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Metformin has been used for treating diabetes mellitus since the late 1950s. In
addition to its antihyperglycemic activity, it was shown to be a potential drug candidate
for treating a range of other diseases that include various cancers, cardiovascular
diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity,
inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the
important aspects of mitochondrial dysfunction in energy metabolism and cell death with
their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin
target, and summarize metformin’s effects in several diseases and gut microbiota. We
question how the same drug can act on diseases with opposite characteristics, such
as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative
diseases. Interestingly, metformin’s adverse effects in many diseases all show VDAC1
involvement, suggesting that it is a common factor in metformin-affecting diseases. The
findings that metformin has an opposite effect on various diseases are consistent with
the fact that VDAC1 controls cell life and death, supporting the idea that it is a target
for metformin.

Keywords: apoptosis, cancer, metabolism, metformin, hexokinase, COVID-19, mitochondria, VDAC

OVERVIEW: METFORMIN’S MOLECULAR AND CELLULAR
ASPECTS, PROPOSED TARGETS, AND THERAPEUTIC MODE
OF ACTION

Metformin is a biguanide derivative [3-(diaminomethylidene)-1,1-dimethylguanidine] that was
first extracted from the flowers of goat’s rue, the French lilac (Galega officinalis) (Bailey, 2017).
Here, we present its reported effects, in addition to type 2 diabetes mellitus (T2DM) (Viollet
et al., 2012), on several diseases such as cancer and cardiovascular and neurodegenerative diseases
(Ghatak et al., 2011; Mazza et al., 2012; Rizos and Elisaf, 2013; Foretz et al., 2014; Kasznicki
et al., 2014; Scheen et al., 2015; Hitchings et al., 2016; Novelle et al., 2016; Lv and Guo, 2020;
Dardano and Del Prato, 2021). The complex and heterogeneous molecular basis of these diseases
suggests that many biological signaling pathways are influenced by metformin; therefore, it is
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very difficult to pin down its underlying mechanism(s) of action.
It is proposed that it acts on metabolism (Da Silva et al.,
2010), which is tightly linked to the cell signaling pathways
involved in proliferation and survival, with their dysregulation
associated with various diseases. Metformin acts via multiple
mechanisms/signaling pathways including AMP-activated kinase
(AMPK) signaling, the mammalian target of rapamycin (mTOR)
(Pernicova and Korbonits, 2014; Howell et al., 2017), and
inflammatory, mitochondrial (Owen et al., 2000; Foretz et al.,
2014; Luengo et al., 2014), and insulin signaling, as well as
cell death signaling whose dysregulation is associated with
some diseases (Viollet et al., 2012). Metformin increased the
ratio of AMP/ATP and suppressed mitochondrial respiratory
chain complex I, resulting in increased AMPK signaling, and
reduced glucagon signaling (Pernicova and Korbonits, 2014).
Metformin downregulates oxidative phosphorylation genes, AKT
and p38, and type I interferon response pathways (interleukin
1β and interferon γ) (Titov et al., 2019), inhibits mTOR
(Kalender et al., 2010; Howell et al., 2017), stimulates the
blood cellular landscape, and increases reactive oxygen species
(ROS) production (Mogavero et al., 2017). Moreover, metformin
treatment has been associated with various classifications of
age-related cognitive decline, showing mixed results with both
positive and negative findings (Campbell et al., 2018).

A special issue devoted to “Metformin: Beyond Diabetes” has
recently been published (Bost et al., 2019). Here, we focused
on the functions of the mitochondria and their governor
protein VDAC1 in the effects of metformin. Mitochondria are
responsible for produce energy and perform other functions
associated with essential metabolism and cell signaling.
Mitochondrial dysfunction is present in many diseases from
T2DM to cancer, cardiovascular diseases, obesity, renal diseases,
and all neurodegenerative diseases (Sorrentino et al., 2018).
Moreover, we have introduced VDAC1 as a protein that possibly
mediates the multiple effects of metformin. It is overexpressed in
several diseases, and its overexpression is induced by apoptosis
inducers. Accumulated data showed that VDAC1 overexpression
is common in many diseases (T2DM, cancer, Alzheimer’s’
disease, Parkinson’s disease, cardiovascular diseases, and more)
that are affected by metformin-affecting diseases (Table 1). The
relationship between VDAC1 and the reported diverse effects of
metformin and the major proposed metformin mechanisms of
action are presented here.

VOLTAGE-DEPENDENT ANION
CHANNEL: ISOFORMS, MITOCHONDRIA
FUNCTION, AND OVEREXPRESSION

Mitochondria play a fundamental role in metabolism, not only
by producing the main energy for cellular functions, but they
also play a crucial role in almost all aspects of cell biology and
regulate cellular homeostasis, metabolism, innate immunity, cell
death (apoptosis, necroptosis, pyroptosis ferroptosis, autophagy,
necrosis), epigenetics, and more (Wallace, 2005; Mcbride
et al., 2006; Murphy and Hartley, 2018). Because mitochondria
metabolism dysregulation is associated with several severe

diseases, mitochondria are a potential target for therapeutic
intervention (Schirrmacher, 2020).

Mitochondria contain about 1,000 different proteins
with different functions that depend on the exchange of
metabolites and ions between the cytosol and mitochondria.
Therefore, metabolites must be transported across both
the outer mitochondrial membrane (OMM) and the
inner mitochondrial membrane (IMM). The voltage-
dependent anion channel 1 (VDAC1) allows the transfer
of metabolites across the OMM, while the IMM is
equipped with many transporters, the carrier proteins,
each of which is responsible for transporting specific
metabolites across the IMM (Shoshan-Barmatz et al., 2010,
2015; Colombini, 2016; Shoshan-Barmatz et al., 2017a,b;
De Pinto, 2021).

Thus, VDAC1, as a multi-functional protein, is a key regulator
of mitochondrial function serving as a mitochondrial gatekeeper.
It controls the metabolic and energetic crosstalk between the
mitochondria and the rest of the cell, and it is also one of the key
proteins in mitochondria-mediated apoptosis (Shoshan-Barmatz
et al., 2010, 2015; Shoshan-Barmatz and Ben-Hail, 2012; Magri
et al., 2018; De Pinto, 2021; Figure 1).

In mammals, three isoforms of VDAC (VDAC1, VDAC2, and
VDAC3) have been identified and shown to share many structural
and functional properties (De Pinto et al., 2010; Raghavan et al.,
2012; Zeth and Zachariae, 2018; Messina et al., 2012). The
three isoforms are expressed in most tissue types, with VDAC1
expression being higher in most, but not all tissues than that
of VDAC2 and VDAC3. VDAC1 is also the most abundant
and best studied isoform (De Pinto et al., 2010; Messina et al.,
2012; Raghavan et al., 2012), and VDAC2 was reported as a pro-
apoptotic protein, interacting with Bax (Roy et al., 2009), yet its
effect in apoptosis is controversial (Maurya and Mahalakshmi,
2016), expressed mainly in cancer, but not in the brain.

Voltage-dependent anion channel 1 is composed of 19
transmembrane β-strands connected by flexible loops, forming a
β-barrel, and a 26-residue-long N-terminal region that lies inside
the pore (Bayrhuber et al., 2008; Hiller et al., 2008; Ujwal et al.,
2008). However, the N-terminus domain can be translocated
from the internal pore to the channel surface (Geula et al.,
2012a), and it can interact with hexokinase (HK) (Azoulay-Zohar
et al., 2004; Zaid et al., 2005; Abu-Hamad et al., 2008; Shoshan-
Barmatz et al., 2008a, 2010; Neumann et al., 2010), Aβ (Thinnes,
2011; Smilansky et al., 2015), and other proteins such as Bcl-
2 and Bcl-xL (Shimizu et al., 1999, 2000; Malia and Wagner,
2007; Abu-Hamad et al., 2009; Arbel and Shoshan-Barmatz, 2010;
Shoshan-Barmatz et al., 2010; Arbel et al., 2012).

Purified and membrane-embedded VDAC1 can assemble
into dimers, trimers, tetramers, hexamers, and higher-order
complexes (Zalk et al., 2005; Shoshan-Barmatz et al., 2008b, 2010,
2013, 2015, 2017a,b; Zeth et al., 2008; Keinan et al., 2010; Betaneli
et al., 2012; Geula et al., 2012a; Shoshan-Barmatz and Golan,
2012; Shoshan-Barmatz and Mizrachi, 2012; Boulbrima et al.,
2016). Contact sites between VDAC1 molecules in dimers and
higher oligomers have also been identified (Geula et al., 2012b).

The positioning of VDAC1 at the OMM also allows
its interaction with proteins involved in the integration of
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TABLE 1 | Voltage-dependent anion channel 1 overexpression is a common factor in metformin-affecting diseases.

Diseases VDAC1 state Function Ref. Metformin
association

Ref.

Type 2 diabetes (T2DM) Overexpressed Impairs generation of cellular
ATP and induced apoptosis

Ahmed et al., 2010; Gong
et al., 2012; Sasaki et al., 2012;
Zhang E. et al., 2019

Improves glucose
tolerance

Maruthur et al., 2016;
Palmer et al., 2016;
Sanchez-Rangel and
Inzucchi, 2017

Cancer Overexpressed Increases cancer cell metabolic
activity

Abu-Hamad et al., 2006; Koren
et al., 2010; Arif et al., 2014;
Shoshan-Barmatz et al., 2015;
Arif et al., 2017;
Shoshan-Barmatz et al.,
2017a; Pittala et al., 2018

Anti-cancer activity Chen et al., 2017;
Andrzejewski et al., 2018;
Biondani and Peyron,
2018; Xie et al., 2020

Alzheimer’s disease
(AD)

Overexpressed Neuronal cell death Perez-Gracia et al., 2008;
Cuadrado-Tejedor et al., 2011;
Manczak and Reddy, 2012

Neuroprotective Qiu and Folstein, 2006;
Hsu et al., 2011;
Rotermund et al., 2018

Parkinson’s disease
(PD)

Interaction with alpha-synuclein Regulates VDAC1 conductance
and VDAC1-mediated Ca2+

transport

Rostovtseva et al., 2015;
Rosencrans et al., 2021

Reverses certain PD
phenotypes

Bayliss et al., 2016; Lu
et al., 2016; Ryu et al.,
2018

Epilepsy Increased expression Apoptosis, alerts energy charge Jiang et al., 2007 Decreases seizure
frequency and duration,
stops seizures

Zhao et al., 2014; Yang
et al., 2017; Nandini et al.,
2019

Depression/Bipolar
disease

Upregulation of VDAC and TSPO TSPO-VDAC complex
down-regulates mitophagy
proteins and NLRP3
inflammasome activation

Nahon et al., 2005; Scaini
et al., 2019

Anti-depressant Guo et al., 2014

Cardiovascular
diseases (CVDs)

Overexpressed Cardiomyocyte cell death Lim et al., 2001; Schwertz
et al., 2007; Liao et al., 2015;
Tong et al., 2017; Jiang et al.,
2018; Tian et al., 2019; Yang
et al., 2019; Klapper-Goldstein
et al., 2020

Reduces risk of CVDs
among patients with
T2DM

Norwood et al., 2013;
Griffin et al., 2017; Rena
and Lang, 2018; Mohan
et al., 2019

Non-alcoholic fatty liver
disease (NAFLD)

Overexpressed Mediates transport of fatty
acids across the OMM

Lee et al., 2011; Tonazzi et al.,
2015; Pittala et al., 2019

Attenuates the onset of
NAFLD

Koren et al., 2010; Brandt
et al., 2019

Inflammatory bowel
disease (IBD) and gut
microbiota composition

Overexpressed Mediates apoptosis, and
inflammation

Verma et al., 2021 Affects IBD and
intestinal microbiota
and is a barrier in small
intestine

Brandt et al., 2019; Ouyang
et al., 2020; Tseng, 2021

Rheumatoid arthritis
(RA)

Increased VDAC1 oligomerization Induces cardiac cell death and
functional impairment in RA

Zeng et al., 2018 Improves the
pathogenesis of RA

Matsuoka et al., 2020

COVID-19 Overexpressed Induction of apoptosis Thompson et al., 2020 Decreases risk of death
in T2DM affected by
COVID-19

Chen X. et al., 2020; Luo
et al., 2020; Scheen, 2020;
Bramante et al., 2021
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FIGURE 1 | Voltage-dependent anion channel 1, a multi-functional protein, controlling cell and mitochondria functions. VDAC1 functions include: (A) Controlling
metabolic crosstalk between mitochondria and the rest of the cell; (B) Acting as a Ca2+ transporter in and out of the intermembrane space (IMS); (C) Mediating ion
transport including Ca2+ that was transported by the MUC complex into the matrix, where Ca2+ regulates energy production via activation of the TCA cycle
enzymes: pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (ICDH), and α-ketoglutarate dehydrogenase (α-KGDH); (D) Mediating lipid transport such as of
acyl-CoAs across the OMM to the IMS, to be converted into acylcarnitine by CPT1a for further processing by β-oxidation and the transported cholesterol;
(E) Mediating cellular energy production by transporting ATP/ADP and NAD+/NADH from the cytosol to the IMS, and regulating glycolysis via association with HK.
Metformin induces HK detachment; (F). Involvement in structural and functional association of the mitochondrion with the ER; and (G) Participation in apoptosis via
its oligomerization, allowing cytochrome c release, and apoptotic cell death and mtDNA release that triggers inflammosome activation. Metformin induced VDAC1
overexpression, VDAC1 oligomerization, and apoptosis. As HK is acting as an anti-apoptotic protein, its detachment by metformin further enhances apoptosis. The
TCA cycle, electron transport chain (ETC), ATP synthase (FoF1), and key ER-mitochondria association proteins are indicated. It is proposed that metformin may
affect pathological conations that are associated with dysfunction of mitochondria activities.

mitochondrial functions with other cellular activities. Indeed,
VDAC1 is considered a hub protein, as it interacts with over
100 proteins (Rostovtseva and Bezrukov, 2008; Shoshan-Barmatz
et al., 2017a,b; Kanwar et al., 2020).

It functions as a docking site for diverse mitochondrial,
cytosolic, nuclear and ER proteins that together mediate and/or
regulate metabolic, apoptotic, and other processes in normal and
diseased cells. The VDAC1 interactome includes proteins that
are involved in signal transduction anti-oxidation, metabolism,
apoptosis, DNA- and RNA-linked proteins, and more (Caterino
et al., 2017; Shoshan-Barmatz et al., 2017a,b).

VDAC1 interacts with proteins involved in energy
homeostasis such as adenine nucleotide translocase (ANT),
tubulin, glycogen synthase kinase (GSK3), creatine kinase, and
hexokinase (HK), and it interacts with proteins that regulate
apoptosis such as Bax, Bcl-2, and Bcl-xL, and in HK functions
as an anti-apoptotic protein (Shoshan-Barmatz et al., 2010;
Shoshan-Barmatz and Mizrachi, 2012; Shoshan-Barmatz et al.,
2017a,b). Thus, VDAC1 appears to be a convergence point for a
variety of cell survival and death signals, mediated through its
association with various ligands and proteins that link energy,
redox. Thus VDAC1 signaling pathways in mitochondria and
other cell compartments (Figure 1).

VDAC1 functions as a hub protein that regulates ATP
production, Ca2+ homeostasis, and apoptosis —all crucial for
proper mitochondrial function and, consequently, for normal cell

physiology. Thus, alterations in VDAC1 functions are associated
with mitochondrial dysfunction.

This is well demonstrated by silencing VDAC1 expression
in cell lines and different cancer mouse models using specific
siRNAs. We demonstrated that silencing this expression resulted
in metabolic reprogramming that altered the expression of over
2,000 genes, many of which belong to mitochondria, glycolysis,
and other pathways associated with metabolism. Moreover,
VDAC1 silencing inhibited tumor growth, modulated the tumor
microenvironment, eliminated tumor oncogenic properties
(e.g., angiogenesis, stemness), and induced differentiation into
normal-like cells (Arif et al., 2014, 2017, 2018, 2019a,b;
Amsalem et al., 2020).

The association of VDAC1 with various diseases (Shoshan-
Barmatz et al., 2020; Varughese et al., 2021) is reflected in
its overexpression. VDAC1 is overexpressed in cancer (Arif
et al., 2014, 2017; Shoshan-Barmatz et al., 2015; Shoshan-
Barmatz et al., 2017a,b; Pittala et al., 2018), Alzheimer’s disease
(AD) (Perez-Gracia et al., 2008; Cuadrado-Tejedor et al.,
2011; Manczak and Reddy, 2012), T2DM (Ahmed et al.,
2010; Sasaki et al., 2012; Zhang E. et al., 2019), autoimmune
diseases such as lupus (Kim et al., 2019b), cardiovascular
diseases (CVDs) (Klapper-Goldstein et al., 2020), inflammatory
bowel diseases (IBDs) (Verma et al., 2021), non-alcoholic
fatty liver disease (NAFLD) (Pittala et al., 2019), COVID-
19 (Luo et al., 2020; Scheen, 2020; Bramante et al., 2021),
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and others (Table 1). As VDAC1 overexpression induces
apoptotic cell death (Godbole et al., 2003; Zaid et al., 2005;
Abu-Hamad et al., 2006; Ghosh et al., 2007; Weisthal et al.,
2014), its overexpression in these diseases may be a common
mechanism in their pathologies. It is not clear whether VDAC1
overexpression leads to the disease or if the disease state results in
VDAC1 overexpression.

In post-mortem brain of patients with Down Syndrome
(DS) and Alzheimer’s disease (AD), the levels of VDAC1 and
VDAC2 were altered (Yoo et al., 2001). In the DS cerebellum,
total VDAC1 protein was elevated, whereas VDAC2 showed no
significant alterations.

In AD brains, VDAC1 was significantly decreased in the
frontal cortex and thalamus. VDAC2 was significantly elevated
only in the temporal cortex. However, other studies showed
that, in AD, VDAC1 is overexpressed early in the disease
(Fernandez-Echevarria et al., 2014).

Finally, in cancer, VDAC1 (Abu-Hamad et al., 2006; Koren
et al., 2010; Arif et al., 2014, 2017; Shoshan-Barmatz et al.,
2015, Shoshan-Barmatz et al., 2017a,b; Pittala et al., 2018) and
VDAC3 (Jozwiak et al., 2020) are overexpressed, and shown to be
essential for cancer development (siRNA). VDAC2 was found to
be required, for BAX-mediate apoptosis (Chin et al., 2018).

This review focuses on the relationship between VDAC1
and the reported diverse effects of metformin. For other
VDAC isoforms, no published data are available, except for a
report demonstrating, by using a proteomic approach, that in
metformin-treated MCF-7, VDAC2, was found to be upregulated
along with the proapoptotic proteins p53, Bax, and Bad (Al-
Zaidan et al., 2017). With respect to T2DM, pancreatic β-cells
express both VDAC1 and VDAC2 (Ahmed et al., 2010; Zhang E.
et al., 2019). Under glucotoxic conditions (20 mM glucose), INS-
1E cells significantly overexpressed VDAC1, whereas VDAC2
levels were reduced (Ahmed et al., 2010). However, islets
from T2D pancreas donors show upregulated VDAC1 mRNA,
while VDAC2 mRNA is suppressed, compared with islets
in healthy donors (Zhang E. et al., 2019). In addition, in
T2D β cells, VDAC1 levels were decreased in endoplasmic
reticulum–mitochondria contact sites (Thivolet et al., 2017).
Thus, not only altered VDAC gene expression, but also its sub-
cellular localization could lead to mitochondrial dysfunction.
Thus, the involvement of VDAC2 in metformin effects can
not be ruled out due to its cellular functions in apoptosis
(Naghdi and Hajnoczky, 2016).

Metformin also has been reported to increase VDAC1
expression levels in NCaP cells along with increased the
levels of IP3R1, IP3R2, IP3R3, and MCU mRNA, as well as
VDAC1 protein (Loubiere et al., 2017), and in polycystic
ovary syndrome (PCOS)-like rats treated with metformin.
Zhang et al. (2017) revealed that treatment with metformin
increased VDAC expression and decreased superoxide
dismutase 1 (SOD1) in PCOS-like rats compared to control
rats (Zhang et al., 2017). In addition, metformin in the
presence of citral, but not in its absence, increased VDAC
expression (Duan et al., 2021). Moreover, VDAC1 is
overexpressed in diseases that were found to be modulated
by metformin (Table 1).

METFORMIN MODE OF ACTION

The major proposed metformin mechanisms of action include
modulating cell metabolism, inducing apoptosis, mitochondrial
dysfunction, ER stress, inflammation, and more (Vial et al., 2019;
Figure 2). These proposed mechanisms point to the complexity
of metformin action at the molecular and cellular levels, as
presented below.

Metformin Modulation of AMPK and
mTOR Signaling, and Mitochondrial
Functions
Metformin acts on the central cell metabolism and on several
major signaling pathways including glucose metabolism and
energy-sensing that involve the cellular energy sensor AMPK
and mTOR signaling (Howell et al., 2017). It has been shown
that metformin activates the AMPK pathway via ATM (ataxia
telangiectasia mutated), LKB1 (liver kinase B1) activation, and
inhibition of the mTOR pathway, leading to a reduction in
protein synthesis and cell growth (Howell et al., 2017). Metformin
can activate p53 by activating AMPK, thereby, inhibiting the cell
cycle (Saraei et al., 2019).

AMP-activated kinase activation is required for
gluconeogenesis suppression and stimulation of glucose
uptake by peripheral tissues (Musi et al., 2002). However, it was
recently shown that metformin inhibits hepatic gluconeogenesis
in transgenic mice without AMPK or its upstream activator
LKB1 (Foretz et al., 2014).

It is widely documented that metformin is one of the
most potent drugs that activates AMPK (Foretz et al.,
2014). Stimulating AMPK activity, affects age-related disorders
including cancer, CVDs, diabetes, neurocognitive decline, and
more (Wang et al., 2011; Coughlan et al., 2014). Activation
of AMPK initiates the phosphorylation of tuberin and raptor
(mTOR cascade proteins), leading to the rapid inhibition of
mTOR pathway activity (Shaw, 2009).

At the same time, there are several cellular targets that can
drive the metformin effect independently from AMPK (Viollet
et al., 2012; Foretz et al., 2014). These include the electron
chain complexes (ETCs) I (Owen et al., 2000), II, and IV
(Drahota et al., 2014), serine-threonine liver kinase B1/AMP-
activated protein kinase complex (LKB1/AMPK) (Shaw et al.,
2005), adenylate cyclase (Miller et al., 2013), AMP deaminase
(Ouyang et al., 2011), NADPH oxidase (Piwkowska et al., 2010),
and mitochondrial glycerophosphate dehydrogenase (Madiraju
et al., 2014). However, other targets are also proposed such as HK
and VDAC1 (see section “Hexokinase-VDAC1 Interaction as a
Metformin Target”).

Metformin affects glucose consumption, lactate production,
oxidative metabolism, and ATP levels similarly to those promoted
by insulin alone, suggesting that metformin modulates the key
enzymes involved in glycolysis regulation such as HK and
phosphofructokinase (PFK) (Da Silva et al., 2010).

Accumulated evidence suggests the involvement of
mitochondria in metformin activities (Vial et al., 2019),
and raises the question of exactly how metformin enters the
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FIGURE 2 | Proposed metformin mode of action. The major proposed metformin mechanisms of action such as inducing apoptosis, mitochondrial dysfunction,
modulating cell metabolism, and affecting ER stress and inflammation are presented. These are reflected in the indicated metformin effects. TXNIP indicates
thioredoxin-interacting protein and UPR, the unfolded protein response.

mitochondria. Metformin distribution and cell penetration
are mediated by tissue-specific transporters counting plasma
membrane monoamine transporter (PMAT) in the intestine,
organic cation transporter 1 (OCT1) in the liver, and both organic
cation transporter 2 (OCT2) and multidrug and toxin extruder
(MATE)1/2 in the kidneys (Gormsen et al., 2016). It should be
noted that exactly how metformin enters the mitochondria is
unclear (Fontaine, 2014). The intra-mitochondrial accumulation
of phenformin, another biguanide, has been shown to involve the
mitochondrial organic cation/carnitine transporter 1 (OCTN1)
(Shitara et al., 2013). Metformin affecting mitochondrial
function via modulation of the multifunctional OMM protein
VDAC1 modulation requires no metformin transport into
the mitochondria.

One of the proposed metformin targets is the mitochondrial
respiratory chain protein complex-I (Owen et al., 2000; Foretz
et al., 2014; Luengo et al., 2014), but it is not clear if metformin
inhibits complex-I by direct interaction (Fontaine, 2014). In
isolated mitochondria, very high concentrations of metformin
(20–100 mM) inhibit complex-I activity, while micromolar
concentrations are required for its inhibition in various cell types

(El-Mir et al., 2000) or in vivo in skeletal muscle from healthy
and diabetic rats (Wessels et al., 2014). It should be noted that
clinically relevant metformin concentrations are <100 µ M.

Several explanations have been proposed for this discrepancy
between the metformin concentration required for complex-
I inhibition in the in vitro and ex vivo experiments and
the clinically relevant concentrations (He and Wondisford,
2015), including that the positive charge of metformin slows
it accumulation within the matrix due to the transmembrane
electrochemical potential (19) (Bridges et al., 2014).

Metformin inhibiting complex-I activity reduces ATP
production and elevates the levels of AMP and ADP. The
increase in the AMP/ATP ratio with increased AMP leads to
inhibition of gluconeogenesis and activation of AMPK (Miller
et al., 2013; Foretz et al., 2014; Pernicova and Korbonits, 2014).

Hexokinase-VDAC1 Interaction as a
Metformin Target
The first step of glycolysis is catalyzed by HK, with the isoforms
HK-I or HK-II known to bind to the OMM through VDAC1
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(Azoulay-Zohar et al., 2004; Zaid et al., 2005; Abu-Hamad
et al., 2008; Shoshan-Barmatz et al., 2008a, 2010; Neumann
et al., 2010; Shoshan-Barmatz et al., 2017a,b). This has a
metabolic benefit as phosphorylation of glucose by VDAC1-
bound HK is coupled to the mitochondrial-produced ATP with
ATP channeling enhancing glycolysis. The binding of HK to
VDAC1 has another important aspect in inhibiting cytochrome
c (Cyto c) release and, subsequently, apoptosis occurring in cells
expressing native, but not E-72Q-mutated VDAC1 (Zaid et al.,
2005; Abu-Hamad et al., 2008; Arzoine et al., 2009). Hence, HK
by binding to VDAC1, provides the cell with both a metabolic
benefit and apoptosis suppression.

Metformin has been shown to directly inhibit the enzymatic
activity of HK-I and HK-II through an allosteric modification of
HK structure, leading to the inhibition of glucose-6-phosphate
(G-6-P) production, thereby, inhibiting glycolysis (Marini et al.,
2013; Salani et al., 2013; Picone et al., 2016). Also, metformin
induces the detachment of HK-II from its binding site in the
OMM (Salani et al., 2013, 2014). HK-I or HK-II detachment
from the mitochondria has been shown to activate apoptosis
(Azoulay-Zohar et al., 2004; Zaid et al., 2005; Abu-Hamad
et al., 2008; Shoshan-Barmatz et al., 2008a, 2010). Thus,
metformin detachment of HK-I/HK-II is expected to result in
apoptotic cell death. Indeed, metformin acting through HK
and VDAC1 not only impairs metabolism, but also induces
mitochondrial dysfunction and cell death (Marini et al., 2013;
Salani et al., 2013). This may explain the pro-apoptotic effect
of metformin on cancer cells that overexpress HK-I/HK-II
(Smith, 2000).

Detaching HK from VDAC1 has also been shown to impair
glutamate transporter-mediated glutamate uptake (Jackson et al.,
2015). Thus, it is expected to impair the uptake of excitatory
neurotransmitter glutamate, affecting synaptic activity.

Collectively, the above strongly suggests that metformin’s
mode of action involves the mitochondria, as inhibition
of complex I, glycerophosphate dehydrogenase, and HK
can affect the NAD/NADH ratio and ATP production.
Also, as emphasized above, the HK–VDAC1 complex is
critical in metabolism and apoptosis, and in detaching HK
from VDAC1, leading to impairment of mitochondrial
activity and apoptosis induction. Moreover, metformin
increases VDAC1 expression levels, shifting the equilibrium
from monomeric to oligomeric VDAC1, thereby,
leading to apoptotic cell death. Detachment of HK
from VDAC1 and induction of VDAC1-associated cell
death can explain metformin’s anti-cancer effect via the
induction of apoptosis.

The mechanisms underlying metformin’s protective
effects in several diseases, and the link between metformin,
HK and VDAC1 are presented below (section “Cancer,
Metformin, VDAC1, and HK”). Among the proposed
metformin neuroprotection activity is its inhibition of the
lipid phosphatase Src homology 2 domain, containing inositol-
5-phosphatase 2 (SHIP2), which when elevated, reduces Akt
(protein kinase B) activity (Hori et al., 2002). Metformin, by
inhibiting SHIP2 activity, stimulates Akt activity, and thus, the
phosphorylation of HK by Akt, which was shown to increase

its binding to VDAC (Roberts et al., 2013), thereby, protecting
against apoptosis.

Metformin Modulating Apoptosis:
Mitochondria, VDAC1, and HK as Key
Factors
Along with regulating cellular energy and metabolism, VDAC1
is involved in mitochondria-mediated apoptosis, participating in
the release of apoptotic proteins, and interacting with the anti-
apoptotic proteins, Bcl2 and Bcl-xL, and HK, overexpressed in
cancers (Figure 1G).

Apoptotic signals change the mitochondrial membrane
permeability, allowing the release of apoptogenic proteins such as
Cyto c, apoptosis-inducing factor (AIF), and SMAC/Diablo from
the intermembrane space (IMS) into the cytosol (Kroemer et al.,
2007; Shoshan-Barmatz et al., 2015). These proteins participate
in complex processes, leading to the activation of proteases
and nucleases, thereby to degradation of proteins and DNA,
and cell death. Several hypotheses regarding the mechanism of
mitochondria-mediated apoptosis have been proposed (Garrido
et al., 2006). Our and others’ studies demonstrated that upon
apoptosis induction by various reagents such as chemotherapy
drugs, arbutin, prednisolone, cisplatin, viral proteins, elevated
cytosolic Ca2+, or UV irradiation, VDAC1 expression levels were
increased (Shoshan-Barmatz et al., 2020). The overexpressed
VDAC1 leads to its oligomerization to form a large pore,
allowing the release of mitochondrial pro-apoptotic proteins
(Zalk et al., 2005; Shoshan-Barmatz et al., 2008b, 2013; Ujwal
et al., 2009; Keinan et al., 2010; Huang et al., 2015; Ben-
Hail et al., 2016). We further demonstrated that VDAC1
oligomerization is a dynamic process, and that it is a general
mechanism common to numerous apoptotic stimuli, acting
via different initiating cascades (Zalk et al., 2005; Shoshan-
Barmatz et al., 2008b, 2013; Keinan et al., 2010, 2013; Weisthal
et al., 2014; Huang et al., 2015; Ben-Hail and Shoshan-
Barmatz, 2016; Ben-Hail et al., 2016). Moreover, recently, we
identified VDAC1-interacting molecules such as diphenylamine-
2-carboxylate (DPC) (Ben-Hail and Shoshan-Barmatz, 2016) and
new molecules developed in our lab such as VBIT-4 and VBIT-
12 that were found to prevent VDAC1 oligomerization and
subsequent apoptosis. Furthermore, cyathin-R, a cyathane-type
diterpenoid, was found to induce apoptosis in Bax/Bak-depleted
cells, but not when VDAC1 that was inhibited by DPC was
depleted (Huang et al., 2015).

Based on these results we proposed a novel model in which
VDAC1 exists in a dynamic equilibrium between monomeric
and oligomeric states, with apoptosis inducers shifting the
equilibrium toward oligomers, forming a large channel that
enables Cyto c release, leading to cell death (Zalk et al.,
2005; Shoshan-Barmatz et al., 2008b, 2013; Keinan et al., 2010;
Kasznicki et al., 2014; Huang et al., 2015; Ben-Hail et al.,
2016). Furthermore, a correlation between drug effectiveness
in apoptosis induction and VDAC1 expression levels has been
reported (Castagna et al., 2004; Lai et al., 2006; Tajeddine et al.,
2008). Moreover, not only apoptosis inducers, but also stress and
pathological conditions can induce VDAC1 overexpression and,
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thus, trigger apoptosis (Keinan et al., 2013; Weisthal et al., 2014;
Shoshan-Barmatz et al., 2020).

Metformin-induced apoptosis (Ben Sahra et al., 2010a; Malki
and Youssef, 2011; Sancho et al., 2015) can be mediated
via inducing VDAC1 overexpression and its oligomerization.
Treatment of mice for 3 months with metformin increased the
expression of VDAC1 in the cortex, but not in the hippocampus
(Wijesekara et al., 2017). Moreover, in the cortical region,
plasmalemmal VDAC1 (pl-VDAC1) was found as oligomers in
areas where metformin induced Aβ-aggregate accumulation, and
apoptotic neurons were observed (Wijesekara et al., 2017). In
addition, metformin increased VDAC1 expression levels in NCaP
cells (Loubiere et al., 2017) and in polycystic ovary syndrome-
like rats (Zhang et al., 2017), and in the presence of citral
(Duan et al., 2021).

Considering the pro-apoptotic effects of VDAC1
overexpression leading to its oligomerization, and subsequently
to apoptotic cell death, we suggest that metformin, as do
other apoptosis inducers and stress conditions, induces
apoptosis (Ben Sahra et al., 2010a; Malki and Youssef, 2011;
Sancho et al., 2015) via triggering VDAC1 overexpression
and increasing the expression levels of p53, Bax, and Bad,
while reducing the expression levels of Akt, Bcl-2, and Mdm2
(Malki and Youssef, 2011).

Previously, it was demonstrated that apoptosis induced
by various reagents disrupted intracellular Ca2+ ([Ca2+]i)
homeostasis (Keinan et al., 2013; Weisthal et al., 2014).
Moreover, it has been shown that pro-apoptotic agents
inducing upregulation of VDAC1 expression levels are
Ca2+-dependent (Keinan et al., 2013; Weisthal et al.,
2014; Shoshan-Barmatz et al., 2015). Metformin has been
shown to induce ER stress and Ca2+ released from the
ER and, subsequently, its uptake by the mitochondria,
leading to mitochondrial swelling (Loubiere et al., 2017).
Interestingly, metformin significantly increased the levels of
mRNA encoding for IP3R2 and IP3R3 (Loubiere et al., 2017).
Thus, the increase in cytosolic Ca2+ may be responsible for
VDAC1 overexpression, as found for other inducers of this
overexpression (Keinan et al., 2013; Weisthal et al., 2014;
Shoshan-Barmatz et al., 2015).

Recently, we showed that metformin interacted with purified
VDAC1, and inhibited the channel conductance of bilayer-
reconstituted VDAC1 (Zhang E. et al., 2019). The direct
interaction of metformin with VDAC1 may modulate VDAC1
activity, thereby, mitochondrial functions. This metformin-
VDAC1 interaction is currently subjected to further studies.
This together with metformin inducing VDAC1 overexpression
and apoptotic cell death, may suggest that metformin-apoptosis
induction involves VDAC1.

METFORMIN’S MULTIPLE EFFECTS ON
VARIOUS DISEASES

Metformin, besides being the first-line medication used to treat
T2DM, was shown to be a potential drug candidate to treat
several other diseases including various cancers, cardiovascular

FIGURE 3 | A schematic presentation of metformin targeting diseases such
as diabetes, COVID-19, cancer, neurodegenerative diseases, and aging with
mitochondria and their gatekeeper VDAC1 proposed as a common target.

diseases, diabetic kidney disease, neurodegenerative diseases,
renal diseases, obesity, inflammation, COVID-19 in diabetic
patients, and aging (Figure 3; Reina and De Pinto, 2017; Magri
et al., 2018; Shoshan-Barmatz et al., 2020).

Diabetes, Mitochondria, VDAC1, and
Metformin
Diabetes mellitus (DM) is a group of chronic metabolic disorders
characterized by hyperglycemia that ultimately leads to damage of
different body systems (American Diabetes, 2014). It is the ninth
major cause of mortality worldwide (Zheng et al., 2018), exerting
a global public health threat. Patients with untreated DM or
prolonged hyperglycemia may suffer from polyuria, polydipsia,
polyphagia, weight loss, and blurred vision (Galtier, 2010).
DM is growing at epidemic proportions, becoming increasingly
prevalent in all countries. It is estimated to increase to 700
million cases by the year 2045 (English and Lenters-Westra, 2018;
IDF, 2019). It was also reported that in 2014, there were
422 million people who had diabetes (NCD Risk Factor
Collaboration., 2016), and 5.1 million deaths among people
between 20 and 79 years old were attributed to it in 2013 (Zimmet
et al., 2016). Type 2 diabetes mellitus (T2DM) is more prevalent
than type 1 (T1DM) and in adults, 90–95% of patients with
diabetes have T2DM.

Type 2 diabetes mellitus management consists mainly of
drugs that reduce insulin resistance and glucose uptake in the
intestine, as well as reduce gluconeogenesis in the liver, and
drugs that increase glucose excretion through the urine. These
drugs include metformin, sulfonylureas, and SGLT2 (sodium-
glucose transporter protein 2) inhibitors (Tan et al., 2019). The
use of metformin as a therapeutic agent began in France in
1957, and was approved for use in Canada in 1972, and in
the United States by the Food and Drug Administration (FDA)
in 1994 for use by those with non-insulin-dependent T2DM.
Today, metformin is the first-line, leading oral antidiabetic
drug prescribed for the treatment of T2DM (Pernicova and
Korbonits, 2014; Hotta, 2019) either alone or in combination with
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thiazolidinediones, sulfonylureas, or other hypoglycemic agents
(Maruthur et al., 2016).

Metformin, as an anti-hyperglycemic agent, improves
glucose tolerance in patients with T2DM by lowering both
basal and postprandial plasma glucose (Maruthur et al., 2016;
Palmer et al., 2016; Sanchez-Rangel and Inzucchi, 2017). It
increases glucose uptake and utilization by intestinal cells
and lactic acid formation in these and liver cells (Mccreight
et al., 2016). It reduces liver glucose production, slows glucose
transfer to the blood, increases glucose utilization by muscle
cells (in anaerobic glycolysis, due to the suppression of
mitochondrial function and aerobic respiration in these cells),
lowers insulin resistance, and increases incretin activity, and
especially glucagon-like peptide 1 (GLP-1), which contributes
to raising insulin levels and lowering blood glucagon levels.
In addition to the effects on glucose level, metformin also
contributes to the suppression of fatty acid synthesis and
gluconeogenesis, and the removal of insulin sensitivity
reduces blood levels of LDL cholesterol and triglycerides
(Viollet et al., 2012).

The proposed metformin mode of action in regulating
blood glucose level is not completely understood, and multiple
potential mechanisms have been proposed. It enters liver
cells mainly through OCT1, and suppresses the mitochondrial
respiratory chain (complex-I). It also reduces ATP production
and increases AMP levels activating AMPK; inhibits glucagon-
induced elevation of cAMP with reduced activation of protein
kinase A (PKA); and decreases gluconeogenesis (liver glucose
production) (Foretz et al., 2014; Madiraju et al., 2014). As
a result, glucose depletion in the cell increases, and the cell
reduces glucose formation and increases the amount of glucose
transferred from the blood.

Mitochondria have been connected to the pathophysiology
of diabetes with changes in their quality, quantity, and function
reported to occur in diabetics (Sivitz and Yorek, 2010).

Recently, we found that VDAC1 expression levels were
increased in islets from T2DM and non-diabetic organ donors
under glucotoxic conditions (Zhang E. et al., 2019). The
overexpressed VDAC1 is mistargeted to the plasma membrane
of the insulin-secreting β cells, resulting in a loss of ATP,
and thereby no insulin secretion occurs. Moreover, VDAC1
antibodies, as well as metformin, and specific VDAC1-interacting
molecule VBIT-4, restore the impaired generation of ATP and
glucose-stimulated insulin secretion in T2DM islets (Zhang E.
et al., 2019). Furthermore, treatment of db/db mice with VBIT-4
prevents hyperglycemia, and maintains normal glucose tolerance
and physiological regulation of insulin secretion (Zhang E. et al.,
2019). These metformin effects are not mediated via activation
of AMP kinase (Foretz et al., 2014) or through antioxidant
effects such as an AMPK inhibitor (MRT199665), nor do the
antioxidants N-Acetyl cysteine influence metformin’s effects.

These findings suggest that VDAC1 is a diabetes executer
protein that can be targeted by its interacting molecules, as
indicated above (Zhang E. et al., 2019). Moreover, high glucose
enhances VDAC1 expression levels by elevating the expression
of SREBP1 and SREBP2, the transcription factors of VDAC1
(Zhang E. et al., 2019).

Several recent studies have identified bacterial effectors of
metformin therapy (Pryor et al., 2019), Metformin signatures
in the human gut microbiome of T2DM were demonstrated
using 784 available human gut metagenomes, and proposed
mechanisms contributing to the beneficial effects of the drug on
the host’s metabolism (Forslund et al., 2015). Metformin-induced
changes in T2DM patients are expressed by the significant
decrease in Verrucomicrobia and Firmicutes and an increase
in Actinobacteria and Bacteroidetes (Zhang et al., 2015; De La
Cuesta-Zuluaga et al., 2017; Nakajima et al., 2020). Furthermore,
Escherichia, Streptococcus, Subdoligranulum, Clostridium,
Bacteroides, and Collinsella were the genus-level bacteria that
increased, whereas Ruminococcus and Faecalibacterium bacteria
decreased (Rosario et al., 2018; Nakajima et al., 2020). For
example, when metformin was given to healthy young men, their
Bilophila wadsworthia and Escherichia/Shigella spp. increased,
whereas their Clostridium spp. and Intestinibacter spp. decreased
(Bryrup et al., 2019).

In addition, metformin was found to alter upper small
intestinal microbiota that impact the sodium-dependent
glucose cotransporter (SGLT1) sensing glucoregulatory pathway
(Baur and Birnbaum, 2014).

The link between metformin effects on gut microbiota, and
VDAC1 is not clear, yet it is likely related to VDAC1 function as
transporter of verity of metabolites that their levels can be affected
by the microbiota and its modulation by metformin.

Cancer, Metformin, VDAC1, and HK
Generally, diabetic patients are more expected to develop a
variety of cancers (Shikata et al., 2013; Collins, 2014; Cignarelli
et al., 2018; Kang et al., 2018; Scully et al., 2020). These patients
are at increased risk of developing cancers such as breast,
prostate, pancreatic, and non-small cell lung (NSCLC) cancer
compared to non-diabetic patients (Richardson and Pollack,
2005; Pierotti et al., 2013).

In the past decades, several epidemiologic studies have linked
numerous in vitro and in vivo studies, along with epidemiological,
clinical, and preclinical evidence supporting the anti-cancer
activity of metformin (Ben Sahra et al., 2010b; Evans et al., 2010;
Jalving et al., 2010; Dowling et al., 2011; Zhang et al., 2011; Rizos
and Elisaf, 2013; Kasznicki et al., 2014; Higurashi et al., 2016;
Mohamed Suhaimi et al., 2017).

The molecular mechanisms associated with the anti-cancer
activity of metformin are complex and include several targets and
pathways (Saini and Yang, 2018). Several potential mechanisms
proposed for its ability to suppress cancer in vitro and in vivo
include: (a) activation of the LKB1/AMPK pathway, (b) induction
of cell cycle arrest, and/or apoptosis, (c) inhibition of protein
synthesis, (d) reduction in circulating insulin levels, (e) inhibition
of the unfolded protein response (UPR), (f) activation of
the immune system, and (g) eradication of cancer stem cells
(Kourelis and Siegel, 2012).

Metformin anticancer effects include AMP-activated protein
kinase activation, mTOR inactivation, mitogen-activated protein
kinase 1 (MEK)/extracellular signal-regulated kinase (ERK), and
phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway
inhibition (Pernicova and Korbonits, 2014). It is also suggested
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that metformin has an anti-tumor effect by lowering insulin levels
and disabling the mTOR in the cell (Del Barco et al., 2011; Foretz
et al., 2014; Zhang et al., 2018).

In vitro, metformin exhibits a strong anti-proliferative action
on cancer cell lines derived from the breast, colon, ovaries,
pancreas, lung, and prostate (Andrzejewski et al., 2018), as
well as in leukemia, and pancreatic and colorectal cancers
(Chen et al., 2017; Biondani and Peyron, 2018; Xie et al.,
2020). Metformin in combination with 5-FU strongly inhibited
colorectal cancer (Wang S. Q. et al., 2019), and it was shown
to suppress cancer initiation and progression in genetic mouse
models (Chen et al., 2017). It was shown to selectively inhibit
metastatic colorectal cancer with the KRAS (Kirsten rat sarcoma
viral oncogene homolog) mutation, inhibiting cell proliferation
by inactivating both RAS/ERK and AKT/mTOR signaling (Xie
et al., 2020). Metformin suppresses cancer stem cells (CSCs) in
the tumor, and enhances the responsiveness of glioma cells to
temozolomide (Zhang et al., 2010). It has also been demonstrated
that metformin can be used as a co-adjuvant, reverting the
resistant-like pattern of a human glioma cell line both in vitro
and in vivo (Rattan et al., 2012).

Metformin has been shown to facilitate DNA repair, which is
critical for cancer prevention (Lee et al., 2016). It was proposed
that it targets pancreatic CSCs, but not their differentiated
non-CSCs (Sancho et al., 2015). It is further proposed that
mitochondrial inhibition by metformin creates an energy crisis
and induces CSC apoptosis (Sancho et al., 2015).

In prostate cancer cells, the combination of metformin
and 2-deoxyglucose (2-DG) (that binds to HK) drastically
reduced intracellular ATP levels through the inhibition of the
mitochondrial complex 1 and glycolysis (Ben Sahra et al.,
2010a). Metformin was also shown to affect the glycolytic rate
by directly inhibiting HK-II activity and its interaction with
the mitochondria (Salani et al., 2014). In silico models suggest
that metformin mimics G6P (glucose 6-phosphate) features and
binds to its binding site in HK (Salani et al., 2013). The HK–
VDAC1 complex formation is regulated by Akt (protein kinase
B) (Majewski et al., 2004) and glycogen synthase kinase 3
beta (GSK3β), while the HK–VDAC complex is disrupted by
VDAC phosphorylation (Pastorino et al., 2005). Cancer cells
express high levels of mitochondria-bound HK that not only
enhances glycolysis, but also protects against mitochondria-
mediated apoptosis via direct interaction with VDAC1 (Bryson
et al., 2002; Azoulay-Zohar et al., 2004; Zaid et al., 2005; Abu-
Hamad et al., 2008, 2009; Arzoine et al., 2009). Thus, metformin
inhibits HK activity and induces HK detachment from the
VDAC1, resulting in both inhibiting cancer cell metabolism
and inducing apoptosis. It should be noted, however, that some
clinical trials have failed to show a protective association between
metformin and survival in colorectal cancer (CRC) patients with
T2DM (Cossor et al., 2012; Mc Menamin et al., 2016). VDAC1
has been shown as a critical protein in cancer development
and survival (Mazure, 2017) and many anti-cancer compounds
were shown to mediates their activity via targeting VDAC1
(Reina and De Pinto, 2017; Magri et al., 2018). Metformin has
been consistently shown to reduce the risk of various types
of cancer including the breast, colon, ovaries, pancreas, lung,

prostate, leukemia, and colorectal cancers (Chen et al., 2017;
Andrzejewski et al., 2018; Biondani and Peyron, 2018; Xie et al.,
2020) (see section “Cancer, Metformin, VDAC1, and HK”).
Thus, it is possible that the anticancer effects of metformin
may involve some common pathophysiological mechanisms (Del
Barco et al., 2011). Among these the common hallmarks of cancer
are reprogramming of energy metabolism and resisting cell death
(Hanahan and Weinberg, 2011).

Cancer cells need excess energy and metabolites are required
for cell proliferation and migration to distant organs for
metastasis. Metabolic reprogramming in cancer cells is a
significant pathogenic mechanism in cancer involving flexibility
of the metabolic machinery. VDAC1, by regulating the metabolic
and energetic functions of mitochondria, controls the fate of
cancer cells. The overexpression of VDAC1 in various tumors
obtained from patients, and in tumors established in mouse
models, as well as in cancer cell lines (Arif et al., 2014, 2017;
Shoshan-Barmatz et al., 2015, Shoshan-Barmatz et al., 2017a,b;
Pittala et al., 2018), points to its significance in high energy-
demanding cancer cells. Indeed, the pivotal role of VDAC1
in regulating cancer cellular energy, metabolism, and viability
is reflected in the findings that downregulation of VDAC1
expression reduced cellular ATP levels, metabolite exchange
between the mitochondria and cytosol cell proliferation, and
tumor growth (Abu-Hamad et al., 2006; Koren et al., 2010;
Shoshan-Barmatz and Golan, 2012; Arif et al., 2014, 2017).

Metformin via interacting with VDAC1 and modulating its
conductance it can affect cancer cell metabolism. Metformin
also blocks the Warburg effect in energy metabolism of
cancer cells (Del Barco et al., 2011). Metformin is well
recognized for its effects on the activation of AMPK, followed
by the inhibition of mTOR (Viollet et al., 2012) and its
activation is commonly observed in many types of cancer cells
(Hanahan and Weinberg, 2000).

Another hallmark of cancer cells is their ability to suppress
pro-apoptotic pathways and/or to activate anti-apoptotic
mechanisms (Fulda, 2009; Hanahan and Weinberg, 2011)
associated with drug resistance (Johnstone et al., 2002). Cancer
cells overexpress anti-apoptotic proteins, such as the Bcl-2 family
of proteins and HK, preventing the release of Cyto c from the
mitochondria. VDAC1, by interacting with the anti-apoptotic
proteins and HK, protects tumor cells from cell death (Shimizu
et al., 1999, 2000; Pastorino et al., 2002, 2005; Pedersen et al.,
2002; Shi et al., 2003a,b; Azoulay-Zohar et al., 2004; Zaid
et al., 2005; Mathupala et al., 2006; Malia and Wagner, 2007;
Abu-Hamad et al., 2008, 2009; Arzoine et al., 2009; Arbel and
Shoshan-Barmatz, 2010; Shoshan-Barmatz et al., 2010; Arbel
et al., 2012; Geula et al., 2012a).

In addition, overexpression of VDAC1 is induced by various
apoptosis-inducing conditions such as chemotherapy drugs,
UV irradiation, and viral proteins that increase the level of
VDAC1 expression, with apoptosis being correlated with VDAC1
expression levels (Shoshan-Barmatz et al., 2010, 2013, 2015, 2020;
Keinan et al., 2013; Shoshan-Barmatz et al., 2017a,b). Metformin’s
anti-cancer effects can be mediated through induction of VDAC1
overexpression, as shown in NCaP cells (Loubiere et al., 2017)
in polycystic ovary syndrome-like rats (Zhang et al., 2017) and
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the presence of citral in RD cells (Duan et al., 2021). VDAC1
overexpression leads to apoptosis induction, as presented
in Section “Metformin Modulating Apoptosis: Mitochondria,
VDAC1, and HK as Key Factors.”

Finally, apoptosis and VDAC1 overexpression, as induced by
pro-apoptotic agents, are Ca2+-dependent (Keinan et al., 2013;
Weisthal et al., 2014; Shoshan-Barmatz et al., 2015). As VDAC1
controls intracellular Ca2+ homeostasis, metformin disrupting
calcium fluxes involving ER and mitochondria (Loubiere et al.,
2017) may involve VDAC1.

Thus, the anti-cancer effects of metformin can be mediated
through induction of VDAC1 overexpression and thereby
apoptosis, affecting cell metabolism and/or Ca2+ homeostasis.

Metformin also affects cancer cells’ resistance to various drugs
via modulating the activity or levels of ATP-binding cassette
(ABC) transporters. The ABC family of transporters mediate
the transport of a variety of compounds at the cost of ATP
hydrolysis. Among the ANC transporters are the multiple drug
resistant (MDR) proteins MDR1-P-glycoprotein (Pgp), MRP1
(the multidrug resistance protein 1, ABCC1), and others, which
in cancer cells can cause resistance to various drugs (Borst
and Elferink, 2002). Pgp, and MRP1 confer treatment resistance
via the exclusion of drugs such as etoposide, daunorubicin,
vinblastine, doxorubicin, and others (El-Awady et al., 2016;
Joshi et al., 2016; Wijdeven et al., 2016). For example, P-gp
has been shown to be overexpressed in various cancers such
as in 52% of acute lymphocytic leukemia (ALL) patients, and
this is correlated with reduced survival and treatment resistance
(Olarte Carrillo et al., 2017).

Finally, metformin has been shown to affect cancer cells
resistance to several drugs, such as by reducing the expression of
MDR protein (Table 2).

The molecular relationship between T2DM and tumorigenesis
has not yet been fully elucidated. Previous studies have suggested
that there are several factors associated with patients with
T2DM, that make them more likely to develop tumors. These
include insulin resistance that leads to increased levels of insulin
and insulin-like growth factor (I/IGF), which could bind to
receptors and activate the downstream phosphatidylinositol 3-
kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)
signaling pathways, leading to cell proliferation (Gallagher
and Leroith, 2010; Djiogue et al., 2013). An additional
factor is inflammation, suggesting that the insulin resistance
characterizing T2DM may produce a large number of cytokines,
including tumor necrosis factor α (TNF-α), interleukin (IL)-
6, and IL-1β (Donath and Shoelson, 2011). These cytokines
activate nuclear factor-κB and Janus kinase (JAK)/signal
transducer and activator of transcription 3 (STAT-3) pathways,
which are important signaling pathways in tumorigenesis
(Neurath and Finotto, 2011).

Type 2 diabetes mellitus patients treated with metformin
showed a decreased risk of developing cancer. A study
encompassing 27 clinical trials (∼24,000 patients) showed that
in people at early stages of colon and rectum cancer, metformin
improved recurrence-free survival by 37%, and cancer-specific
survival by 42%, and in early stage prostate cancer, it increased
recurrence-free survival by 17% and cancer-free survival by 42%,

compared with non-metformin users (Coyle et al., 2016). In
head and neck cancer, diabetic patients treated with metformin
had a 46% reduction in the risk of developing this cancer
type compared to non-diabetic patients (Figueiredo et al.,
2016). Similarly, the risk of gastric cancers in metformin users
decreased by 55% compared with non-users (Tseng, 2016).
Most of the studies showed that metformin inhibited cancer
development, and showed no evidence of cancer stimulation
(Anisimov, 2015).

Neurodegenerative Disorders,
Mitochondria, HK, VDAC1, and
Metformin
Neurodegenerative disorders (NDs) include multiple sclerosis
(MS), Parkinson’s disease (PD), Alzheimer’s disease (AD),
Huntington’s disease (HD), epilepsy, amyotrophic lateral
sclerosis (ALS), depression, and others. In 2015, about 46
million people globally were diagnosed with dementia, and > 6
million suffered from PD (Feigin et al., 2017). Currently, there
is a growing need to search for a potential medication to treat
neurodegenerative disorders worldwide.

A meta-analysis of 28 longitudinal studies demonstrated that
people with diabetes had a 73% increased risk of developing
dementia and a 56% increased risk of developing AD compared
to the general population (Campbell et al., 2018). The mechanism
linking diabetes and dementia is multifactorial, with evidence
supporting the involvement of chronic low-grade inflammation,
oxidative stress, vascular effects, increased cerebral amyloid-β
peptides, hyperinsulinemia, and brain insulin resistance, among
others (Craft, 2007; Ahtiluoto et al., 2010).

Metformin crosses the blood–brain barrier (BBB) rapidly
and induces various therapeutic benefits in the brain such
as enhanced learning capacity, and neuroprotective effects. It
also boosts memory function and anti-inflammatory activities
(Labuzek et al., 2010; Pintana et al., 2012; Guo et al., 2014;
Shivavedi et al., 2017).

Metformin showed pharmacological neuroprotective efficacy
in neurological diseases (Ryu et al., 2018; Demare et al., 2021),
including AD (Ou et al., 2018), PD (Curry et al., 2018), and
HD (Sanchis et al., 2019), with its potential use enhancing
neuroprotection against apoptotic cell death (El-Mir et al., 2008),
stimulating neurogenesis, improving spatial memory (Wang
et al., 2012; Fatt et al., 2015), and prolonging the lifespan of
mice (Martin-Montalvo et al., 2013). It was found that metformin
and sulfonylureas treatment decreased the occurrence of T2DM
dementia, and lowered the risk of PD in T2DM patients (Hsu
et al., 2011; Wahlqvist et al., 2012a,b). Furthermore, metformin
was suggested as a possible therapy of choice for diabetic patients
with cognitive dysfunction, acting as an indication of changes in
thinking and memory function (Pintana et al., 2012).

The positive effects of metformin were linked to a decrease
in the opening of the mitochondrial permeability transition pore
(PTP) that prevents the release of Cyto c and causes cell death
(Guigas et al., 2004; Detaille et al., 2005; Lablanche et al., 2011).

In addition, the lipid phosphatase Src homology 2 domain,
containing inositol-5-phosphatase 2 (SHIP2), is elevated in
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TABLE 2 | Metformin decreases cancer cell resistance to chemotherapy.

Disease Metformin effect References

ALL In patients with higher ABCB1 gene expression levels, the combined
use of metformin with chemotherapy is beneficial.

Ramos-Penafiel et al., 2018

Breast cancer Metformin reduces the expression of MDR protein markers, prevents
the growth of treatment-resistant breast cancer, and fosters
re-sensitization.

Davies et al., 2017

Breast cancer Metformin re-sensitized multidrug-resistant breast cancer cells
(MCF7/5-FU and MDA-MB-231) to 5-fluorouracil (5-FU), Adriamycin,
and paclitaxel reduced their invasive potential and reversed the
epithelial-mesenchymal transition (EMT) phenotype.

Qu et al., 2014

Nasopharyngeal carcinoma (NPC) Metformin reduced the expression of PECAM-1, which controls the
expression of the multi-drug expression of resistance-associated
proteins (MRPs) that contribute to cisplatin resistance of irradiated
CNE-1 cells.

Sun et al., 2020

Breast cancer In breast cancer and MCF7/DOX cells, metformin lowers Pgp activity. Shafiei-Irannejad et al., 2018

Triple negative breast cancer (TNBC) Metformin increases cisplatin’s anti-proliferative, anti-migratory, and
anti-invasion effects in TNBC cells. Metformin also reduces the
upregulation of RAD51 expression by triggering RAD51 proteasomal
degradation.

Lee et al., 2019

the brain of diabetic db/db mice (Hori et al., 2002). SHIP2
overexpression reduces Akt activity and enhances apoptosis
(Polianskyte-Prause et al., 2019). Metformin directly binds to
SHIP2 phosphatase, and in the skeletal muscles and kidneys of
db/db mice, it reduces catalytic activity and restores Akt activity,
preventing apoptosis (Polianskyte-Prause et al., 2019). These
findings can be connected to HK, as phosphorylation of HK by
Akt increases its binding to mitochondria (Roberts et al., 2013),
thereby, protecting against apoptosis. These studies suggest a link
between metformin and VDAC1 in the prevention of neuronal
apoptosis in these diseases.

However, metformin was reported to affect the progression
and severity of AD and other forms of dementia (Campbell et al.,
2018), and lower cognitive function in patients with diabetes
(Moore et al., 2013). Metformin-induced cortex mitochondrial
dysfunction is associated with an overall increase of the risk of AD
onset (Picone et al., 2016), and mitochondria-mediated cell death
was linked to neuronal death witnessed in neurological disorders
and associated with caspase-mediated apoptosis (Gervais et al.,
1999; Li et al., 2000; Friedlander, 2003; Petrozzi et al., 2007;
Mattson et al., 2008; Radi et al., 2014).

It has been shown that brains from AD patients contain high
levels of nitrated VDAC1, pointing to oxidative damage from
VDAC1 (Sultana et al., 2006), and feasibly affecting cell energy
and metabolite homeostasis (Ferrer, 2009). Moreover high-levels
of VDAC1 were demonstrated in the dystrophic neurites of
Aβ deposits in the brains of post-mortem AD patients (Yoo
et al., 2001; Perez-Gracia et al., 2008; Cuadrado-Tejedor et al.,
2011; Manczak and Reddy, 2012), and in the thalamuses of
mice with neurodegeneration in the Batten disease model (Kielar
et al., 2009), and changes in thalamic VDAC protein levels were
found to be related to spatial cognitive deficits in an animal
model of Wernicke–Korsakoff syndrome (Bueno et al., 2015).
Interestingly, it is also reported that in AD, VDAC1 levels are
decreased in the frontal cortex, and VDAC2 is elevated in the
temporal cortex (Rosa and Cesar, 2016).

Overexpression of VDAC1 is associated with apoptosis
(Shoshan-Barmatz et al., 2015). This overexpression in various
neuronal diseases is proposed to be associated with neuronal cell
destruction and HK detachment, resulting in both inhibiting cell
metabolism and inducing apoptosis. Thus, HK detachment from
VDAC1 by metformin can explain the reported negative effects
of metformin on neurodegenerative disorders.

These findings indicate that metformin possesses both
pro-survival and pro-apoptotic activities in neurodegenerative
diseases, but the factors mediating these opposite effects are not
clear. Here, we suggest that these metformin effects are mediated
via metformin interaction with HK and VDAC1, proteins that
regulate cellular energetics and cell death.

Alzheimer’s Disease and Metformin
Alzheimer’s disease is characterized by progressive memory loss
and a decline in cognitive function. The pathological hallmarks
of the AD brain include neurofibrillary tangles (NFTs; composed
of abnormal hyperphosphorylated tau protein) and amyloid
plaques (Aβs) (Brion et al., 1985). Tau is involved in microtubule
stabilization (Johnson and Stoothoff, 2004), associated with
synaptic loss, and has been correlated with cognitive impairments
in AD patients (Arriagada et al., 1992).

The underlying biological mechanisms leading to sporadic
forms of AD have still not been defined, but these are proposed
to involve mitochondrial dysfunction, cholinergic dysfunction,
Aβ plaque formation, tau accumulation, inflammation, DNA
damage, inflammatory response, hormone regulation, and
lysosomal dysfunction (Dorszewska et al., 2016).

Obesity, metabolic syndrome, and T2DM were proposed
to contribute to impaired cognitive function, increasing the
risk for the development of dementia including AD (Ott
et al., 1999; Arvanitakis et al., 2004). A recent meta-analysis
of longitudinal studies suggests that the relative risk for AD
is approximately 1.5-fold higher among persons with T2DM
(Cheng et al., 2012).
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It has been shown that T2DM is correlated with twice
the risk of dementia (Hsu et al., 2011). Therefore, metformin
has been proposed as a potential neuroprotective agent in
T2DM patients as it is able to reduce the chances of
AD onset (Hsu et al., 2011). The proposed mechanism
for metformin inhibiting the development of dementia in
patients with diabetes is by preventing hyperinsulinemia,
which contributes to amyloid-β plaque formation in the brain
and the onset of AD (Qiu and Folstein, 2006). Another
study showed that metformin reduced tau phosphorylation
in primary neuron cultures from a tau transgenic mouse
(Kickstein et al., 2010).

Overexpression of VDAC1 in affected regions of AD brains
(Perez-Gracia et al., 2008; Cuadrado-Tejedor et al., 2011;
Manczak and Reddy, 2012) and in β-cells of T2D (Ahmed et al.,
2010; Gong et al., 2012; Sasaki et al., 2012; Zhang E. et al., 2019)
has been reported. As neuron loss, mainly due to apoptosis,
occurs in AD brains (Colurso et al., 2003; Lezi and Swerdlow,
2012; Sabirov and Merzlyak, 2012; Silva et al., 2012; Smilansky
et al., 2015) and VDAC1 overexpression induces apoptotic cell
death (Godbole et al., 2003; Zaid et al., 2005; Abu-Hamad et al.,
2006; Ghosh et al., 2007; Lu et al., 2007; Weisthal et al., 2014),
its overexpression in AD and in T2DM may be a common
mechanism in these pathologies.

Aβ triggered HK-I detachment from mitochondria,
decreasing HK-I activity in cortical neurons (Saraiva et al.,
2010). In addition, in the postmortem brain tissue of AD mice
and patients, HK levels were decreased, while VDAC1 levels
were elevated (Cuadrado-Tejedor et al., 2011). In addition, HK-I
detachment from mitochondria was observed in AD models
(Rossi et al., 2020). It is well demonstrated that HK binds to
VDAC1 and that its dynamic association with VDAC1 (Zaid
et al., 2005; Abu-Hamad et al., 2008; Pastorino and Hoek,
2008; Arzoine et al., 2009) is known to modulate the metabolic
coupling between cytosol and mitochondria by regulating both
glycolysis and oxidative phosphorylation.

Parkinson’s Disease and Metformin
Parkinson’s disease is a progressive neurodegenerative disease
characterized by both motor and non-motor features, and is the
second most common neurodegenerative disorder (Rizek et al.,
2016). Metformin reversed certain PD phenotypes in PD mouse
models through AMPK-dependent and independent pathways
(Bayliss et al., 2016; Lu et al., 2016; Ryu et al., 2018). It lowered
α-synuclein phosphorylation and upregulated neurotrophic
factors in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) mouse model of PD (Katila et al., 2017), and prevented
the loss of dopamine-producing brain cells in a model of PD
(Lu et al., 2016).

Metformin mitigated neuronal damage, strengthened
antioxidant activity, and increased muscle and locomotive
functions in an MPTP-triggered PD mouse model (Patil
et al., 2014). Similar findings were found where metformin-
ameliorated MPTP induced dysfunction of dopaminergic
neurons, elevated striatal dopamine output, and improved motor
injuries in a mice model via microglia-overactivation-induced
neuroinflammation inhibition, and enhanced AMPK-mediated

autophagy (Lu et al., 2016). Metformin also suppressed AMPK-
independent development of L-DOPA-induced dyskinesia
and impaired glycogen synthase kinase 3β (GSK3β) activity,
without affecting elevated mTOR or ERK signaling observed
in a mouse model of PD (Ryu et al., 2018). Similar results
showed neuroprotective effects of metformin and inhibition
of degeneration of nigrostriatal dopamine in a PD mouse
model (AMPK knockout) (Bayliss et al., 2016). This raises
the feasibility that metformin could be a potential therapeutic
agent in suppressing complications of L-DOPA-induced motor
complications in PD (Freitas et al., 2017; Sportelli et al., 2020).

α-synuclein, a presynaptic neuronal protein, interacts with
VDAC1 and regulates VDAC1 conductance and VDAC1-
mediated Ca2+ transport (Rostovtseva et al., 2015; Rosencrans
et al., 2021). Metformin-induced ER stress resulted in Ca2+

release from the ER and its uptake by the mitochondria, leading
to mitochondrial alterations (Loubiere et al., 2017). Thus, α-
synuclein, by inhibiting VDAC-mediated Ca2+ transport, can
prevent metformin-mediated mitochondrial Ca2+ overload and
the associated mitochondria dysfunction.

COVID-19, Diabetes, Mitochondria,
VDAC1, and Metformin
The COVID-19 pandemic has been the focus of global concern
since its outbreak in December 2019 when a new coronavirus
(SARS-CoV-2), was first discovered in Wuhan, China. This virus,
that rapidly spread around the world, is characterized by a severe
acute respiratory syndrome (Perlman, 2020).

It is identified by the presence of a “crown” structure observed
by electron microscope. The whole genome has been sequenced
and is composed of a single-stranded RNA about 30Kb in
length (GenBank no. MN908947), encoding 9,860 amino acids
(Chen L. et al., 2020).

The surface of the COVID-19 virus is covered by a large
number of spike glycoproteins that are responsible for binding to
the host receptor and membrane fusion (Huang et al., 2020; Letko
et al., 2020). To date, most evidence points toward angiotensin-
converting enzyme 2 (ACE2) as the primary receptor for virus
entry into host cells (Zhao et al., 2020). Genetic polymorphisms
of ACE2 are associated with hypertension, cardiovascular disease,
stroke, and diabetes (Ranadheera et al., 2018).

Several reports indicate that people with diabetes who
become infected by COVID-19 have more severe consequences
and a higher risk of mortality compared to non-diabetic
individuals (Apicella et al., 2020). Retrospective studies in
patients with T2DM hospitalized for COVID-19 suggest that
anti-hyperglycemic agent metformin treatment is associated with
a threefold decreased risk of death.

A study involving more than 2,500 people with COVID-19
and with T2DM from 16 hospitals in China found an increased
incidence of acidosis, although this incidence was not associated
with greater mortality in people treated with metformin during
hospitalization (Cheng et al., 2020). In addition, metformin was
significantly associated with reduced mortality in women with
obesity or T2DM who were admitted to hospitals with the virus
(Bramante et al., 2021).
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Immunomodulatory and antiviral activity of metformin and
its potential implications in treating COVID-19 and lung injury
has been reported (Chen L. et al., 2020).

It has been hypothesized that ACE2 causes acute lung injury
by triggering autophagy through the AMPK/mTOR pathway
(Zhang X. et al., 2019). AMPK increases the expression of ACE2
and its stability by phosphorylating ACE2 Ser680 (Liu et al.,
2019). Thus, it was proposed that metformin could prevent the
entry of SARS-CoV-2, as well as activation of ACE2 through
AMPK-signaling (Sharma et al., 2020).

In addition, the SARS-CoV-2 life cycle depends on modulating
the mTOR protein and pathway. mTOR signaling is necessary
for viral translation, and its interruption inhibits viral growth
and replication (Ranadheera et al., 2018). Metformin, an
FDA-approved mTOR inhibitor, when administered as an
anti-hyperglycemic drug in diabetes patients, was found to
simultaneously act as an anti-hyperglycemic and antiviral agent
(Lim et al., 2021), offering benefits in patients with COVID-19.
This correlation could justify the reduced risk of mortality in
metformin-treated compared with non-treated diabetic patients.
However, additional studies are necessary to further elucidate
the exact role of mTOR inhibitors and modulators in the
treatment of COVID-19.

Many viruses modulate mitochondria (Monlun et al., 2017;
Tiku et al., 2020). The connection of mitochondria and VDAC1
to the metformin effects on cell function presented above has
also been demonstrated for COVID-19 (Thompson et al., 2020).
Recently, it was shown that SARS-CoV-2 RNA and proteins
are localized to the mitochondria, hijacking the host cell’s
mitochondrial function, and manipulating metabolic pathways to
their own advantage (Singh et al., 2020; Ajaz et al., 2021).

It was demonstrated that metabolic programs define
dysfunctional immune responses in severe COVID-19 patients
(Thompson et al., 2020). Moreover, VDAC1 expression level
was highly increased in T-cells from these patients, leading to
mitochondrial dysfunction and apoptosis (Thompson et al.,
2020). In addition, COVID-19 patients’ T-cells underwent
apoptosis that was inhibited by VBIT-4 (Thompson et al., 2020),
a compound that targets VDAC1 oligomerization and prevents
apoptosis (Ben-Hail et al., 2016). Further, VBIT-4 restored
insulin secretion in T2DM islets and maintained normal glucose
levels and insulin secretion in db/db mice (Zhang E. et al., 2019).
Moreover, HK-II was found to be highly expressed in T-cells in
acutely ill COVID-19 patients, but not in other viral diseases
(Thompson et al., 2020).

These findings point to the likelihood that the mitochondria,
VDAC1, and HK are involved in metformin-reduced mortality of
T2DM induced by COVID-19.

It should be mentioned that metformin can be considered to
be either a friend or foe of SARS-CoV-2-infected patients with
diabetes (Ursini et al., 2020).

METFORMIN AS AN ANTI-AGING AGENT

The nine biological hallmarks of aging include mitochondrial
dysfunction, altered intercellular communication, loss of

proteostasis, telomere attrition, deregulated nutrient sensing,
genomic instability, cellular senescence, stem cell exhaustion,
and epigenetic alterations. All have been associated with various
neurodegenerative diseases (Hou et al., 2019). Several studies
using preclinical models suggest that metformin is improving
health span and lifespan (Martin-Montalvo et al., 2013; De Haes
et al., 2014; Alfaras et al., 2017; Piskovatska et al., 2019).

In a rat model and human neuronal cell cultures, metformin
has been reported to significantly stimulate the formation of
new neurons, i.e., neurogenesis, but there has been no sufficient
evidence of clinical trials to confirm these findings to date (Potts
and Lim, 2012). Mice treated with metformin have been found to
live nearly 6% longer than controls, and diabetic patients treated
with metformin live 15% longer than healthy individuals without
diabetes (Bannister et al., 2014).

Metformin is considered an anti-aging medication as it has
been shown to affect many factors that accelerate aging., such
as protecting against DNA damage, mitochondrial dysfunction,
and chronic inflammation (Formoso et al., 2008; Martin-
Montalvo et al., 2013; Cameron et al., 2016; Garg et al., 2017;
Valencia et al., 2017). Metformin increases the levels of mTOR
and AMPK, which are considered to be longevity-promoting
signaling molecules in cells (Martin-Montalvo et al., 2013; De
Kreutzenberg et al., 2015). Finally, it has been reported that
the AMPK activity declines with age (Salminen et al., 2011).
Thus, the finding that metformin activates AMPK may support
the suggestion that it is an agent that prevents age-related
disorders including cancer, cardiovascular disease, obesity, and
neurocognitive decline (Wang et al., 2011; Coughlan et al., 2014;
Wang B. Z. et al., 2019).

A decline in mitochondria quality and activity is associated
with normal aging and correlated with the development
of a wide range of age-related disorders, particularly
neurodegenerative diseases. Impaired mitochondrial function
includes decreased oxidative phosphorylation (OxPhos), ATP
production, mitochondrial dynamics, and mitochondrial
quality control, as well as a significant increase in ROS
generation, diminished antioxidant defense, and enhanced
mitochondria-mediated apoptosis (Chistiakov et al., 2014;
Sun et al., 2016). In addition, an accumulation of mutations
in mitochondrial DNA (mtDNA) causes adverse effects
including altered expression of OxPhos complexes, thereby,
decreasing energy production and enhancing ROS generation
(Wallace, 2010).

Several mechanisms underlying the anti-aging effect of
metformin have been proposed including metformin reducing
the production of mitochondrial ROS through the inhibition
of complex I (Owen et al., 2000); upregulating ER glutathione
peroxidase (Fang et al., 2018); regulating mitochondrial
biogenesis and senescence through AMPK-mediated H3K79
methylation (Karnewar et al., 2018); decreasing the opening of
the mitochondrial permeability transition pore (mPTP) (Guigas
et al., 2004); and inducing autophagy by AMPK activation,
regarded as health span-promoting and pro-longevity properties
(Piskovatska et al., 2019), and with beneficial effects on chronic
inflammation (Saisho, 2015), a state known to contribute to the
development and progression of all age-related disorders.
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Finally, metformin via binding to SHIP2 prevented Akt
inhibition (Polianskyte-Prause et al., 2019) allowing Akt
to phosphorylate HK, thereby, increasing its binding to
mitochondria (Roberts et al., 2013) and preventing apoptosis.

Several studies demonstrated age-related changes in VDAC
isoform expression levels and posttranslational modifications
(Groebe et al., 2010). Moreover, an age-dependent increase in
VDAC1 in the cerebral cortex of mice has been demonstrated
(Manczak and Reddy, 2012).

The increase in VDAC1 expression levels by metformin
(Loubiere et al., 2017; Zhang et al., 2017; Duan et al., 2021)
can explain its pro-apoptotic effect relevant to cancer therapy.
However, no clear mechanism is presented to link between
metformin ‘s anti-aging activity and VDAC1. A possible link is
metformin inhibiting mPTP opening, and activating mitophagy
which removes damaged mitochondria, and is inhibited in
aging cells (Rottenberg and Hoek, 2021). VDAC1 has been
proposed as one of the components of mPTP (Vianello
et al., 2012) and metformin, by blocking VDAC1 conductance
(Zhang E. et al., 2019), may inhibit mPTP opening. Thus,
metformin’s anti-aging effects may be associated with its
effects on mitochondria, HK, and VDAC1 functions. It should
be noted that most of metformin’s anti-aging effects were
observed at doses that substantially exceed the recommended
therapeutic doses in humans (Novelle et al., 2016). Clearly,
better understanding of the mechanisms underlying metformin’s
effects on health-span and life extension in non-diabetics requires
further studies.

METFORMIN: CONTROVERSIAL
RESULTS AND SIDE EFFECTS

Although metformin used in treating various diseases
including diabetes, cancer, obesity, and neurodegenerative and
cardiovascular diseases, there are some precautions necessary
with its use. Studies on its association with various classifications
of age-related cognitive decline have shown diverse results with
both positive and negative effects.

The proposed “anti-aging” activity of metformin is a
controversial subject in general. The suggestion that it decreases
the risk, progression, and severity of AD and other forms of
dementia in individuals without diabetes is not supported by the
available evidence (Campbell et al., 2018).

Clinical studies have reported that long-term metformin use
increased the risk of AD among patients over 65 years old (Imfeld
et al., 2012), and T2DM patients treated with it had over two to
three times more impaired cognitive function than non-treated
patients (Moore et al., 2013). Yet, another cohort study reported
that patients with diabetes co-treated with sulfonylureas and
metformin alleviated the risk of dementia by up to 35% over an
8-year period (Hsu et al., 2011).

Metformin inhibition of mitochondrial respiration (El-Mir
et al., 2000; Wessels et al., 2014) has been shown to contribute
to the development of PD. In a cell culture model, it was found
to increase Aβ formation (Chen et al., 2009; Picone et al., 2016),
and in a population-based study, it increased the rate of AD

(Imfeld et al., 2012) and lowered cognitive function in patients
with diabetes (Moore et al., 2013).

A recent study demonstrates that metformin increased
the generation of Aβ by promoting β- and γ-secretase-
mediated cleavage of APP in SH-SY5Y cells. Also, it
caused autophagosome accumulation in Tg6799 AD model
mice, and it was concluded that it may aggravate AD
pathogenesis by promoting amyloidogenic APP processing
in autophagosomes (Son et al., 2016). It is proposed
that metformin induces Aβ generation by activating
AMPK, inhibiting the mTOR pathway, which results in
upregulated autophagy and abnormal accumulation of
autophagosomes enriched in APP, BACE1, and-secretase,
facilitating amyloidogenic Aβ production and AD progression
(Son et al., 2016).

In addition, potential side effects of metformin were reported.
Typically, gastrointestinal side effects, including diarrhea,
nausea, flatulence, indigestion, vomiting, and abdominal
discomfort, dominate in individuals taking it (Nasri and
Rafieian-Kopaei, 2014). Long-term metformin use resulted
in vitamin B12 deficiency (Liu et al., 2014; Niafar et al.,
2015), interfering with the absorption of B12 in the terminal
ileum (Bauman et al., 2000). Low B12 levels contribute to
higher concentrations of artery-clogging homocysteine, an
independent risk factor for cardiovascular disease (Ganguly
and Alam, 2015). The association between metformin and
impaired cognitive function has been linked at least in part
to metformin-induced B12 deficiency (Moore et al., 2012;
Kim et al., 2019a).

Another side effect is that metformin increases the levels of
lactate in mice and humans. Although it is extremely rare, lactic
acidosis may cause dizziness, muscle pain, tiredness, difficulty
breathing, irregular heartbeat, and stomach pain with diarrhea
(Scheen and Paquot, 2013).

SUMMARY

The interest in metformin has been significantly revitalized
during the last years due to its potential repositioning for
treatment of many diseases. Metformin has been proposed as a
treatment for cancer, and neurodegenerative and other diseases.
However, it is not clear what factors mediate its pro-survival
or pro-apoptotic activities. Several mechanisms were proposed
including activation of the LKB1/AMPK pathway, causing cell
cycle arrest, inducing apoptosis, inhibiting protein synthesis
and unfolded protein response (UPR), reducing circulating
insulin levels, modulating PTP opening, inhibiting mitochondrial
complex I, inducing ER stress and increased Ca2+ cellular levels,
activating the immune system, and more. Here, we propose that
metformin interacts with HK, and alters its binding toVDAC1.
Together with VDAC1, it regulates cellular energetics and cell
death by these proteins. This suggests that metformin’s multiple
effects also involve HK and VDAC1, which are both shown
to be associated with cancer and neurodegenerative diseases.
In cancer, metformin detaches HK from VDAC1, allowing
apoptosis, and in neurodegenerative diseases, it interferes with
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HK phosphorylation and, thereby, allows its bind to VDAC1,
protecting against cell death.
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