express
bradycardia and lower variability in RR intervals. Furthermore,
the 6-OHDA amplitude values tended to remain stable over time,
with lower variability in signal amplitude.

In Figure 2F, we see the PCA analysis using RQA factors
as PCA features. It is possible to completely distinguish 6-
OHDA from the sham group using RQA factors, corroborating
previous results. In contrast to Figure 6C, which considers
only waveforms, RQA factors simultaneously capture ECG
features and HRV.

These analyses show how RQA can be used to detect
other statistical signal features related to comorbidities that
standard techniques cannot detect, mainly under noise and
LF/HF modulations.
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Recurrence Quantification Analysis
Cluster Analysis: Artificial
Electrocardiogram vs.

Electrocardiogram

To quantify possible similarities between real ECG features with
aECG features, we projected the RQA factors related to 6-OHDA
and sham groups onto the PCA space constructed by the four
RQA factors calculated from aECG (DET, AFR, LQT, and NSE).
Additionally, the Euclidean distance was calculated between
each of the five centroid clusters (DET, AFR, LQT, NSE, and
sham), using the 6-OHDA centroid cluster as the main reference.
These metrics were chosen since we wanted only to quantify
the proximal clusters, and the physiological features attributed
to the aECG were simplified in comparison to the real ECG. By
adopting more rigorous metrics of similarity, we were not able to
evaluate the cluster correspondences.

From Figure 7A, it is possible to see that additional
external noise on signals yields dispersion, making it difficult to
distinguish which group is nearest to 6-OHDA. Figure 7B shows
how the distance values from the 6-OHDA cluster vary according
to each noise and LF/HF modulation. It can be seen that the 6-
OHDA RQA factors stay nearest to the AFR for higher LF/HF
values and nearest to DET for lower LF/HF values. This indicates
that the 6-OHDA ECG patterns exhibit AFR features. Figure 7C
shows the ECG recordings corresponding to the last square
values shown in Figure 7B, with 99% noise and 1.5 of LF/HF
modulation. Figure 7D shows the ECG recordings corresponding
to the second square of Figure 7B, with 99% noise and 0.5 of
LF/HF modulation.

DISCUSSION

In this work, we propose a proof-of-concept study showing
that using only linear properties of ECG recordings may
be insufficient to describe integrally cardiac-autonomic
dysfunctions. Instead, we use the RQA technique that
intrinsically incorporates temporal event recurrences at
different time scales, which can consider heart and autonomic
conditions simultaneously. Through a simplified computational
model, we were able to build two cardiac/autonomic conditions
(and two other controls) that commonly can be detected on the
morphology of ECG-complexes and on their HRV, mainly in PD.
In sequence, we calculated the standard temporal HRV factors
SDNN and RMSSD, SD1, and SD2 coefficients, and applied
PCA to their corresponding waveforms to search for different
physiological ECG patterns. However, neither PCA nor HRV
factors were able to properly distinguish the variations associated
with each condition (especially, atrial fibrillation and long-QT
syndrome). By varying the noise intensity and autonomic LF/HF
ratio associated with their tachograms, we could compare the
sensitivity and robustness of the standard HRV factors.

We verified that all HRV characteristics increased linearly
as noise intensity increased (Figure 4C), indicating that HRV
factors can be disrupted by environmental noise, outliers, or
misdetections. The same effect was observed within Poincaré
plots, whereas the intensity of noise increased the scattering as

well (Figure 4A). However, even with these effects, none of the
coefficients was sensitive enough to properly detect noise and
LF/HF modulations. The SDNN and SD2 factors, for instance,
remained stable for every LF/HF value, and RMSSD and SD1
decreased their values only slightly. These results could be due
to the short term of aECG signals since they were simulated
only for 5 min (Shaffer et al., 2014). However, this means that,
at least, these coefficients always require long ECG recordings to
operate properly.

RQA was more sensitive and robust in detecting non-linear
features related to each of the four conditions expressed on their
aECGs. We calculated nine RQA factors associated with the
four aECG conditions: DET, AF, LQT, and NSE (Figure 5A).
We verified that as the noise intensity increased, the RPs also
increased their number of dot structures, and the number of
spurious correlations increased (correlations of dot length lower
than three; Figure 5B). We can see that the periodicity of the
ECG signals is strongly modulated by the LF/HF ratio changes
(Figure 5C). As the LF/HF ratio increases, the RPs lose vertical
dot structures, indicating an increase in stochasticity (Garfinkel
et al., 1997; Schauerte et al., 2001; Chen et al.,, 2014). It is
important to mention that a healthy heart does not exhibit a
purely deterministic dynamic. In fact, it presents stochasticity
given by internal and external factors, and non-periodicity is
reported, as chaotic dynamics, which makes the RQA a better
technique to evaluate it (Braak et al., 2007; Pyatigorskaya et al.,
2016; Canga et al., 2018).

When we analyzed the RQA factors (RecR, DET, LAM,
TREND, T2, ENTR, TT, < D >, and Dy,.x) as PCA variables,
we were able to explain all the covariations associated with each
specific group under all different noise and HF/LF modulations
(Figure 5C). This indicates that RQA metrics are not only more
sensitive for detecting noise and autonomic modulations on
short-time ECG recordings, but can also explain HRV conditions
more accurately.

Application: Electrocardiogram From

Animal Models of Parkinson’s Disease

By applying PCA to the ECG complex waveforms recorded from
animal models, we verified that they were not able to completely
distinguish 6-OHDA from the SHAM groups (Figure 7E). This
lack of difference in ECG signals gave rise to two questions: (i) Are
RQA and/or Poincaré Map factors capable of differentiating each
one of these conditions?, and (ii) How do HRV features influence
each condition?

To answer these questions, we first analyzed different features
related to heart rate variability (HRV) time series considering
each ECG pattern, associated with 6-OHDA and sham groups,
looking for distinct sympathetic (SNS) and parasympathetic
(PNS) activities. Using Poincaré Maps and standard factors
(SDNN and RMSSD), we verified that the 6-OHDA group had
lower HRV coeficients than the sham group (Figures 6D,E). This
result can also be verified through the smaller cluster of 6-OHDA
group in the Poincaré map (Figure 6D), which comes from the
low variance of R-R time sizes, which is associated with its higher
average value (cluster centroid) in comparison to the SHAM
group. Therefore, the 6-OHDA group had longer RR intervals,
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indicating bradycardia and decreased sensitivity to fast responses
to external stimuli (Pursiainen et al., 2002; Imrich et al., 2008).
According to the literature, one possible explanation for this low
HRV activity in PD is a lack of sympathetic activity response
(Goldstein et al., 2000).

In terms of RQA, the ECG recordings from the 6-OHDA
group were more recursive than the ECG signal from the sham
group, since its RecR and DTM factors were higher than those
of the sham group. This result indicates that the 6-OHDA group
had a lower ECG amplitude variability over time, with more
recurrent events. This can be checked through its phase space
(Figure 2A) and Poincaré map (Figure 6D). These effects could
be physiologically interpreted mainly by: (i) low concentrations
of Ca™?2 in conductive heart cells (Kramer, 1956); (ii) myocardial
changes that lead to atrial fibrillation and yield a periodicity
increase of specific events along the ECG signals (Hong et al.,
2019); and (iii) heart sympathetic denervation, which decreases
HRYV and produces regular and periodic ECG (Orimo et al., 1999;
Goldstein et al., 2000).

The higher values of < D > in 6-OHDA ECGs compared with
sham indicates that their signals present higher self-similarity,
which is also revealed by their event periodicities. This RQA
factor indicates that the ECG signals have small perturbations
across time, with one major divergence found in the QRS
complex. Additionally, higher values of Dmax, TT, LAM, and
T2 in 6-OHDA signals compared to sham signals indicate that
their ECG events are more recurrent over time. That is, given
an ECG-reference, such as R-pick, the way it appears along the
signal in time is more regular and similar to the previous ones.
While Dmax and LAM coefficients exhibit a more deterministic
dynamic, hinting at a low autonomic modulation (in both the
PNS and SNS branches), TT and T2 coefficients indicate that
ECG events are more alike and longer. Long events come from
low amplitude changes and represent more “rigid R-R intervals,
corroborating Poincaré maps (Marwan et al., 2002; Marwan,
2003, 2006). Furthermore, a decrease in heart rate tends to
increase the periodicity of the signal, which can be promoted by
PD bradycardia (Buob et al., 2010).
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Higher values of ENTR indicate that the system itself has
some variation in amplitude and is more complex. In this
way, the values of ENTR for 6-OHDA ECG recordings are
the first indication of greater chaoticity than those of sham
signals, in the sense that they have some physical constraints
that modulate its activity. This chaoticity is also justified by
considering the values of Dmax and TT of 6-OHDA (Wolf et al.,
1991; Shibata et al., 2009). One possible origin of this physical
constraint is the potential fluctuations due to atrial fibrillation
(AF), caused by the decomposition of P-waves into many short
waves (Goldstein, 2006).

The coefficients Vmax and T1, despite presenting a significant
difference, did not help to discriminate the PD condition, using
6-OHDA models, from sham as revealed by the Clustergram
analysis (Figure 2E). Using the seven RQA factors indicated by
the Clustergram (< D >, Dyyqx ENTR, TT, LAM, DTM, and T2)
as PCA features, this result can be corroborated. Furthermore,
Figure 2F shows that by using the factors, the differences
between both groups are optimized and clarified, indicating
once again that RQA coeflicients explain the variations between
both groups.

Considering all RQA coefficients together, we can conclude
that ECG signals from 6-OHDA animal models exhibit higher
irregularity in their morphology over time, including higher
variation in its amplitude, but lower variation in its R-R intervals.
This result is probably a consequence of the effect of Parkinson’s
disease on autonomic control, which promotes a self-paced
rhythm with a strong interference of the parasympathetic path
that decreases HRV (Shaffer and Ginsberg, 2017). This excessive
regularity makes the heart less flexible to changes, which may
be one of the causes of orthostatic hypotension (Smit et al.,
1999; Velseboer et al., 2011). Although RQA exhibited pairwise
statistical differences, when applied to 6-OHDA and SHAM
groups, it was still missing a proper physiological interpretation
associated with a more global and integrated analysis of these
factors, mainly for specific heart and autonomic conditions
related to PD, such as atrial fibrillation and long Q-T.

Finally, we projected all RQA factors calculated from the ECG
animal models, 6-OHDA and SHAM, onto the RQA PCA space
calculated from the four artificial ECG conditions (DET, AF,
LQT, and NS). With these projections, we quantify which of the
four artificial conditions the 6-OHDA group would statistically
resemble. In this way, by evaluating the centroid distances from
each aECG condition to the 6-OHDA conditions, we saw that
the sham cluster was the nearest group and the NSE cluster
was the furthest. Furthermore, for high noise intensity (0.99),
independent of the autonomic frequency ratio, the DET and AF
clusters were the closest clusters. This result is expected because
aECG models are limited and real ECG signals have complex
components (beyond noise and modulation) that differentiate
both from all aECG patterns.

Nevertheless, by looking at AF and LQT clusters (green and
blue), we see how their distances to 6-OHDA vary according
to different noise levels and autonomic modulations. For all
LF/HF ratios, the LQT clusters became closer to 6-OHDA for
a higher level of noise. This effect can occur because of the
addition of noise to the aECG tachograms, which may superpose
T- and P-waves, as shown in Figures 5A, 6C-E. Conversely, AF

clusters are closer to the 6-OHDA clusters for high values of
LF/HF modulation. This can be seen by comparing their ECG
morphologies, as shown in Figures 6C-E. Both signals, aECG AF
and ECG 6-OHDA, present no P-waves. This increases the R-R
intervals, which are expressed by the large vertical lines in their
RP (Figures 4B, 6C).

Although the metrics and model features under this
quantification were simplified (for human beings all parameters
used to construct the aECG must be readjusted), these results
suggest that 6-OHDA signals could be correlated with AF signals,
indicating a possible tendency of this pathology in PD (van Dijk
etal., 1993; Velseboer et al., 2011). Additionally, these results also
suggest that LF/HF modulation could lead to misinterpretations
due to changes in the morphology of ECG signals, making it
difficult to distinguish all groups from low noise values. The main
differences between groups were found for intermediate values
of LF/HF modulation, where the main changes in all groups
occurred, making it easier to pinpoint the cluster condition
closest to the 6-OHDA group. A previous study has already
indicated that AF is possibly related to autonomic imbalance,
especially when one of the branches is highly activated in relation
to others (Marwan, 2003).

It is important to note that the addition of noise in the
aECG tachograms may modify their aECG morphologies, which
may be a limitation of the model. Furthermore, any alteration
of heart calcium flux may also lead to an alteration in the
myocardial dynamics itself (Ren et al., 2004). These changes also
affect heart waveform dynamics, thereby promoting a possible
misinterpretation of HRV factors. Therefore, despite showing
that RQA factors are more sensitive to ECG and tachogram
dynamics, it is still necessary to know if there are well-defined
signatures associated with ECG changes caused by a lack of
autonomic modulation or by a lack of myocardial response.
Both causes can be interpreted as dysautonomia, and the source
of the autonomic imbalance (Shibata et al., 2009; Buob et al.,
2010) is not obvious from the ECG. However, we emphasize
that this issue is a general limitation for HRV analysis that uses
only ECG signals, and through RQA factors, it is possible to
assess not only “static pictures” of the ECG signals or global
coefficients (as averages and deviations along time) but also
a reflection of the recurrences and periodicities of the signals
(Shaffer and Ginsberg, 2017).

In summary, the artificial ECG patterns associated with RQA
factors can be a new approach to help understanding the complex
dynamics found in real ECGs. Here, despite the simplifications,
the RQA factors suggested that the 6-OHDA group can present
atrial fibrillation (AF) mainly for high values of LF/HF ratios.
It also pointed out that 6-OHDA ECG recordings exhibit high
variations in baseline and temporal regular events. These features
have been associated with reduced cerebral blood flow and,
recently, a high risk of sudden death from epilepsy (Billeci et al.,
2018; Khazaei et al., 2018).

This proof-of-concept study indicates that by applying RQA
technique on ECG signals from PD of animal models, they
present lower variability in periodicity (RR intervals) but higher
complexity in their baseline (amplitude). This means that the 6-
OHDA ECG signals exhibit more deterministic event intervals
but more stochastic traces. Most likely, these characteristics
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suggest a lack of autonomic modulation. We interpret it as an
“uncalibrated ANS” where both branches work together, but the
relationship between them is no longer cooperative, producing an
unbalanced heart dynamic. Although the application study was
limited due to the small animal samples, we believe this work
opens a new direction for the application of RQA to ECG signals.
RQA is a very promising technique to advance new studies
of heart-brain dynamics to elucidate other heart or autonomic
changes in PD patients.
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