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The cardiac autonomic nervous system (ANS) is the main modulator of heart function,

adapting contraction force, and rate to the continuous variations of intrinsic and

extrinsic environmental conditions. While the parasympathetic branch dominates during

rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and

repeatable increase of heart performance, e.g., during the “fight-or-flight response.”

Although the key role of the nervous system in cardiac homeostasis was evident to

the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the

complexity of its circuits has remained underestimated for too long. In addition, the

mechanisms allowing elevated efficiency and precision of neurogenic control of heart

function have somehow lingered in the dark. This can be ascribed to the absence

of methods adequate to study complex cardiac electric circuits in the unceasingly

moving heart. An increasing number of studies adds to the scenario the evidence

of an intracardiac neuron system, which, together with the autonomic components,

define a little brain inside the heart, in fervent dialogue with the central nervous system

(CNS). The advent of optogenetics, allowing control the activity of excitable cells

with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed

light on basic neuro-cardiology. This review describes how optogenetics, which has

extensively been used to interrogate the circuits of the CNS, has been applied to

untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic

control of heart function, in physiology and pathology, as well as those participating to

brain–heart communication, back and forth. We discuss existing literature, providing a

comprehensive view of the advancement in the understanding of the mechanisms of

neurogenic heart control. In addition, we weigh the limits and potential of optogenetics

in basic and applied research in neuro-cardiology.

Keywords: optogenetics, autonomic neurons, heart innervation, brain–heart axis, neurogenic heart control

PREFACE

From a simplistic point of view, the heart is amuscular pumpwhich powers blood in the circulation,
supplying oxygen, nutrients, hormones, and other tissue-derived mediators to all cells in the
body (Braunwald et al., 1967). The initial observation that automaticity of heart contractions was
independent from neuronal inputs, dates back to the second century, when Galen noted that “the
fact that the heart, removed from the thorax, can be seen to move for a considerable time, is a
definite indication that it does not need the nerves to perform its own function” (Charles, 1956).
Throughout the more recent history of physiology, the concept of the heart as a strictly “muscular
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self-operating organ” was sometimes disputed, but did finally
consolidate into a rock-solid notion with the cellular and
molecular characterization of cardiac pacemaker and conduction
system cells, still unanimously agreed (Keith and Flack, 1906;
Tawara, 1906;Wybauw, 1910; Lewis, 1911; James and Sherf, 1971;
Monfredi et al., 2010; Padala et al., 2021). It is undoubted that
the explanted heart, if perfused with an appropriate solution,
continues pumping while harvested from the organism (Ringer,
1883), and transplant of a heart disconnected from higher
nervous components is a common life-saving procedure for
patients with e.g., cardiac failure (McCartney et al., 2017).

It is, however, well-understood that the activity of the cardiac
pump is finely tuned to match blood supply with the varied
perfusional demand of the organism, e.g., increase of cardiac
output during exercise to fuel skeletal muscle requirements
(Higginbotham et al., 1986). Such extrinsic modulation of
heart contraction is primarily operated by the sympathetic and
parasympathetic branches of the autonomic nervous system
(ANS), which innervate the atrial (both branches) and ventricular
[mainly sympathetic neurons (SNs)] myocardium, exerting
grossly opposite effects on the frequency and force of contraction
(Zaglia and Mongillo, 2017). While the full-blown activation
of SNs, easily detectable, suggests the dominant effect of the
sympathetic branch of the ANS on heart control, preclinical
and clinical evidence underscores the regulatory power of the
parasympathetic nervous system (PNS) on heart function. While
the remainder parts of this review will mainly focus on SNs, the
reader is referred to Li et al. (2004) Lee et al. (2016), and Zasadny
et al. (2020) for reference.

A reductionist example of neurogenic heart regulation by SNs
is shown by the effect of a decrease in blood pressure, which
is immediately perceived by peripheral baroceptors, and reflects
centrally on the activation of sympathetic nervous system (SNS),
increasing heart rate (HR), contraction force, and peripheral
vasoconstriction, to restore the physiologic pressure values
(Heesch, 1999; Fadel, 2008). Beyond such rather unsophisticated,
single lane neuro-cardiac connection, however, the activity of
cardiac autonomic neurons is orchestrated by a complex network
of neural circuits established in the central nervous system (CNS)
[i.e., the central autonomic network (CAN)], which includes
various regions in the cortex, amygdala, hypothalamus, in the

Abbreviations:ACM, arrhythmogenic cardiomyopathy; ANS, autonomic nervous

system; α-MHC, α-myosin heavy chain; AP, action potential; AVN, atrio-

ventricular node; β-ARs, β-adrenoceptors; ChR, channelrhodopsin; CAN, central

autonomic network; CNS, central nervous system; CPVT, catecholaminergic

polymorphic ventricular tachycardia; CM, cardiomyocyte; DBH, dopamine-β-

hydroxylase; DRG, Dorsal Root Ganglion; ECG, electrocardiography; ENDO,

subendocardium; EPI, subepicardium; GFP, green fluorescent protein; HF, heart

failure; HR, heart rate; HRV, heart rate variability; INS, intrinsic nervous system;

LSG, left stellate ganglion; LV, left ventricle; ms, milliseconds; NA, noradrenaline;

NIR, near-infrared radiation; NG, Nodose Ganglion; NPY, neuropeptide Y; OLED,

organic light-emitting diode; PF, Purkinje fibers; PKA, PNS, parasympathetic

nervous system; protein kinase A; preBötC, preBötzinger Complex; PSN,

parasympathetic neuron; RA, right atrium; RV, right ventricle; SAN, sino-atrial

node; SCD, sudden cardiac death; SCG, Sympathetic Cardiac Ganglia; SN,

sympathetic neuron; SNS, sympathetic nervous system; TH, tyrosine hydroxylase;

3-D, three-dimension; UCNP, upconversion nanoparticles; VIP, vasoactive

intestinal polypeptide; VT, ventricular tachycardia; VF, ventricular fibrillation.

midbrain and pons, and in several nuclei in the medulla (Silvani
et al., 2016). These stations receive information from other
parts of the brain (e.g., emotional inputs), peripheral body
sensors (i.e., homeostatic inputs), as well as from the external
environment (i.e., sensory inputs), all of which are integrated
to come up with an appropriate response, acutely dictated to
the heart through preganglionic efferents converging on the
sympathetic and parasympathetic ganglia (Ardell and Armour,
2016; Silvani et al., 2016). Post-ganglionic “motor” neurons, in
turn, divaricate from the ganglia toward appropriate sections of
the heart and blood vessels, delivering the operative information
to the cardiovascular system (Franzoso et al., 2016; Di Bona et al.,
2020) (Figure 1).

In addition to a “loud” brain–heart communication in the
“fight-or-flight” reaction, however, a whispered and perpetual
neurocardiac dialogue, finalized to preserve the heart, and
organism’s homeostasis, has been demonstrated by a large
number of studies, including ours (Ogawa et al., 1992; Kanevskij
et al., 2002; O’Connell et al., 2003; Zaglia et al., 2012; Kreipke
and Birren, 2015; Pianca et al., 2019). Constitutive activity
of the ANS (both from the sympathetic and parasympathetic
branches) regulates HR on a beat-to-beat basis (Ahmed et al.,
1994; Lombardi et al., 1996; Poletto et al., 2011; Vanderlaan et al.,
2012; Moreno et al., 2019) and controls, in parallel, signaling
pathways impinging on cardiomyocyte (CM) proteostasis, size,
electrophysiology, and division (Ogawa et al., 1992; Kanevskij
et al., 2002; O’Connell et al., 2003; Zaglia et al., 2012; Kreipke and
Birren, 2015; Pianca et al., 2019). Beyond cardiac physiology, the
role of the “brain–heart axis” is increasingly being recognized
in cardiac pathology, as highlighted by the widespread use of
sympatholytic therapies (e.g., β-blockers) (Ponikowski et al.,
2016; Ibanez et al., 2018; Neumann et al., 2020). Chronic
sympathetic disturbances have a role in myocardial hypertrophy
(Zimmer et al., 1995; Kimura et al., 2007; Fukuda et al., 2015)
and heart failure (HF) (Kishi, 2012; Fukuda et al., 2015), and
acute sympathetic hyperactivity, during acute physical exercise
or following intense emotional stresses, is responsible for
arrhythmias and sudden cardiac death (SCD) in several genetic
cardiac disorders (e.g., Arrhythmogenic Cardiomyopathy,
ACM; Catecholaminergic Polymorphic Ventricular Tachycardia,
CPVT; Long QT Syndrome) (Leenhardt et al., 1995; Schwartz
et al., 2001; Wehrmacher et al., 2005; Lehnart et al., 2008; Basso
et al., 2009; Fukuda et al., 2015; Taggart et al., 2016; Corrado
et al., 2017; Agrimi et al., 2020; Winbo and Paterson, 2020;
Wleklinski et al., 2020), as well as in Takotsubo syndrome
(Sharkey et al., 2011). In addition, it is now well-accepted
that brain damage, by modifying autonomic control of heart
function, reflects negatively on cardiac health [e.g., patients
suffering a stroke have higher probability to develop secondary
adverse cardiac events (Touzé et al., 2005; Kim et al., 2017)].
Along the same lines, cerebrovascular diseases may cause cardiac
arrhythmias, potentially evolving in SCD (Mikolich and Jacobs,
1981; Kallmünzer et al., 2012; Ruthirago et al., 2016), and
depression has been shown to increase the incidence of coronary
artery disease (Bunker et al., 2003; Van der Kooy et al., 2007;
Carney and Freedland, 2017) and heart attacks (Van der Kooy
et al., 2007).
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FIGURE 1 | The complex neuronal circuitries underlying bidirectional “brain–heart” connection. Schematic representation of the “brain–heart axis.” Different regions of

the brain, belonging to the CAN process precise orders which are transmitted, through efferent preganglionic fibers, to both sympathetic (adrenergic) and

parasympathetic (cholinergic) cardiac ganglia. While PSN processes mainly innervate the SAN and the AVN, SNs invade the conduction system and the working

myocardium. The cardiac muscle is also innervated by intrinsic neurons (INS) and cardiac sensory neurons, whose cell bodies organize into the dorsal root ganglion

and nodose ganglion, and their afferent fibers project to different areas of the brain (created with BioRender.com).

In parallel with the increased interest in the “brain-to-
heart” communication, a number of studies unveiled that,
besides a highly intricated network of post-ganglionic autonomic
neurons (Janes et al., 1986; Kawashima, 2005; Zaglia and
Mongillo, 2017; Wink et al., 2020), the myocardium homes an
intrinsic nervous system (INS) (Armour et al., 1997; Fedele
and Brand, 2020). In addition, afferent neurons may mediate
the reverse “heart-to-brain” communication, by continuously
sending information to the CNS, which impacts on neuronal
circuits involved in perception, cognition, and emotional
processing (Schievink et al., 2017; Dal Lin et al., 2018)
(Figure 1).

When considering such complexity of the brain–heart
neural wiring, the awareness emerges that brain-to-heart
communication should not be simplified to the interaction
between a brainy regulator and a heartly executor. The “little
brain of the heart,” promoting this self-excitable muscle from
mere hydraulic pump to sophisticated “neuro-muscular” organ
(Armour, 2007, 2008), calls for its bright spot in the theater
of physiology.

Traditional methodologies of neuroanatomy,
neurophysiology, and pharmacology, which have commonly
been used in neuro-cardiology, are inadequate to untangle
the complex neuronal circuits linking the brain and the heart
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in an intimate bidirectional interaction. On the contrary,
optogenetics represents the novel biotechnological tool which,
by allowing spatially- and cell type-selective neuromodulation,
has the potential to functionally dissect the components of
the entire “brain–heart” circuitry, and resolve open questions
on physiologic mechanisms which have remained obscure
for a long time. This review will provide a description of the
brain–heart connection and discuss how optogenetics has started
to contribute shedding light on the unexpectedly intricated
“neuro-cardiac liaison.”

THE LIGHT TOUCH OF OPTOGENETICS

Optogenetics is a recently developed technology, which combines
physics, molecular biology, and electrophysiology (Boyden et al.,
2005; Deng et al., 2014) to enable contactless control of ion
flux across the plasma membrane of cells exogenously expressing
photoactivatable channel proteins consistently named “opsins.”
The method, singled out as Nature’s “Method of the Year 2010,”
relies on the discovery that a microbial-derived class of proteins,
with structural features resembling the well-known rhodopsins,
form ion channels with variable selectivity, while retaining light
sensitivity, two properties that allow to either depolarize or
hyperpolarize the membrane potential of excitable cells with
light irradiation at appropriate (i.e., depending on the opsin
type) wavelength. The algal light-sensitive cation-conducting
channelrhodopsins (ChRs) were among the first opsins to be
characterized and expressed in a specific cell population, within
a multicellular tissue of the experimental animal (Nagel et al.,
2002, 2003; Zhang et al., 2008), to interrogate the role of
specific neuronal circuits of the CNS. Two ChR variants have
initially been used in neuroscience: ChR2 from Chlamydomonas
reinhardtii (Boyden et al., 2005; Li et al., 2005; Nagel et al.,
2005; Bi et al., 2006; Ishizuka et al., 2006; Zhang et al., 2006)
and VChR1 from Volvox carteri (Zhang et al., 2008), endowed
with sufficiently fast kinetics to achieve action potential (AP)
triggered with brief light pulses (1–5ms), delivered at a frequency
suited to neuronal activation. For more detailed description on
the history and development of optogenetics, the readers are
referred to several topical reviews, some included in this same
Special Issue (Hegemann and Nagel, 2013; ref to be included
by editors).

The unique aspect which signed success of the technique,
compared with conventional electrophysiological methods,
based on electrical perturbation, are its non-invasiveness,
spatial-temporal accuracy, and cellular specificity (Pianca
et al., 2017; Sasse, 2018). The latter allowed to “interrogate”
the function of a selected cell type while enclosed in a
complex tissue, and intermingled with numerous different
cells, giving neuroscientists the tools to selectively study
a given brain region or even a single neural circuit
(Rajasethupathy et al., 2016; Pianca et al., 2017). Moreover,
the non-invasiveness of the technique allows to stimulate
cells multiple times or for long periods, with no damage,
an incredible advancement in experimental neuroscience,
where such technology was firstly tested, and rapidly became

a reference method (Pianca et al., 2017; Deubner et al.,
2019).

The rocketing potential of optogenetics drove molecular
biologists to expand the opsin variants toolkit, including newly
identified (i.e., from other microbial species) and molecularly
engineered opsins (for reference see: www.optogenetics.org).
This led to the generation of a large number of opsin variants,
endowed with specific ionic selectivity (e.g., for cations or
anions) enabling either cell hyperpolarization [i.e., PAK-K
(Bernal Sierra et al., 2018), BLINK-1 (Cosentino et al., 2015),
GtACR1 (Govorunova et al., 2016), ArchT (Han et al., 2011),
Halorhodopsin (Gradinaru et al., 2008), Jaws (Chuong et al.,
2014)] or depolarization [i.e., ChR2 (Nagel et al., 2003), CheRiff
(Hochbaum et al., 2014), ReaChR (Lin et al., 2013), Crimson
(Klapoetke et al., 2014)], different photocurrent kinetics and
sensitivity to differently-colored activation light, covering almost
the entire visible spectrum, from blue- to red-shifted variants.

Some years after its initial application to neurosciences,
the pioneering studies of Arrenberg (Arrenberg et al., 2010),
Bruegmann (Bruegmann et al., 2010), and Jia (Jia et al., 2011)
demonstrated that optogenetics can be applied also for the
study of heart electrophysiology. In particular, Bruegmann
and colleagues developed transgenic mice expressing ChR2 in
CMs and were able to pace heart contractions by shining
light on the epicardium, thus inducing ectopic heart beats
in vivo (Bruegmann et al., 2010). Simultaneously, Arrenberg
and colleagues combined the expression of Halorhodopsin and
ChR2 in zebrafish CMs, with the use of light sheet microscopy,
and achieved bidirectional control of HR in vivo, remotely
inducing tachycardia, bradycardia and cardiac arrest (Arrenberg
et al., 2010). In parallel, Jia et al. demonstrated “the utility of
optogenetics to cardiac muscle by a tandem cell unit (TCU),”
which “can serve not only as an elegant tool in arrhythmia
research but may form the basis for a new generation of light-
driven cardiac pacemakers and muscle actuators” (Jia et al.,
2011).

These proof-of concept experiments signed the beginning
of “cardiac optogenetics,” which was subsequently applied
to investigate biophysical aspects of cardiac physiology and
pathology [i.e., minimal cell mass required to activate ectopic
beats; role of Purkinje fibers (PFs) in arrhythmias (Zaglia
et al., 2015; Pianca et al., 2017)]. Undoubtedly, these studies
opened fascinating perspectives, but the inherent potential
of cardiac optogenetics (i.e., cell type specificity and non-
invasiveness) was uncovered by approaching the heart as a
complex network of different structurally and functionally
interconnected cell populations, including excitable (i.e., working
CMs, conduction system cells, efferent, intrinsic, and afferent
neurons), conducting (i.e., fibroblasts, resident, and recruited
inflammatory cells), and non-excitable (i.e., vascular cells)
cells (Pianca et al., 2017) (Figure 2). As heart homeostasis
relies on the activity of many multicellular “circuitries,” fine
dissection of the individual role of each cell type, with respect
to localization and myocardial interactions, has benefitted,
alike neurobiology, from optogenetic studies. Here, we will
focus on heart-innervating autonomic neurons, and present
examples of existing literature which describes how optogenetics
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FIGURE 2 | The multicellular nature of the myocardium. The myocardium is a complex network of different structural and functional interconnected cell types,

including intrinsic and extrinsic excitable, as well as non-excitable cells. Modified with permission from Zaglia et al. (2019).

allowed to: (i) improve the knowledge on the mechanisms
underlying physiologic neurogenic control of heart function; (ii)
investigate and lay new therapeutic concepts in arrhythmology,
and (iii) add new tiles to the understanding of the bidirectional
“brain–heart” interaction. In addition, we will comment on
the opportunities that optogenetic-based neuromodulation of
the heart could offer in the inspection of the multiplexed
connections between brain and heart, from the central to the
peripheral and heart intrinsic neuronal networks, impinging
on heart function, in physiological and pathological contexts
(Figure 3).

OPTOGENETICS ALLOWS UNTANGLE
CARDIAC NEURONAL CIRCUITRIES

In June 2021, the simple query of “optogenetics” and “neuron”
retrieves 5,700 hits in Pubmed, highlighting the aptness of
the method in neuroscience research, and as such its use to
interrogate the function of the cardiac neural network would
thus appear a trivial task. Non-invasive optical actuation of heart
neurons is a tremendously powerful technique, but it has to be
considered that the spectrum of cardiac effects of acute neuro-
cardiacmodulation is rather limited. Granted, HR and contractile
function can be monitored with standard methodologies (ECG,
echocardiography), but study of e.g., heart electrophysiology
at cellular level requires state-of-the-art methods to allow
investigation in vivo. Thus, combination with equally advanced
readouts of heart function is necessary, as discussed in more
detail in Chapter 6.

The Unexpected Extent of Cardiac
Sympathetic Innervation
As discussed in Chapter 1, the parasympathetic and sympathetic
branches of the ANS are both present in the myocardium,
with parasympathetic neurons (PSNs) detectable in SAN,
atrioventricular node (AVN), atria and cardiac blood vessels,
and SNs innervating both the conduction system and the
working myocardium of atria and ventricles (Franzoso et al.,
2016) (Figures 4A,B). Heart innervation by the ANS has long
been recognized in both physiology and diseases, as exemplified
by the common use of β-adrenoceptor (β-AR) antagonists,
inhibiting the main sympathetic neurotransmitter receptor, in
several cardiovascular diseases (Zaglia and Mongillo, 2017).
However, the precise anatomy, the extent and intercellular
contacts of cardiac innervation have remained, quite surprisingly,
understudied and elusive for a long time, partly due to
technical limitations and methodologic difficulties. Here, we
will mainly focus on SNs, whose processes display a “pearl
necklace” morphology, characterized by regularly distributed
varicosities, which are the neurotransmitter [i.e., mainly
noradrenaline (NA) and neuropeptide Y (NPY)] releasing sites,
contacting myocardial target cells (Zaglia and Mongillo, 2017)
(Figures 4A,B). Characterization of SN topology was initially
obtained by the analysis of thin rodent heart sections, stained
with antibodies to enzymes involved in NA biosynthesis, which
allowed to demonstrate that SNs heterogeneously distribute
among the four heart chambers, with the highest density of
nerve fibers in the atria, followed by the right (RV) and left (LV)
ventricle (Di Bona et al., 2020). Moreover, across the ventricular
walls a transmural gradient of SN density, from the epicardium to
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FIGURE 3 | Optogenetic interrogation of the brain–heart axis at multiple sites. Schematic representation of the different brain–heart connecting circuitries which have

been or could be interrogated by optogenetics (created with BioRender.com).

the endocardium can be detected in a specie-specific distribution
in different mammalian hearts (Randall et al., 1968; Glebova and
Ginty, 2004). Consistently, we recently estimated, in the mouse
heart, one SN process every two CMs in the sub-epicardium
(EPI), while the density appeared decreased in the sub-
endocardial region (ENDO) (Pianca et al., 2019). Interestingly,
such innervation pattern is different, in rat hearts, in which
SN density is similar in the EPI and ENDO regions, while in
rabbit, pig, and human, SNs are highly represented in the ENDO
region (Pianca et al., 2019). Although the results presented above
advanced the anatomical details in the study of heart innervation,
they were not designed to define the three-dimensional (3-D)
topology of the cardiac sympathetic network. To achieve this
goal (and aligned with the broader definition of “optogenetics”
i.e., the use of genetically-developed and cell-targeted optical
sensors in biology), Freeman et al. used two-photon fluorescence
microscopy, combined with computer-assisted image analyses, to
generate, in small cardiac volumes from mice with SN-specific
expression of Green Fluorescent Protein (GFP), the first 3-
D reconstruction of the cardiac SN network (Freeman et al.,
2014) (Figure 4C). While the inspection of thin heart sections
suggested the coexistence of innervated and denervated CMs,
the 3-D reconstruction of the neuronal tree revealed that SNs

are represented in the heart with a density much higher than
expected and suggested that each CM may be simultaneously
contacted by several neuronal processes, all of which establish
multiple neuro-muscular contacts at the regularly displaced
neuronal varicosities. In keeping with the inclusive definition
of opto-genetics, we took advantage from the co-expression of
fluorescent td-Tomato in CMs of the α-MHC/ChR2-td-Tomato
transgenic mice, to define in higher detail, in the intact 3-D
tissue, the topology of interactions between SNs and CMs. To
this aim, we applied a modified version of “CLARITY” tissue
transformation (Chung and Deisseroth, 2013; Chung et al., 2013)
and imaged with multiphoton microscopy both the red-native
fluorescence of CM sarcolemma and SNs stained with anti-
Tyrosine Hydroxylase (TH) antibody. This allowed demonstrate
that, in the mouse heart, each CM is contacted by at least one
SN and that, most frequently, a single CM receives multiple
neuronal inputs from different processes (Figure 5). Notably, the
3-D reconstruction of the SN network in autoptic human heart
blocks confirmed both such extent and the complexity of cardiac
sympathetic innervation at microscopic level (Figure 6) (Pianca
et al., 2019), although a fine characterization of the topology of
autonomic innervation, throughout the whole myocardium, is
still unavailable.
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FIGURE 4 | Bi- and three-dimensional topology of cardiac sympathetic innervation. (A) Confocal immunofluorescence of the SAN of a normal adult mouse,

co-stained with antibodies to tyrosine hydroxylase (TH) and HCN4, to identify SN processes and pacemaker cells, respectively. (B) Confocal immunofluorescence

imaging of ventricular myocardial section from normal adult mice, stained with antibodies to TH and cardiac troponin I (cTnI). Nuclei are counterstained with DAPI. The

image is a detail from the LV subepicardial region. (C) 3-D reconstruction, at the multi-photon microscope of the sympathetic network within a portion of the LV

subepicardium in an adult, Langendorff-perfused DBH-GFP heart. A segment of 230µm by 28µm by 50µm was imaged. (A–C) Modified with permission from

Prando et al. (2018) (A), Zaglia and Mongillo (2017) (B), and Freeman et al. (2014) (C).

A Lightly Inspection of Neurogenic Control
of Heart Activity
Sympathetic neurons modulate the rhythm and force of heart
contraction through the effects of NA activation of CM β-
ARs (mainly β1-ARs), increasing intracellular [cAMP] which,
in the SAN, directly enhances If, increasing the rate of
spontaneous automaticity, and, in ventricular CMs, enhances,
mainly through PKA activity, the extent of Ca2+ turnover at
each cardiac cycle (Zaccolo and Pozzan, 2002; Stieber et al.,
2003; Rochais et al., 2004; Bers, 2008; Difrancesco, 2010).

While these effects allow short-term adaptation of cardiac

function to increased perfusional demand (e.g., exercise or
emotional stress, intrinsic homeostatic mechanisms), we recently

demonstrated that, in parallel, constitutive SN inputs are required
to maintain physiologic size of the adult heart, acting on the
equilibrium between protein synthesis and degradation, via
the β2-AR/Akt/Foxo/ubiquitin ligase signaling pathway (Zaglia
et al., 2012). That the SNS affects heart structure and signaling,
in basal conditions, has been demonstrated by several studies
(Ogawa et al., 1992; Kanevskij et al., 2002; O’Connell et al.,
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FIGURE 5 | Three-dimensional imaging of the neuronal network in the murine myocardium. (A) Maximum intensity projection of multiphoton image stacks acquired

along 400µm in tissue clarified LV blocks from the EPI and ENDO regions of a α-MHC/ChR2-td-Tomato mouse heart, stained with an antibody to TH. Red emission

of td-Tomato was used to identify CM membrane. (B) Representative single optical section of a sample processed as in (A), resolving the neuro-cardiac interactions,

and used for quantification of neuronal processes/cell in EPI and ENDO regions (C). (A–C) Modified with permission from Pianca et al. (2019).

2003; Zaglia et al., 2012; Kreipke and Birren, 2015; Pianca et al.,
2019). Taken altogether the results described above support the
concept whereby the ANS controls cardiac function across a wide
effect range covering both the subtle physiological variation in
inter-beat interval (known as heart rate variability, HRV) and
constitutive control of CM trophism, in basal conditions, to
the urgent chronotropic and inotropic responses of the “fight-
or-flight” reaction (Zaglia and Mongillo, 2017). In view of this
evidence, one naturally wonders what mechanisms allow such
flexible, yet accurate, control of heart homeostasis, and the
unique potential of optogenetics was thus exploited to delve
into neuroeffector mechanisms underlying cardiac SN function.
With this scope, the Kay group generated in 2015, transgenic
mice expressing ChR2 under control of the SN promoter, TH,
which were used, in a proof-of-principle study, to optogenetically
activate SNs and address the dynamics of the events linking
β-AR activation to changes in cardiac function, in isolated
Langendorff perfused hearts. In support of the method feasibility,
photo-stimulation of cardiac neurons on the epicardial surface
of isolated hearts caused positive chronotropic and inotropic
responses, accompanied to reduced AP duration, and fast
pacing elicited sustained arrhythmias, thus demonstrating the
usefulness of the technique to address the effects of SNs in

cardiac physiologic and pathologic mechanisms (Wengrowski
et al., 2015). The neural influence on HR was also studied
using optogenetics in Drosophila melanogaster, which, although
phylogenetically far from mammals, represents an experimental
model suited for genetic manipulation and allows easy molecular
investigation of signaling mechanisms in both heart physiology
and pathology (Malloy et al., 2017). Optogenetic actuation was,
additionally, exploited in in vitro studies, both in primary and
human Pluripotent Stem Cells (hPSC)-derived SNs, establishing
“physical and functional connections and controlling the beating
rate of cultured CMs” which, in turn, impacted on neuronal
maturation, thus supporting that bi-directional crosstalk takes
place between SNs and CMs (Oh et al., 2016). The retrograde
transfer of molecules from heart to cardiac autonomic neurons
was exploited for organ-targeted expression of opsins, by
heart injection of adeno-associated virus, which allowed vagal
neuromodulation of HR (Fontaine et al., 2021).

Altogether, these studies support the potential of
optogenetics in the study of fundamental questions in neuro-
cardiology, including the signaling dynamics underlying
neuro-cardiac communication.

Although the rapid and efficient control of heart contraction,
operated by SNs, exemplifies neurogenic regulation of organ
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FIGURE 6 | Three-dimensional imaging of the neuronal network in the human

myocardium. Topology of the SN network, reconstructed with 3-D rendering of

600 images acquired with a multiphoton microscope along 200µm, upon

whole-mount immunofluorescence in 1 mm3 LV blocks from the EPI region,

stained with anti-TH antibody. Images were acquired with an 18× objective,

1.1 NA, allowing a large field of view (850 × 850µm) at high resolution. A

segment of (850 × 850 × 200) µm was imaged. mage series were acquired

along the Z-axis, with a step size of 1.5µm and processed and analyzed with

a software for 3-D rendering (Imaris). Images modified with permission from

Pianca et al. (2019).

function, the preferred view on sympatho-cardiac coupling in
mainstream physiology aligns it more to a neuro-endocrine
process than to a mechanism underlain by direct intercellular
signaling. Activated SN processes, flanking CMs with no
structured contacts, would simply discharge NA in the
myocardial interstitium, at a concentration sufficient to activate
β-ARs (Mann et al., 2014). However, such “reductionist” model
does not explain convincingly the very fast (i.e., immediate)
kinetics of heart response to SN activation, its efficiency and
repeatability. With the aim to resolve these discrepancies, we
used a combination of static (i.e., confocal immunofluorescence,
electron microscopy) and dynamic (i.e., neuronal optogenetics
combined to live imaging of cAMP or pharmacologic assays)
optical methods to comprehensively address the neuro-cardiac
interaction in vitro and in vivo. Co-cultures of SNs and
CMs showed that neuronal varicosities establish structured
intercellular contacts with CM membrane which define a
diffusion-restricted, small volume intercellular signaling domain,
allowing few molecules of NA to activate target cells at high
concentration. These results indicated that direct synaptic
communication occurred between SNs and CMs. To test whether
this concept held true in the intact innervated heart, we
reckoned optogenetics was the election method, and exploited
the same set up, previously developed for cardiac optogenetics
(Zaglia et al., 2015), to photo-stimulate the sympathetic efferents
innervating the right atrium (RA), in living TH/ChR2-td-
Tomato transgenic mice, while monitoring HR (Figures 7A,B).
By combining photoactivation of sub-millimetric regions of
the RA surface with pharmacologic inhibition assays using β-
blockers, we demonstrated that SNs communicate with target
CMs at directly interacting neurocardiac junctional sites, with
fast kinetics and high [NA], favoring a “synaptic” rather than

endocrine coupling model (Prando et al., 2018) (Figures 7C–E).
Following a similar approach, Burton and colleagues applied
optogenetics to interrogate the effects of SNs on “macroscopic”
dynamics of a CM network in vitro, with the aim to identify
arrhythmia mechanism in a cell-based system (Burton et al.,
2020). In line with the results described in Prando et al., and
those corroborated by the same group in 2019 (Pianca et al.,
2019), this research promoted the concept that innervated CMs
“can potentially receive NA simultaneously from multiple point
sources, and integrate downstream the cumulative neuronal
input at signaling level,” which support our speculation that direct
neurocardiac coupling may explain how heart responses “can
be graded across the wide physiological range of action of the
cardiac SNS” (Zaglia and Mongillo, 2017) (Figure 8).

By taking advantage from the cell-type specificity of
optogenetics, Kay’s group progressed with the cognate of
their previous work on SNs (Wengrowski et al., 2015), by
targeting ChR2 to cholinergic neurons, and showed that PSN
photoactivation, by inducing acetylcholine release, resulted in
very rapid HR decrease (Moreno et al., 2019). In the same
year, Rajendran et al. combined optogenetics to tissue clearing
and physiological measurements, achieving higher anatomical
details of vagal afferent and efferent fibers innervating the heart,
thus further confirming the high complexity of heart neuronal
circuitry, and advanced the understanding of the mechanisms
involved in neurogenic control of HR (Rajendran et al., 2019).

Overall, these studies undoubtedly indicate that optogenetics
is a tool suited “to provide new scientific insights into the
structure and function of peripheral neural circuits” although “to
disentangle neural control of autonomic physiology and enable a
new era of targeted neuromodulation approaches” a combination
of functional, imaging and physiologic approaches needs to be
employed (Rajendran et al., 2019).

Optogenetic Interruption of The Cardiac
Arrhythmic Chaos
In normal hearts, the origin, sequence, and timing of cardiac
activation repeat with identical characteristics at every heartbeat.
The term arrhythmia, whichmeans “out of rhythm,” indicates the
alteration of any of the physiologic features of heart activation,
including both faster and slower HRs, the abnormal origin of
the cardiac activation wave, its faulty propagation throughout the
different heart regions or, in its extrememanifestation, the erratic
depolarization of heart cells. Due to the dramatic consequences
which arrhythmias may have (i.e., SCD), the heart possesses a
series of protective mechanisms to avoid uncontrolled cardiac
activation, which include both cellular factors (i.e., refractoriness)
and tissue properties, including the functional anatomy of the
conduction system, and the electrotonic coupling of the CM
network, which protects from initiation of cardiac contraction
following stochastic activation of few cells (Hoyt et al., 1989; Rohr
et al., 1997; Xie et al., 2010; Myles et al., 2012; Zaglia et al., 2015).
As arrhythmias may develop when such protective properties
are overcome, deeper understanding of these mechanisms is
necessary to identify the cause and possible treatment of specific
rhythm disturbances. In this context, the cell specificity, the
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FIGURE 7 | Optogenetic assessment of neuro-cardiac coupling in vivo. (A) Schematic illustration of the neuronal optogenetic set up used for right atrium (RA)

illumination in open chest anesthetized mice. (B) Representation of the different photostimulated atrial regions (areas#1–2). (C) Representative ECG trace of the

optogenetic experiment, showing positive chronotropic response upon photoactivation (blue lines) of the RA area#1 in TH/ChR2 mice. (D) Representative ECG trace

showing unchanged HR upon illumination of RA area#2. (E) Dose-effect analysis of the treatment with the β-AR antagonist, propranolol, on the chronotropic response

to neuronal photostimulation. Blue symbols identify responses to photostimulation, while the white ones show the effects of systemically delivered NA (***P < 0.001;

*P < 0.05). Images modified with permission from Prando et al. (2018).

elevated spatial and temporal precision of optogenetics have
been exploited to determine the respective role of aberrant
activation of either PFs or common CMs in the generation
of ectopic cardiac activation foci and subsequent initiation of
sustained arrhythmias (Zaglia et al., 2015). In addition, based
on the advantages which optogenetics may offer, compared
to conventional defibrillation (for a review see Entcheva and
Kay, 2021), this technology allowed to successfully achieve
cardioversion of atrial fibrillation in living mice (Bruegmann
et al., 2018) and optogenetic cardioversion or defibrillation have
been described, up to now, in a number of studies (Bruegmann
et al., 2016; Scardigli et al., 2018; Uribe et al., 2018; Cheng et al.,
2020; to name a few).

It is well-appreciated that the activity of SNs may increase
arrhythmic vulnerability both through direct effects on single
cell physiology and by reducing the “protective” myocardial
properties at tissue level. In stress-dependent arrhythmogenic
syndromes (e.g., CPVT, ACM), the link between SN activation
and arrhythmia triggering has been shown both in single
cells and experimental animals (Cerrone et al., 2005; Lehnart
et al., 2008), and extensively supported by clinical evidence

(Corrado et al., 1990, 2015; Amar et al., 2003; Collura et al.,
2009; Shen and Zipes, 2014). In addition to the cellular effects
of adrenergic stimulation, the concept that unbalanced NA
discharge, by cardiac SNs, has arrhythmogenic potential has
been suggested a few decades ago, and demonstrated since
then in both structurally normal hearts of arrhythmic patients
and ischemic hearts (Fukuda et al., 2015; Zipes, 2015; Gardner
et al., 2016). The mechanism whereby regional heterogeneity of
sympathetic inputs causes arrhythmia is indeed associated with
AP dispersion, an electrophysiological state favoring ventricular
arrhythmias. In support that regional differences in cardiac
adrenergic stimulation promote arrhythmias, local injection of
NA, in isolated perfused hearts, caused the onset of ectopic
beats, which were not elicited by global perfusion with the same
concentration of the catecholamine (Myles et al., 2012). It is
foreseeable that optogenetics, allowing to deliver, with flashes of
differently colored lights, the “go” (neuronal depolarization) or
“stop” (neuronal hyperpolarization) signs to selected neuronal
populations, appears ideally tailored to experimentally address
the mechanisms correlating arrhythmias with SN function.
The strong link between autonomic neuron input and cardiac
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FIGURE 8 | Integration of multiple neuronal inputs by the innervated

cardiomyocyte. (A) Recent advancements in imaging cardiac sympathetic

innervation demonstrate that each CM interacts with multiple contacts from

the same neuronal process (each varicosity is highlighted by one color) and

may simultaneously be innervated by different neurons (two neurons in the

picture are represented by filled or half-filled circles, respectively). (B) We thus

made the hypothesis that activation of increasing number of varicosities, and

recruitment of more neuronal processes, may allow grading of the responses

of target cells from basal to maximal activation, across a wide range of

intermediate effects. Modified with permission from Zaglia and Mongillo (2017).

arrhythmias, and the success of heart sympathetic denervation in
reducing ventricular arrhythmias in sufferers from familial stress-
dependent arrhythmogenic syndromes, have already fueled
trust in the potential of autonomic neuromodulation of
interrupting the electrical chaos of fibrillating arrhythmias,
preserving the consonance of regular heart activation. This
concept has been tested in the study by Yu and colleagues,
showing that reversible optogenetic inhibition of the left stellate
ganglion (LSG) activity increased electrophysiological stability
and protected against post-ischemic ventricular arrhythmias.
The authors expressed, by AAV9 infection, the photoactivated
hyperpolarizing protein ArchT in the LSG of dogs and induced
myocardial ischemia with left descending coronary artery
ligation. Notably, photoinhibition of the transduced neurons
significantly reduced the incidence of post-ischemic ventricular
tachycardia (VT) and ventricular fibrillation (VF), providing
“proof-of-concept results of optogenetic arrhythmia therapy in
a large-animal model” (Yu et al., 2017; Entcheva and Kay,
2021) (Figure 9). The results of this study are in line with

those obtained in 2012 by Mastitskaya et al. who demonstrated
that photoactivation of vagal preganglionic neurons exerted
protective anti-arrhythmic effect in a rat model of myocardial
ischemia/reperfusion injury (Mastitskaya et al., 2012). Thus, the
distinctive properties of optogenetics, and the flexibility of opsin
expression in either selective intrinsic heart cells (i.e., CMs,
PFs) or extrinsic modulators (i.e., SNs, PSNs) have opened the
road to better understanding and novel treatment of arrhythmia
mechanisms. Excitement and curiosity are in the air while
expecting to see, as in the words of the poet Apollinaire, the voice
of light tune cardiac rhythm.

CAN OPTOGENETICS UNCOIL THE
INTERTWINED BRAIN-TO-HEART
CONNECTIONS?

The functional connection between the brain and the heart has
been surmised several centuries ago, based on the appreciation
that intense emotions and/or stresses reflected on the perceivable
increase of HR and contraction force, frequently occurring in
physiologic contexts, but could, at times, cause sudden heart
arrest and death (Coote, 2007; Samuels, 2007). The neurogenic
modulation of heart function, enacted by heart-innervating
autonomic neurons, is in fact the integrated end-effect of
numerous higher-order neuronal circuits which, from cortical,
subcortical, and brainstem sites, converge on and regulate
the activity of “motor” post-ganglionic autonomic neurons.
Such hierarchical and multiplexed neuronal network allows the
simultaneously active inputs of the somato-sensory system, sense
organs, brain areas processing emotions, memory, and fear, to be
marshaled into the system and reflect, with varied intensity and
dynamics, on the degree of regulation of heart function.

The anatomical basis of the “brain-to-heart” communication
are, accordingly, grounded on complex neuronal circuitries,
which lay the physical connection between the two organs
(Figure 10). In its schematized representation, this neuronal
network includes cortical and subcortical forebrain structures
(i.e., cortex, insula, amygdala, and hippocampus, and their
interconnecting systems), as well as the hypothalamus, the gray
matter around the cerebral aqueduct (i.e., periaqueductal gray),
and the nuclei of the parabrachial complex at the junction
between the pons and brainstem (Augustine, 1996; Verberne
and Owens, 1998). To further increase the complexity of this
scenario, the central portion of the amygdala “receives inhibitory
projections from the prefrontal and orbitofrontal area and is
connected with the hypothalamus and the brain stem nuclei
involved in control of the cardiac function and, thereby, seems
to modulate the effects of emotional stimuli (especially negative
emotions) on the heart” (see Tahsili-Fahadan and Geocadin, 2017
for a compendium). Furthermore, the hypothalamus is a transit
point of information from the brain cortex and, in preclinical
models, “the cardiac effects of stimulation of the lateral and
anterior hypothalamus are preventable by sympathectomy and
vagotomy, respectively” (see Tahsili-Fahadan andGeocadin, 2017
for a compendium). Although the detailed anatomy and function
of each of these brain regions, and the modalities whereby they
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FIGURE 9 | Optogenetic-based interruption of cardiac arrhythmias. (A) Schematic representation of the potential role of neuronal optogenetics in stopping ventricular

arrhythmias. Photostimulation of ArchT with 565 nm light inhibits SNs, leading to significant decrease in arrhythmic events after myocardial ischemia. (B)

Representative examples of ischemia-induced ventricular arrhythmias (Vas). (C) Quantitative analysis of the incidence of ischemia-induced VAs showed that

optogenetic modulation significantly decreased the number of ventricular premature beats (VPBs). (A–C) Modified with permission from Yu et al. (2017) .

are connected to the gray matter of the spinal cord, where cell
bodies of sympathetic ganglia neurons reside, is beyond the
scopes of this review, this outlook serves to show the complexity
of the extended brain–heart axis.

Understanding of the effects of brain areas described above
on the heart, has mostly been obtained in animal models, and
has conventionally used either electrophysiologic stimulation
as trigger, and assessment of cardiac function as readout, or
the destructive approach based on the analysis of functional
effects of removal/lesion of specific brain regions. As an example,
stimulation of the caudal and rostral posterior insular cortex in
rats has been shown to decrease or increase HR, respectively,
the latter effect elicited by activation of sympathetic outflow, as
shown by its ablation with the β-blocker, atenolol (Oppenheimer
and Cechetto, 1990). Combination of electrophysiological studies
with surgical procedures (i.e., occlusion of cerebral arteries) has
been employed to increase the depth of investigation. As example,

monolateral occlusion of cerebral arteries supplying the insular
cortex, in rats, prompted the “laterality hypothesis” whereby
the right and left insula mediate increased sympathetic and
parasympathetic tone, respectively, a phenomenon attributed
to “the lateralized distribution of the baroreceptor units and
processing of the emotions” (Oppenheimer et al., 1992; Zhang
et al., 1998; Hilz et al., 2001) (see Tahsili-Fahadan and Geocadin,
2017 for a compendium).

Although these studies have undoubtedly advanced the
understanding of neuro-cardiac anatomy and physiology, further
progress requires higher precision and better definition of
the function of cardiac wiring. Optogenetics is suited to
be the “Rosetta Stone” enabling to decode the “brain–
heart” talk, by systematically interrogating the effect of
the different neuronal circuits impinging on heart function,
in the living organism. Although such studies are still
relatively scarce, we here present some relevant examples. Paul
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FIGURE 10 | Neural control of the cardiovascular system. Afferent and efferent pathways are shown in green and red lines, respectively. The figure has been simplified

to illustrate the major cortical, subcortical, and brain stem areas involved in control of the cardiovascular function. Most areas are interconnected. For anatomic details

and physiological effects of the illustrated pathways, please refer to the text and the original article. Adapted with permission from Tahsili-Fahadan and Geocadin

(2017). Adapted from “Anatomy of the Brain,” by BioRender.com (2021). Retrieved from (app.biorender.com/biorender-templates).

and colleagues, by combining multielectrode recording with
optogenetic manipulations, showed that vasoactive intestinal
polypeptide (VIP)-releasing neurons elicit diurnal waves of
GABAergic input to cells of the paraventricular hypothalamus
and ventral thalamus, while suppressing their activity during the
mid to late hours of the day. Such circuit is involved in the
circadian modulation of several physiologic functions, including
HR (Paul et al., 2020). In addition, optogenetics elucidated how
coordination between respiratory and cardiovascular functions
is achieved. The combination of excitatory and inhibitory
optogenetics with experiments of neuronal tracing, in rats,
demonstrated that “preBötzinger Complex” (preBötC) neurons
modulate cardiac PSN activity whilst excitatory preBötC neurons
modulate sympathetic vasomotor neuron activity, resulting in
HR and blood pressure oscillations in phase with respiration
(Menuet et al., 2020). A similar approach, in rodents, was
able to discern the mechanisms involved in arousal, wake-sleep

cycle, and their impact on cardiovascular and respiratory control
(Guyenet, 2006; Guyenet and Abbott, 2013; Smith et al., 2013;
Dampney, 2016; Luppi et al., 2017; Saper and Fuller, 2017;
Scammell et al., 2017; Del Negro et al., 2018; Benarroch, 2019).

In parallel to studies aimed to untangle central neuronal
circuitries impacting on heart activity in physiology, optogenetics
was also applied to complex neuro-cardiac pathologies, including
e.g., the study of the bidirectional link between psychiatric
disorders and heart diseases (Cheng et al., 2012).

Thus, the message emerging from this frugal overview of some
examples on the theme, is that optogenetics may be a valuable
tool to uncover the mysterious and multifaced “brain-to-heart”
relationship. However, because of the incredible anatomical
and functional complexity of the neuronal circuitries, which
tie reason to feeling, optogenetics needs to be assisted in the
task by other methodologies, including neuronal imaging, tissue
clarification, behavioral, and functional studies.
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FIGURE 11 | The little heart brain. Schematic representation of cardiac intrinsic ganglia. Ao, aorta; PA, pulmonary artery; LAA, left atrial appendage; LCA, left coronary

artery; LIPV, left inferior pulmonary vein; LSPV, left superior pulmonary vein; RAA, right atrial appendage; RCA, right coronary artery; RIPV, right inferior pulmonary vein;

RSPV, right superior pulmonary vein. Modified with permission from Wink et al. (2020).

MAY OPTOGENETICS SHED LIGHT ON
THE UNEXPECTED “HEART-TO-BRAIN”
CORRESPONDENCE?

The long consolidated understanding on the basic principles
of heart physiology has somewhat concealed, or obscured,
the increasing number of studies showing the extent of its
nervous component.

The heart homes indeed a large series of different neuron
types orderly networked in subsystems and circuits, receiving
(as described above), integrating and sending neuronal impulses
from and to the brain, justifying the proposed concept of “the
little brain” of the heart (Armour, 2007, 2008). In addition
to the efferent fibers of the two main branches of the ANS,
the myocardium is densely innervated by sensory neurons, and
the two systems are peripherally regulated by the interacting
neurons residing in the INS. Cardiac sensory afferent neurons
project to the CNS, transferring information of the chemo-,
pain, and mechano-sensors which monitor the biochemical and
mechanical state of the heart, mainly via release of substance P
and calcitonin gene-related peptide (Hoover et al., 2008). The
cell bodies of sensory neurons are found in spinal dorsal root
ganglia, extracardiac intrathoracic, and intrinsic cardiac ganglia
(Tahsili-Fahadan and Geocadin, 2017), and their ascending fibers
take part to the IX and X cranial nerve and interact with
the autonomic nuclei of brainstem, hypothalamus, amygdala,
thalamus, and cerebral cortex (Tahsili-Fahadan and Geocadin,
2017) (Figure 10).

The cardiac INS consists of a network of interconnected
neuronal plexi which are located within specific heart regions,

mainly the epicardial fat pads, and innervate the SAN (by
the right atrial ganglionated plexi) and AVN (by the inferior
vena cava–inferior atrial ganglionated plexi), as well as the
pulmonary vein–left atrial junction (Armour et al., 1997; Tan
et al., 2006; Tahsili-Fahadan and Geocadin, 2017) (Figure 11).
Most cardiac intrinsic neurons are interneurons, mediating
transmission of information within the resident ganglia. Such
neuronal population is functionally connected to the efferent
fibers of autonomic neurons in a two-way communication, which
leads to a mutual influence on the nervous activity (Beaumont
et al., 2013). Such complexity of cardiac neuronal circuitries and
the notion that the heart sends collectively more signals to the
brain than it receives, supports the recent findings attributing
to the heart the capacity to perceive pain, independently from
specialized brain centers (e.g., the thalamus), andmay explain the
involvement of the heart in regulation of central neurons of those
regions (Alshami, 2019).

Interestingly, like the autonomic extrinsic efferents,

remodeling of the cardiac afferents, and the INS may also

occur in cardiac diseases, and have an impact on central

neuronal circuitries (Armour, 2004). That a primary heart

dysfunction negatively impacts on the correct function of

higher neuronal centers is now supported by a large number
of researches. As an example, it is a well-accepted notion that
patients suffering from HF have increased incidence of stroke
(mainly attributed to reduction in brain perfusion caused
by cardiac contractile dysfunction), but also show cognitive
decline, anxiety (Scherbakov and Doehner, 2018) and depression
(Moradi et al., 2021). These may in turn, reflect on the activity
of cardiac autonomic efferents, in a vicious cycle whereby
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cardiac pathology alters “heart-to-brain” communication,
affecting “brain-to-heart” response, further compromising
heart structure and function. In support of this concept, Koba
and colleagues, have recently used optogenetics to show that
sympatho-excitatory input from hypothalamic neurons, which
project to the rostral ventrolateral medulla (RVLM), is enhanced
after myocardial infarction (Koba et al., 2020). In addition,
photostimulation of ChR2-expressing astrocytes in the RVLM
of rats increased HR, through ATP-dependent enhancement of
sympathetic activity. Notably, “facilitated breakdown of ATP
in the RVLM attenuates the progression of LV remodeling and
HF secondary to myocardial infarction” (Marina et al., 2013).
The studies described above are based on the identification of
central circuitries which, by receiving erroneous information
from damaged myocardium, give wrong orders to the heart,
thus further worsening its dysfunction. On the contrary, the use
of neuronal optogenetics to decode the communication among
the different cardiac neuronal circuitries and define their effects
on heart function and homeostasis, although fascinating, has
never been tested thus far, likely because of several technical
limitations, discussed below in Chapter 6. Similarly, the use of
cardiac optogenetics to dissect the mechanisms linking changes
in myocardial contractile activity to alteration in CNS, which
holds a high translational potential, has not been attempted.
These represent rather unexplored territories to take a look at
with neurocardiac optogenetics.

OPTOGENETICS IN NEURO-CARDIOLOGY:
ONLY A DELUSION?

The studies described so far support that optogenetics is a very
promising technique potentially very useful for decoding nerve
circuits which bind, in a mutual dependence, the brain and the
heart. However, peripheral neuron optogenetics (including that
applied to neuro-cardiology) has a number of specific limitations
with respect to its more common application in the field of
neuroscience. Firstly, the popularity of the method in the study of
central neuronal circuits has prompted the parallel development
of technical means to deliver light (e.g., through lightweight
fiber optics stably implanted in the skull), while similar devices
usable for peripheral neuronal optogenetics are still in the early
phase. This allowed to perform experiments in freely moving
mice, often with immediate and easily quantifiable readouts
(i.e., movement, behavior). On the contrary, interrogation of
cardiac autonomic neurons has been performed, due to obvious
anatomical constraints, in mice under anesthesia, which is well-
known to interfere with neuronal activity (Yu et al., 2017;
Prando et al., 2018; Moreno et al., 2019; Rajendran et al.,
2019; to cite a few). In addition, when conscious animals
are experimented, peripheral nerves in soft, moving tissues
are easily injured during fiber-optic implantation, which may
cause persistent irritation at the biotic/abiotic interface and
constraint natural movements, thereby affecting or preventing
free motions and increasing e.g., stress and anxiety (Zhang
et al., 2019). This is particularly important when addressing

the study of intra-organ (SN-CM) and inter-organ (brain–heart)
neuronal communication. The scenario is further complicated by
the technical difficulty of simultaneously operating optogenetic
neuronal actuation, while monitoring cardiac readouts (e.g.,
ECG), in freely moving animals.

With these considerations in mind, understanding in full
whether the potential of neuro-cardiac optogenetics is confined
to science glamor, or if it is a guiding light in understanding
neuro-cardiac pathophysiology, some additional steps should
be overcome. Firstly, as the time of proofs-of-principle is now
surpassed, optogenetics should be used when it represents the
adequate solution to a scientific problem, and the research
question is not based on the technique itself. Secondly, a broader
consideration concerns how neurocardiac optogenetics can be
translated to human research and therapy, which is inherently
limited by the method specifics.

When the road to optogenetics for a specific application
has been undertaken, questions which guide the experimental
design concern:

• The choice of the most suited opsin: from the first use of
ChR2 in neuroscience (Boyden et al., 2005) to the time being,
a large number of optogenetic actuators are now available,
showing varied spectral and biophysical properties, which
meet most of the experimental needs (www.optogenetics.org).
The choice of the most appropriate opsin variant has to
carefully be taken, and possibly confirmed in in vitro systems
prior to investing in in vivo research.

• Due to its structure, the myocardium is a dense highly

diffractive tissue, and as such, light in the visible spectrum
has poor penetration capacity, thereby hindering minimally
invasive translation of cardiac optogenetics to externally
applied optical stimuli (Boyle et al., 2018). This has represented
a crucial limitation for both cardiac and neurocardiac
optogenetics, which has, so far, mostly been applied to
surgically exposed organs (thus “canceling” the benefits of
non-invasiveness). Solutions to overcome this hindrance are
in the air, however. It is well-appreciated that near-infrared
radiation (NIR) (780–1,100 nm) has deeper penetration
capacity in tissues and minimal damaging effects, and as
such, it is commonly used in deep tissue imaging (e.g.,
multiphoton microscopy) in both basic and clinical research,
in different tissues (Gussakovsky and Kupriyanov, 2008;
Nagarajan and Zhang, 2011; Wang et al., 2013). Although
NIR is, at the time being, not suited for cardiac optogenetics,
recent promising research has developed “upconversion
nanoparticles (UCNPs),” absorbing tissue-penetrating NIR
and emitting wavelength-specific visible light. Using this
strategy, Chen et al. in 2018 demonstrated that UCNPs can
serve as optogenetic actuators of transcranial NIR, and assist
the photostimulation of deep brain neurons (Chen et al.,
2018) (Figure 12). The combination of NIR laser with UCNPs
methodology, after being successfully tested in neuroscience
(Wang et al., 2017; Chen et al., 2018; Lin et al., 2018), has been
applied to cardiac optogenetics, demonstrating the reliable and
repeatable tissue-penetrating cardiac optical pacing in vivo,
which demonstrated a convenient and less invasive way to use
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FIGURE 12 | UCNP-mediated NIR upconversion optogenetics for deep brain stimulation. (A) Schematic principle of UCNP-mediated NIR upconversion optogenetics.

(B) Transmission electron microscopy images of the silica-coated UCNPs. (C) Emission spectrum of the nanoparticles upon excitation at 980 nm. (Inset) Upconversion

emission intensity of UCNPs as a function of excitation intensity at 980 nm. (D) Scheme of in vivo fiber photometry for measuring UCNP-mediated NIR upconversion in

deep brain tissue. The tip of an optic fiber, transmitting NIR excitation light, was positioned at various distances from the ventral tegmental area (VTA) where UCNPs

were injected. Modified with permission from Chen et al. (2018).

external radiation in optogenetic stimulation of cardiac tissue
(Rao et al., 2020).

• In approaching a preclinical study focused on peripheral
nerves, an inevitable task is how to lightly control peripheral

neurons within the tortuous nerve route. Due to the
infeasibility of implanting light delivery interface in peripheral
nerves, in 2013 Towne et al. demonstrated the possibility to
optically stimulate ChR2-expressing motor neurons, eliciting
muscle contraction, in freely moving rats, thanks to the
use of an implanted optical nerve-cuff around the sciatic
nerve (Towne et al., 2013). From this first study, modern
engineering has developed “optocuffs,” as optical peripheral
nerve interfaces to achieve optogenetic control of peripheral
nerves in freely moving mice (Michoud et al., 2018).
Similarly, Song et al. invented a novel optical nerve cuff
electrode allowing to simultaneously actuate and monitor
neural signals, whose efficacy was tested in the sciatic nerve
of Thy1:ChR2 mice (Song et al., 2018) (Figure 13). Since
optogenetics study are often associated to pharmacological
tests, recent interesting technological developments include
the design of wireless, battery-free, fully implantable devices,
capable of programmed delivery of localized optical, and/or

pharmacological stimuli, using miniaturized electrochemical
micropumps (Zhang et al., 2019). Organic light-emitting diode
(OLED) able to adapt to curve surface and soft neuronal
tissues have also been generated, which allow register the
effect of optogenetics-based neuronal stimulation by magnetic
resonance imaging (Kim et al., 2020). Here, we presented only
some of the numerous examples of recently developed optical
stimulation and recording devices (Samineni et al., 2017;
Maimon et al., 2018) for a review see which, at the time being,
have been successfully applied for optogenetic manipulation
of motor and spinal nerves. Such devices are well-suited
to instrument brain–heart connecting nerves and assess the
effects of optically modulated neurons in freely moving
animals, while recording heart rhythm or blood pressure
changes (in telemetry implanted animals), or animal behavior.
The development of similar tools apt to photoactivate heart-
residing neurons in conscious animals, while monitoring
central neuronal functions, would likely represent the tools of
choice to investigate the reverse heart-to-brain axis.

• In preclinical studies, another fundamental aspect is the

choice of the most suited animal model. At the time being
the majority of optogenetics studies have been performed in
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FIGURE 13 | Optical nerve-cuff electrode for optogenetic stimulation of peripheral neurons in freely moving animals. (A) Overall schematic illustration of the optical

nerve cuff electrode. (B) Picture of an active photo-stimulating device. (C) Pictures of a mouse implanted with the opto-cuff electrode in (A,B). Examples of light off

and light on states are shown. Modified with permission from Song et al. (2018).

mice, due to the availability of transgenic models. However,
the use of larger animals (i.e., rats, minipigs, pigs, ovines), in
which opsin expression may be achieved by viral infection (Yu
et al., 2017; Booth et al., 2021), may increase the feasibility
of in vivo analyses and the translability of the results to the
human context.

Taken altogether, data described above indicates that all the
ingredients are available to make of optogenetics a keystone
to finally uncover, in depth and un-intrusively, the physiologic
mechanisms underlying neurogenic control of heart function, as
well as the brain–heart cross-regulation, thus bringing to the light
novel targets for therapeutic intervention. Thus, optogenetics,
although not directly used as a therapeutic strategy, may be
potentiated to discover novel targetable players underlying
neuro-cardiac disorders.

A different issue concerns the widely advertised therapeutic
potential of optogenetics in neurocardiac diseases in humans.
In general terms, the clinical applicability requires resolving
two main obstacles: (a) optogenetics requires expression
of an exogenous gene in neurons; (b) photo-actuation
requires implantation of a light emitting source. For point
(a), it has to be kept in mind that viral vectors suited to
the use in humans, encoding ChR2, have been approved
by FDA (NCT04278131; NCT03326336; NCT02556736;
for details see www.clinicaltrials.gov), and their use for
neuronal expression may thus be foreseen. As for (b),
medical bioengineering may easily develop implantable

and remotely powered devices similar to the ones already
in use (e.g., pacemakers, ICD). For critical reading on the
perspective applications of cardiac optogenetics in clinical
settings (see Boyle et al., 2015; Entcheva and Kay, 2021).

CONCLUSIONS

This review was conceived and written with the brain and
the heart to enhance the concept of brain–heart connection,
which, even if supported by a gradually wider literature, is
struggling to be an integral part of cardiovascular physiology
and research. Here, we present an overview of current literature
regarding the heart as a neuro-muscular organ, which not only
is responding to hierarchically higher orders, but is capable of
interpretation and decision-making, and reply back in the same
language. Looking at the heart from this angle, we presented
the contribution of optogenetics, treating the heart with light
but not lightly, in untangling the “neuronal cardiac circuitries,”
by unveiling the complexity of heart innervation, defining the
mechanisms underlying neurogenic control of the heart in
physiology and pathology, and perceiving the brain-to-heart
communication. In assessing whether optogenetics is a truly
revolutionary tool in cardiology, or only a mirage, we believe
that, even if its applicability in the clinic may be limited to
some pathologies, in basic research optogenetics can still give
a lot, especially in a field as little explored, such as that of
neuro-cardiology (Figure 14). However, as the constant synergy
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FIGURE 14 | Potential applications of optogenetics. Potential clinical use of cardiac and neuronal optogenetics for heart rhythm control in neuromodulation,

pacemaker, or/and anti-arrhythmic applications. Modified with permission from Gepstein and Gruber (2017).

of the dialogue between the brain and the heart teaches us,
to illuminate the dark sides of brain–heart connection, as well
as of the intrinsic “cardiac little brain,” optogenetics must
work synergistically with other methodologies, some traditional,
others more innovative. Finally, we want to underly that this
summary is by no means comprehensive, and we apologize to
the many colleagues who contributed to the field, but have not
been cited.
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