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The physical interaction between the T cell receptor (TCR) and its cognate antigen
causes T cells to activate and participate in the immune response. Understanding
this physical interaction is important in predicting TCR binding to a target epitope,
as well as potential cross-reactivity. Here, we propose a way of collecting informative
features of the binding interface from homology models of T cell receptor-peptide-major
histocompatibility complex (TCR-pMHC) complexes. The information collected from
these structures is sufficient to discriminate binding from non-binding TCR-pMHC pairs in
multiple independent datasets. The classifier is limited by the number of crystal structures
available for the homology modelling and by the size of the training set. However, the
classifier shows comparable performance to sequence-based classifiers requiring much
larger training sets.
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1. INTRODUCTION

T cells are key players of adaptive immunity. They are activated by the recognition of a cognate
peptide, a short stretch of amino acids which is displayed on a major histocompatibility complex
molecule (MHC, pMHC when bound to peptide). The recognition occurs via the T cell receptor
(TCR), which is composed of two chains (normally an α and a β), both of which are generated
by a process of random recombination and selection. The recombination gives rise to three
hypervariable regions, the complementarity-determining regions—CDR1, CDR2, and CDR3.
Among the three regions, CDR3 is the most variable as it is found at the junction of V(D)J
recombination, and it can therefore incorporate a number of non-template insertion and deletion
events, whilst CDR1 and CDR2 depend on the V gene selected in the recombination process and
have therefore a lower number of possible sequences.

A number of TCR-pMHC complexes have been crystallised and their structures solved and
they are collected in the Structural T-Cell Receptor Database (STCRDab, Leem et al., 2018). They
have given us deeper understanding of TCR-pMHC interactions and how these are impacted by
mutations, but also how structure and function are related. Examples include how cross-reactivity
between bacterial and self antigens can drive disease (Petersen et al., 2020), how binding mode can

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.730908
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.730908&domain=pdf&date_stamp=2021-09-08
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:b.chain@ucl.ac.uk
https://doi.org/10.3389/fphys.2021.730908
https://www.frontiersin.org/articles/10.3389/fphys.2021.730908/full


Milighetti et al. TCR-pMHC Binding From Homology Models

give different specificity profiles to TCRs binding the same
peptide (Coles et al., 2020), and how binding orientation is
determined by how the peptide is presented by the MHC
(Singh et al., 2020).

The existing structures can also be mined for information on
how the TCR interacts with the pMHC complex. By looking
at the TCR residues that fall within 5 Å of the peptide in a
number of published TCR-pMHC structures, both Glanville et al.
(2017) and Ostmeyer et al. (2019) showed that the CDR3 is the
region that makes the most extensive contacts with the peptide.
These regions of contact are normally short stretches of 3 or 4
consecutive amino acids within the CDR3. Moreover, they noted
that whilst the TCRβ always made contacts, there are multiple
instances were the TCRα is not within contact distance of the
peptide. It has also been shown that TCRs which recognise the
same peptide share motifs and sequence characteristics in the
CDR3 (Thomas et al., 2014; Cinelli et al., 2017; Dash et al.,
2017; Glanville et al., 2017). This similarity may reflect structural
similarities (Lanzarotti et al., 2019).

The ensemble of TCRs that are present within an individual
at any point in time is called the TCR repertoire. Different
sequences are found at widely different frequencies, ranging from
a few hundred copies to 109 copies for the larger T cell clones,
which make up to 1% of the total repertoire. Differences in
clone size can arise both in the naive repertoire, by convergent
recombination (whereby an amino acid sequence is likely to
be produced by the process of recombination—normally with
short CDR3 and few nucleotide insertions; Venturi et al., 2006;
Britanova et al., 2014) or because of the power-law distribution of
naive T cell clones produced by the thymus (de Greef et al., 2020);
or in the memory repertoire by convergent selection, whereby
similar sequences are expanded because they are responding to
the same antigen, (Pogorelyy et al., 2018). de Greef et al. (2020)
estimates the maximum effect of generation probability to be
around 107, which is two orders of magnitudes smaller than
the largest observed clone sizes, suggesting a role for expansion
during the immune response. By focusing solely on the CDR3, it
can be shown that during an immune response, expanded TCR
clones are frequently part of clusters of sequences that are more
similar to each other thanmight be expected by random sampling
of the repertoire (Marcou et al., 2018; Joshi et al., 2019; Pogorelyy
et al., 2019).

This observation of antigen-driven TCR sequence clustering
has been used to build algorithms such as GLIPH (Glanville
et al., 2017) and TCRdist (Dash et al., 2017), which can build
sequence motifs starting from a cluster of TCRs known to
recognise the same peptide and which are then able to find
other TCRs responding to the same peptide. More recently, Tong
et al. (2020) have shown that sequence information encoded in
the form of overlapping amino acid quadruplets can be used to
create a multi-class prediction algorithm able to correctly assign
TCR-pMHC pairs.

In the same way that conserved sequence motifs characterise
TCRs recognising the same antigen, we hypothesise that there
will be structural features of the TCR/antigen interface which
are conserved in the interactions. Such conserved structural
features could be leveraged to gain a better understanding of the

TCR-pMHC interaction and to recapitulate and improve what
has been learnt from looking purely at sequence information.
Our understanding of the physical interactions between TCRs
and pMHC is, however, limited to the set of solved and published
crystal structures. The STCRDab currently reports about 400
entries for αβ TCR-pMHC complexes, and 120 different peptides,
which is clearly a tiny subset of all the possible TCR-pMHC
interactions that can exist. To solve this problem, a number
of tools have been developed and subsequently optimised to
predict the structure of a TCR-pMHC complex based on its
sequence. One of these is TCRpMHCmodels (Jensen et al., 2019),
which exists as a free online user interface. TCRpMHCmodels
leverages LYRA (Klausen et al., 2015) to model the TCR structure
and MODELLER (Fiser and Šali, 2003) to predict the pMHC
structure, to then combine them together by using a third
set of templates for the TCR-pMHC complex overall. Tools
like TCRpMHCmodels, although still limited by the amount
of information that has been published, allow us to delve
deeper into the structural relationships between the TCR and
the pMHC.

We show here that a combination of structural and sequence
features can be incorporated into a machine learning algorithm
to discriminate binding and non-binding TCR-pMHC pairs.
The classifier presented is limited by the performance of the
homology modelling, but, unlike any of the previous work
reviewed above, it does not rely on the identification of a set of
TCRs binding to a specific peptide to be able to predict whether
other TCRs will bind to that same peptide, but rather learns some
general rules which can predict TCR interaction with completely
novel peptides.

2. METHODS

2.1. Datasets
The available crystal structures for TCR-pMHC complexes were
retrieved from STCRDab (http://opig.stats.ox.ac.uk/webapps/
stcrdab/, Leem et al., 2018). The dataset (referred to as STCRDab
or PDB—Protein Data Bank—set) was refined to include
only one complex per crystal, remove γ δ TCRs and remove
non-peptide antigens. The set was then checked for repeat
sequences. For the classifier step, TCRs binding MHC class
II complexes were removed as these cannot be modelled by
TCRpMHCmodels. To create non-binding TCR-pMHC pairs,
random TCR-pMHC pairs were created from the available pool,
under the condition that the pMHC from the random pairing was
not the same as the original one.

The 10XGenomics dataset was downloaded from the
10XGenomics website (CD8+ T cells of Healthy Donor 1,
10XGenomics, 2020). For each TCR, binding (or absence of
binding) to an epitope was defined as in the Application Note
provided by 10X Genomics. Briefly, a specific binding event
was defined as having UMI count higher than 10 and >5 times
the highest negative control for that TCR clone. When a TCR
clone was assigned multiple barcodes, the UMI counts for each
tetramer were summed to determine overall binding. If these
conditions were true for more than one peptide, the TCR was
called a binder for each of the epitopes.
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The Dash dataset (Dash et al., 2017) was obtained from the
VDJDb dataset. Duplicate TCR-pMHC pairs were removed. Each
unique TCR clone was paired with each pMHC in the dataset,
making 1 binding and 9 non-binding complexes per TCR.

The set of experimental constructs (expt) consists of a set
of experimentally-validated peptide-specific TCR constructs with
cognate peptide, which have been characterised functionally:
2 CMV-reactive TCRs (NLVPMVATV peptide), 3 influenza-
reactive TCRs (2 HA1-reactive—peptide VLHDDLLEA—and
1 HA2-reactive—YIGEVLVSV peptide), 1 EBV-reactive TCR
(peptide CLGGLLTMV) from Thomas et al. (2019) and
Chatterjee et al. (2019); A7 TCR and 3 affinity-matured TCRs
from A7 which recognise pTax as well as pHud peptides
(LLFGYPVYV and LGYGFVNYI, respectively; Thomas et al.,
2011); two TCRs identified as neoantigen-reactive in Joshi et al.
(2019) and two mutated versions of these, which have been
shown not to bind the neoantigen (unpublished data, Woolston,
personal communication, 2020). To create the non-binders, each
TCRs was matched with each pMHC in the pool, as well as
with peptide WT235 (control peptide in Thomas et al., 2019,
CMTWNQMNL) and peptide WTlung (FAFQEDDSF, wild-type
peptide for the neo-antigen; McGranahan et al., 2016).

A dataset of TCR-pMHC complexes with experimentally-
determined affinity was retrieved from the ATLAS (http://atlas.
wenglab.org/web/index.php; Borrman et al., 2017) to evaluate the
impact of affinity on classifier performance. Any TCR-pMHC
pair with undetectable binding (Kd labelled as n.d.) was removed
from the set, as the binding status could not be determined. Any
complex with KD < 200µM was called a binder and KD ≥

200µM called a non-binder.
Finally, a dataset of TCR-pMHC complexes with epitopes that

are neither present in our training set nor in the training set
of the tools we benchmarked against was downloaded from the
latest version of the VDJDb (Bagaev et al., 2020). As for the PDB
set, negatives were created by shuffling of TCR-pMHC pairs in
the set.

The MHC alleles and number of pMHC structures for all the
datasets is summarised in Table 1.

2.2. Homology Modelling and Feature
Extraction
Each structure (both binders and non-binders) in these datasets
was homology-modelled with TCRpMHCmodels (which was
kindly provided in command-line form by the authors, Jensen
et al., 2019) in its default settings and submitted to the feature-
extraction pipeline. Structures were analysed for quality using
Molprobity (data not shown; Williams et al., 2018).

To make the structures comparable, they were renumbered
to the standardised IMGT numbering (Lefranc, 1997) using
ANARCI (Dunbar and Deane, 2016). Moreover, the peptide
residues were renumbered to 1-20, so that the central residues
would be residues 10-11 in each complex.

For each TCR-pMHC, five sets of features were
extracted, namely:

• minimum pairwise distances between each CDR residue
and each peptide residue were calculated using BioPDB

(Hamelryck and Manderick, 2003). These capture the binding
mode of the TCR-pMHC complex.

• energetic profile of pairwise CDR-peptide residues interactions
was calculated using PyRosetta v2020.28+ (Chaudhury et al.,
2010). The Rosetta energy function for context-independent
residue-residue interactions was used to extract the following
terms (scorefunction: talaris2014) from a PDB file from which
the MHC complex was removed: attractive and repulsive
van der Waals (atr, rep), electrostatic interactions (elec) and
solvation energy (sol) (Alford et al., 2017). These are a
representation of binding energy of the complex.

• Atchley factors (Atchley et al., 2005) were used to encode the
sequences of the peptide and CDRs for each TCR-pMHC pair.

To evaluate the effect of homology modelling performance on
the classifier presented, the structures were categorised as having
or not having good homology modelling templates. This was
defined based on the sequence homology to the most similar
peptide template (> 45% sequence similarity to the best pMHC
model template) and complex template (> 60% sequence
similarity to the best complex template). These thresholds were
chosen based on the results presented in the original report
(Jensen et al., 2019).

To be noted that not all structures could be successfully
modelled by TCRpMHCmodels (because of lack of template,
Table 1), and so we could not submit them to the feature
extraction pipeline.

2.3. Multiple Kernel Learning
Each feature set was pre-processed separately. Missing values
were imputed with the median value of the feature across the
train set. Each feature was then scaled to have a value between
0 and 1 (scikit-learn Minmax scaler; Pedregosa et al., 2012)
and normalised.

To properly represent and integrate the different features
extracted from the structures, Gaussian (or radial-basis function,
rbf) kernels were created separately for each subset of features.
Since the optimum width of the Gaussian kernel (represented
by the γ parameter) for each feature set was unknown, we
incorporated a series of seven different kernels for each feature
set each with a different Gaussian width parameter, chosen
as described in the heuristic below. The seven kernels were
combined during the learning step, with weights assigned to each
kernel as described in Lauriola et al. (2017). This avoids having
to find an optimal Gaussian parameter for each feature set. The
γ parameters for the 7 Gaussian kernels for each feature set were
chosen heuristically as follows:

1. the Euclidean distance, di,j, between each positive (binding,
denoted with i) and negative (non-binding, denoted with j)
examples in the train set was calculated

di,j =

√

√

√

√

n
∑

w=1

(posi,w − negj,w)2

for each feature w in the n-sized set.
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TABLE 1 | MHC associated with peptides in each dataset.

PDB (all) PDB (ML) Expt Dash 10X Atlas NewVdj

A01 2 6 27 (25)

A02 71 211 98 (98) 6,561 (5,754) 1679 (1,422) 303 (302) 5,510 (4,812)

A03 3,377 (2,922) 145 (126)

A11 2 5 1908 (1,673)

A24 5 15 287 (239) 4 (4)

A25 145 (126)

A68 435 (253)

B07 2 34 (29) 290 (254)

B08 4 10 273 (254) 55 (55)

B27 2 7 1 (1)

B35 16 33 28 (28) 2 (2) 67 (14) 145 (126)

B37 1 1

B38 290 (127)

B44 3 11 6 (6) 145 (127)

B51 1 2

B57 1 5

DQ 10 34 (0)

DR 14 9 (0)

E 3 7 7 (7)

H-2D 11 40 6,561 (5,434)

H-2K 7 13 8,749 (7,423) 4 (4)

H-2L 12 38

IA 5 1 (0)

IE 7 20 (0)

Total 179 404 126 (126) 21,871 (18,611) 7,587 (6,566) 511 (393) 7,105 (5,951)

For each set analysed, the number of complexes with each MHC gene is shown. PDB (all) is used in the first section of the paper to analyse contacts, whilst PDB (ML) is the set

used for the supervised learning. The numbers for PDB (ML), expt, dash, atlas, and newVdj represent the starting set of sequences that were submitted to the pipeline after removing

duplicates, including both binding and non-binding complexes, as well as sequences that could not be modelled by TCRpMHCmodels. The number in brackets are the structures for

which prediction was successful.

2. 7 σ values, corresponding to 1st, 2nd, 5th, 50th, 95th, 98th,
and 99th percentile of distances, were retrieved

3. for each σ , a γ was calculated as:

γ =
1

2 ∗ σ 2

4. the calculated γ values were then used to create the 7 kernels
for the specific feature set.

The family of kernels for different features were combined by
the EasyMKL algorithm as implemented in MKLPy to find an
optimal combination (Aiolli and Donini, 2015; Lauriola et al.,
2017; Lauriola and Aiolli, 2020). The learner algorithm for MKL
was set as scikit-learn’s SVC (Support Vector Classification,
Pedregosa et al., 2012). EasyMKL with SVC needs two
hyperparameters: λ and C. λ was fixed to 0 as in Lauriola et al.
(2017), and the optimal C parameter for SVC was searched in
the range between 10−5 and 102 by 10-fold (internal) cross-
validation (CV) on the train set.

This same process was used both when a single feature set was
evaluated (by combining the seven kernels for the set) as well

as when combining multiple feature sets (seven kernels for each
feature set).

To estimate performance by cross-validation, the train set was
split 70-30. 70% was used to optimise the model parameters by
maximising the ROC AUC score and the remaining 30% was
used for prediction. The procedure was repeated 10 times with
different subsets of samples.

Out-of-sample performance was evaluated in the datasets
outlined in section 2.1, by training the classifier on the whole of
the training set.

2.4. Impact of Homology Modelling
To evaluate the impact of homology modelling on the classifier,
the structure prediction and feature extraction set were repeated
by forcing TCRpMHCmodels to only use templates with
sequence similarity below a set threshold.

TCRpMHCmodels uses three sets of templates (one for the
TCR, one for pMHC, and one for the entire Complex), which can
be manipulated independently. Here, we have set the maximum
sequence similarity to be 40, 60, or 80 for each of these template
sets separately and then for all three at the same time (All). From
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the structures generated in this way, features were extracted and
model performance was evaluated using 10-fold CV.

2.5. Benchmarking Against Other
Classifiers
To evaluate the performance of the presented classifier compared
to published classifiers in the field, we compared performance
with ERGO (Springer et al., 2020) and ImRex (Moris et al., 2020)
on the same validation sets. ERGO is available as a web tool
(https://tcr.cs.biu.ac.il/), and the models trained on the VDJdb
(Bagaev et al., 2020) were used for the benchmarking. ImRex
is available as a GitHub repository (https://github.com/pmoris/
ImRex), and the available model trained on the VDJdb was used
for the predictions.

2.6. Data Availability
The complete set of sequences used, as well as prediction results
are provided as Supplementary Material.

3. RESULTS

3.1. Extracting Physical Features From
Available TCR-pMHC Complex Structures
Allows Interrogation of Binding Mode
We first established a systematic pipeline to extract structural
information about the TCR-peptide interface from a dataset
of solved structures downloaded from the Structural T Cell
Receptor Database (Leem et al., 2018). The minimum pairwise
distances between TCR and peptide residues, and their
corresponding attractive and repulsive van der Waals forces (atr,
rep), electrostatic interactions (elec), and solvation energies (sol)
were estimated for each peptide-TCR complex as described in
the methods. Sequence information for each complex was also
encoded in the form of Atchley factors for each TCR-pMHC pair.

Each feature extraction process yielded a matrix with
information about pairwise contacts between residues in the
TCR and residues in the peptide (Figure 1A). The distance
fingerprints are easy to compare between different structures
and can give insight into the binding mode for the complex:
for instance, complexes 1AO7 (Garboczi et al., 1996) and 1MI5
(Kjer-Nielsen et al., 2003) (both MHC Class I) bind closer to the
N terminus of the peptide, whilst 1D9K (Reinherz et al., 1999) has
the TCR bound more centrally (Figures 1A,B).

We wondered whether any trends could be detected more
generally and used the minimum pairwise distances to identify
the distribution of interactions between TCR CDR residues and
the peptide in class I and class II complexes (Figure 1C). While
it is clear that interactions between TCR chains and antigen
peptide are not confined to a single hotspot, some general
patterns emerge. The TCRα chain, for example, tends to bind
the N-terminus of the peptide, whilst the β binds toward the C-
terminus, as has been reported previously (Garcia et al., 2009).
Interestingly, while contacts were dominated by the CDR3 region
of the TCR, we also detected contacts between CDR1 and CDR2
and peptide residues in a significant proportion of complexes.

Moreover, more of the class I structures make contacts with
the C-terminus of the peptide than class II. A similar pattern
is also detected when looking at the energetic interactions
(Supplementary Figure 1).

In order to look inmore detail for potential conserved patterns
with which to characterise the TCR-peptide binding surface, we
performed a Principal Component Analysis (PCA) for each of
the structural feature sets (distances and energy vectors), as well
as the sequence information (in the form of Atchley factors) for
all complexes (Figure 2A and Supplementary Figure 2A). The
first dimension of the PCA of the minimum pairwise distances
clearly identified the few examples where the TCR is in an
inverse orientation relative to the peptide (stars, PDB: 4Y19 and
4Y1A, 5SWS and 5SWZ; Beringer et al., 2015; Gras et al., 2016).
The second dimension of the distance PCA, on the other hand,
seemed to partially discriminate between class I and class II
complexes. To gain some insight in to which structural features
were driving this separation, we looked at the distance vectors
that were used for each structure (Figure 2B, left). Both for
the α and the β chains, a shift toward the peptide C terminus
was observed with decreasing PC2 values. Four representative
fingerprints from the edges of the PCA plot are also shown
in which the inverted orientation of 4Y19 and 5SWS as well
as the shift toward the C terminus for 5TEZ (Yang et al.,
2017) are apparent, compared to 3RGV (Yin et al., 2011). In
agreement with Figure 1C, class II complexes tend to have higher
PC2, which is associated with a shift toward binding at the
N terminus of the peptide. 3RGV, which segregates with the
class II complexes, is actually a class I complex. Interestingly,
however, the YAe62 TCR in the 3RGV complex is reported by the
authors to bind both class I and class II complexes with similar
orientations, which might explain its positioning with other class
II complexes. Strikingly, the other class I complex found with
high PC2 is 4JRY, which is also reported to bind with unusual
position on top of the N-terminus of the peptide, rather than
centrally, where the peptide bulges out (Liu et al., 2013).

A similar analysis was done on the solvent energy vectors
(Figure 2A, right). The PCA suggests a segregation between
class I and class II complexes along PC1, although significant
overlap was also observed. We therefore looked at what
features could be driving the separation along the PC1
(Supplementary Figure 2B). The only evident trend was that
all the complexes with high PC1 show a strong unfavourable
interaction between the β chain and the peptide C terminus (blue
in the heatmap). As solvent energy is positive (i.e., unfavourable)
when a residue is not solvent-exposed, this suggests that the
complexes with higher PC1make an interaction between the beta
chain and the C terminus of the peptide.

Finally, all distance, energy and sequence feature sets were
combined in a single PCA plotted in Figure 2C (left). Here, the
structures with inverted polarity have high PC1, followed by
MHC class II complexes and on the left-hand side of the plot are
the class I complexes. The loadings of each feature in the set were
calculated and the features ranked by loading value (Figure 2C,
right). Most of the features which had absolute values >0 (i.e.,
positive or negative), belong to the distance, the solvent energy
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FIGURE 1 | Feature extraction from PDB structures. (A) Heatmaps showing the physical features extracted for structure 1AO7. In each heatmap, the top half refers to
the α chain and the bottom half to the β chain. Each column is a CDR residue, each row is a peptide antigen residue and the colour of each square represents the

(Continued)
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FIGURE 1 | value extracted for the CDR-peptide residue pair (i.e., top left-hand square of the distance panel is the distance between residue 1 on the peptide and
residue 27 of the TCRα chain). Similar plots are shown for each energy term extracted—van der Waals attractive, van der Waals repulsive, solvent, and electrostatic.
(B) Two other examples of distance fingerprints, a class I and a class II complex—1MI5 (class I complex, EBV peptide) and 1D9K (class II complex, conalbumin
peptide)—for comparison with 1AO7. Same scale as in (A). (C) Histograms showing the number of structures making a contact (<6Å) for each peptide residue-CDR
residue pair, for alpha and beta chains separately, showed for class I and class II complexes. Peptide residues renumbered 1-20 for consistency as described in
methods.

or to the Atchley factors datasets, suggesting that these have the
strongest discriminatory power.

Overall, these results gave us confidence that meaningful
information about the binding interface could be extracted with
our pipeline.

3.2. Structural Information From Homology
Modelled Structures Cannot Distinguish
Binding Pairs in Unsupervised Settings
We next investigated whether given independently a TCR and
a pMHC, we could determine whether we could discriminate
between TCR-pMHC interactions in which the TCR binds its
cognate antigen and those which do not allow effective binding.
The parameters characterising non-binding interactions could
obviously not be obtained directly from known structures, since
by definition these TCRs would not form stable complexes with
the pMHC. We therefore predicted structures for TCR-pMHC
combinations by homology modeling using TCRpMHCmodels
(Jensen et al., 2019). The pipeline takes a fasta file with a TCR,
a peptide and a class I MHC, predicts its three dimensional
structure and extracts pairwise distances and binding energies
for the interface (Figure 3, steps 1 and 2). The actual sequences
are also captured in the form of vectors of Atchley factors as
described in the methods.

Because we needed to rely on a structure prediction
method, we first evaluated the difference between the features
extracted from the original crystallographic structures and
from their respective modelled structures (Figure 4 and
Supplementary Figure 3). Taking complex 1AO7 as an example,
the fingerprints obtained from the original PDB and from
the predicted structures were plotted (Figure 4A). The two
complexes have root mean square deviation (RMSD) of about
2 Å (calculated on all their Cα atoms) and it can be seen that
the contacts seem to be slightly shifted toward the N terminus of
the peptide in the predicted structure compared to the crystal.
However, the two fingerprints did not look drastically different.

When combining all feature sets and looking at all
structures available by PCA, no systematic difference was found
between modelled and original structures (Figures 4B,C and
Supplementary Figure 3). The only difference found between
the two sets is in the repulsive van der Waals forces component
(evident in Supplementary Figure 3B, where the values do
not correspond for predicted and crystal structures). In fact,
modelled structures are grouped on the left-hand side of the
plot and are found to have higher MolProbity clashscores (data
not shown).

On all other feature sets, there was reasonably good matching
between the crystal structures and their homology models,
although TCRpMHCmodels failed to predict non-canonical
binding models. We also compared the distributions of some

of the structural features (minimum distance between peptide
and TCR, number of contacts and number of favourable
interactions), and in general found reasonably good agreement
between models and structures (Figure 4C). As homology
modelling gave us reliable predictions and was necessary to create
our negative examples, we decided to use modelled structures
for both binding and non-binding complexes, in order to avoid
introducing systematic bias.

To create a set of non-binders, a set of shuffled TCR-pMHC
complexes from the STCRDab was used (Figure 5A). We then
asked whether the structures predicted for non-binders could be
discriminated from the binders.

Strikingly, there was no discernible separation of binders and
non-binders on unsupervised PCAs with any of the distance or
energy sets of features (Figure 5B and Supplementary Figure 4).
Basic metrics such as the minimum distance between TCR and
peptide and the number of contacts showed similar distributions
for binders and non-binders (Figure 5C).

3.3. The Impact of Structural Information
on Discrimination Between Binders and
Non-binders Using Supervised Learning
We turned to supervised machine learning methods to try
and better discriminate between binding and non-binding pairs
(Figure 3, steps 3 and 4).We extracted sequence (Atchley factors)
and structural features (distances, attractive and repulsive van
der Waals interactions, electrostatic and solvent energies) from
predicted TCR-pMHC structures from the training and test
set using the pipeline described in the methods. We explored
multiple kernel learning (MKL) as a tool to combine information
from the different feature sets. To assess the potential of our
method, a model was trained and tested by cross-validation,
using predicted structures derived from the STCRDab, creating
a dataset of positives and negatives as described in the methods.
Figures 6A,C show the results of 10-fold cross-validation when
each different feature set is used separately. Distances provide the
single strongest predictive power (average ROC AUC of 0.791),
and similar discrimination can be obtained by using Atchley
factors (ROC AUC of 0.752), followed closely by attractive van
der Waals forces (atr, ROC AUC of 0.746) and solvent energies
(ROCAUC of 0.686). The other energetic terms generally showed
poorer performance and were excluded from further analysis.

We next combined the feature sets to create a single classifier
(Figures 6B,C). In general, combination of different feature sets
did not improve performance on CV drastically compared to
using the single sets. Interestingly, although performance did not
change much in this more complex model, the weights assigned
to the kernels constructed for each feature set were similar,
suggesting that no single feature set was more important than the
others in the overall model.

Frontiers in Physiology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 730908

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Milighetti et al. TCR-pMHC Binding From Homology Models

FIGURE 2 | Structural features identify different binding modes. (A) PCA performed on distances and on solvent energies can separate class I and class II complexes
(green and red, respectively). The stars indicate the structures that have been reported to have inversed polarity (i.e., the TCRs bind the pMHC complex at 180◦ angle).
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FIGURE 2 | Annotated on the distance plot, the structures at the extremes that we analyse in (B). (B) (Left) Linearised vectors used for the distance PCA, ordered
according to their PC2 score. On the x-axis, the minimum distance between each CDR residue and each peptide residue (27-1, 28-1,…,116-1, 117-1,
27-2,…,117-20). (Right) Fingerprints for four representative structures labelled in (A) (3RGV high PC2, 5TEZ low PC2, 5SWS, and 4Y19 high PC1). (C) (Left) PCA of all
feature sets combined, which also shows separation along PC1. (Right) Loading coefficient of each feature on PC1 and below a barcode to show which set the
feature belongs to.

We then went on to validate the trained model on the
other five datasets described in the methods (Figure 3, steps
5 and 6). Because we wanted to test how generalisable the
rules that the classifier had learnt were, we did not train
the classifier again on the new sets, but used the model
trained on the STCRDab set to predict the new complexes
(Figure 3). The sets were used as retrieved, by removing
duplicate sequences but without removing sequences that are
similar to the ones in the training set, reflecting the way
a typical user might use this tool. Results from validation
are presented in Figure 6D and Supplementary Figure 5 and
summarised inTable 2. Overall, themodels with the highest ROC
AUC consistently included sequence information. Moreover,
addition of structural features often did not improve predictive
power. However, structural features often allowed some level
of discrimination, independently of the sequence information,
suggesting that the model might be learning something about
the binding modes of these complexes. Interestingly, the models
which used structural features had consistently higher recall,
as measured for the optimum SVC hyperplane giving the
highest AUC.

The newVdj set is interesting as it is the most unbalanced set,
with <1% of total complexes modeling real binders. This is the
closest situation to a real-life application, in which the classifier
would be asked to pick out a very small number of positives in a
large pool of negatives. Here, 3/5 models increase the proportion
of positives in the set identified as binders, although only slightly
(from 0.7% to 0.9%, 1.3% and 1.4%, in themodels using distances,
distances and atr or Atchley factors, Table 2).

The ATLAS proved to be a very hard set to predict overall.
This might be due to each complex being only a few mutations
away from the crystal structure deposited in the PDB, which
might have on one hand made the modelling easier, but on
the other hand made it harder for the classifier to tell the
difference between a binding and a non-binding pair which
differ at only one amino acid. Moreover, some of the included
mutations occur at the MHC, which is not considered when
extracting features. Finally, the ATLAS set does not have a strict
definition of binding, as for the other sets which derive from
tetramer-sorting experiments, but rather the complexes show a
range of affinities, and it is hard to define a strict threshold to
define binding.

3.4. Classifier Performance Varies Between
Epitopes
A known hard task for a classifier trained on a small subset of the
epitopes that our immune system is exposed to, is to generalise
to epitopes not present in the training set. It is apparent from
the diagrams showing mis-classification in Figure 6D (right) and

Supplementary Figure 5B that some peptides were indeed easier
to classify than others.

Figure 7A shows the classifier performance on 4
representative epitopes when features from the Atchley
factor, distances and attractive van der Waals sets are combined.
For a perfect classifier, the decision score for positive and
negative samples (equivalent to the distance of a point from
the decision hyperplane in the case of an SVM) should have
non-overlapping distributions. However, for peptide antigen
AVFDRKSDAK the distributions for binding and non-binding
TCRs almost completely overlap, suggesting that the classifier
has not learnt useful information from the data. For peptide
LLFGYPVYV, on the other hand, the separation between the
two groups of TCRs is almost perfect. The classification of TCRs
specific for the ELAGIGILTV and ASNENMETM peptides
showed an intermediate pattern. Overall, the classification of
TCRs for different epitopes show very significant differences
in performance (Figure 7B), as has been observed previously
for other models (Moris et al., 2020). This also suggests that
the overall performance as showed in Table 2 is somewhat
misleading, as it will be skewed by the more abundant epitopes.

3.5. Sequence Similarity to Train Set and
Homology Modelling Template Availability
Impact Classifier Performance
We wondered whether the difference in performance could be
due to the performance of the homology modelling tool used. For
each structure, we retrieved the information about the sequence
similarity between the structure of interest and the best of the
matched templates used by TCRpMHCmodels to predict the
complex structure. We then plotted the classifier performance as
a function of sequence similarity (Figure 8A).

Overall, there was a trend for better templates (increased
sequence similarity) to correlate with better classifier
performance (observed as an increase in performance to
the right of the individual panels). The TCR homologies seem to
have the largest impact on the performance, followed by peptide
homology. The MHC template, on the other hand, was less
strongly associated with performance. Interestingly, however, the
trends were observed also when classification was based only on
sequence information suggesting that this might not be related
only to the accuracy of the homology modelling. The templates
for the homology modelling and the training set for our classifier
are overlapping sets (as both are using the complexes for which a
crystal structure is available) and our results might be reflecting
the increased density in the feature space of known complexes.

To further evaluate the effect of template selection on
structure prediction and classification, we repeated the structure
prediction step (Figure 3, step 2) for the STCRDab set, by
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FIGURE 3 | Schematics of the modelling and prediction approach. For each sequence in the training set (the STCRDab set), a predicted structure was generated
using TCRpMHCmodels (step 1) and features extracted using the pipeline described in the methods (step 2, the features extracted from the original and the predicted
structures are compared to the original crystal structures in Figure 4 and Supplementary Figure 3). The feature extracted were combined in multiple kernels (step 3)
and multiple predictive models were generated which could distinguish binding and non-binding pairs (step 4). The model performance upon cross-validation is
evaluated in Figure 6. The same structure prediction and feature extraction pipeline was applied to multiple test sets, for which binding is known but structure is not.
The model generated in step 4 was used to make a prediction of binding for these new sequences (step 5), and the results were compared against the actual binding
information to get an estimate of performance (step 6).
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FIGURE 4 | Comparisons between crystal structures and homology predicted structures. (A) Comparison of fingerprint between the original 1AO7 structure and the
one predicted by TCRpMHCmodels. On the right, figure showing how the two structures superimpose in cartoon form (green = original, gold = predicted). MHC not

(Continued)
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FIGURE 4 | shown for clarity. (B) (Left) PCA on all feature sets showing the difference between crystal structures (green circles) and predicted structures (blue
triangles). (Right) Correlation for PC1 and PC2 values between original and predicted structures. Each blue dot is a complex and has (x,y) coordinates that depend on
PC1 values for predicted and original structure. Similarly for PC2 (green dots). PCA for other feature sets in Supplementary Figure 3. (C) Frequency distributions of
four characteristics of the TCR-pMHC complexes comparing the distribution between original and predicted structures. Minimum distance: minimum distance
between TCR and peptide; Contacts: number of TCR-peptide residue pairs that are <5A apart; Favourable atr/elec interactions: number of favourable (energy < 0)
interactions between TCR and peptide.

setting a maximum threshold for the sequence similarity of
each (TCR, pMHC, or Complex) or all templates used for the
structure prediction. We then extracted features from these new
structures, which we expect to be less accurately predicted, and
performed 10-fold CV as in Figure 6A. Representative results for
a single threshold (40) are shown in Supplementary Figure 6A

and results for all thresholds are shown in Figure 8B. In all
models but the one in which only Atchley factors are used,
performance decreases when a lower threshold is set for template
selection, and this is particularly evident when limiting the
sequence similarity of the complex template or all templates. The
pMHC template, on the other hand, seem to have little impact
on performance in this setting. Note that a few TCR-pMHC pairs
could not be modelled when setting a lower threshold. Details of
the number of complexes represented by each point can be found
in Supplementary Table 1.

To investigate the role of sequence similarity to the training
set, we also computed the BLOSUM scores between the training
set and each of the complexes we predicted (Figure 8C). This is
a metric of similarity between the validation and the train sets.
Indeed, a decrease in classifier performance is observed when
the BLOSUM score decreases, i.e., when the TCR-pMHC pair
that we are trying to predict is less similar to the training set
pairs, it becomes harder to predict it correctly. Interestingly, in
all cases the performance of the classifier is more dependent on
TCR homology, than on peptide homology.

Together, these results suggest that both structure prediction
accuracy and similarity to the training set impact performance of
the structure classifiers.

It is important to note that the observed relationship between
classifier performance and sequence homology allow us to
predict a priori which TCR/peptide binding predictions will
carry greater confidence. In fact, by considering the epitope and
complex homology templates, we are able to select a priori a
subset of structures on which our model will perform better
(Supplementary Figure 6B).

3.6. Effect of Affinity on the Predictor
Because the classifier relies on structural information and it is
trained on the set of TCR-pMHC pairs that have a known crystal
structure, we wondered whether the model could predict binding
affinity as well as a binary binding/non-binding classification or
whether higher decision function scores were assigned to higher-
affinity complexes (i.e., whether complexes which bind with high
affinity are called binders with higher confidence). To address
this, the TCR-pMHC pairs from the ATLAS (Borrman et al.,
2017) were retrieved and their score predicted. The score for
each complex was then correlated (Spearman) to their measured
affinity, removing all complexes with undetectable binding and

adjusting the 1G and KD as in the original publication (Table 3).
Unexpectedly, the only significant correlation was between
sequence features (Atchley factors) and koff . The model therefore
does not successfully capture the structural information which
determines the affinity of the complex and its performance is not
biased toward detection of high-affinity pairs.

3.7. Benchmarking Against Existing Tools
Finally, we compared the performance of our classifier against
the recently published ERGO (Springer et al., 2020) and ImRex
(Moris et al., 2020) (Supplementary Table 2). Both ERGO and
ImRex were trained on the VDJdb set (Bagaev et al., 2020),
as described in the original publication, rather than the much
smaller set of sequences from crystal structures used by our
algorithm. The trained models are available as an online tool
for ERGO (https://tcr.cs.biu.ac.il/) and on GitHub for ImRex
(https://github.com/pmoris/ImRex).

The classifiers were all tested on the same set of
binding and non-binding TCR-pMHC sets. Figure 9 and
Supplementary Table 2 show the results divided by peptide. The
results are organised in three scenarios depending on whether
the peptide is present in neither, either, or both of the train sets.

When compared on epitopes that are not present in either
train set (Case 1), none of the models, whether sequence,
structure or hybrid gave significant discrimination. When the
epitopes are present in the VDJDb but not in the STCRDab
(PDB) set (Case 2), both ERGO models significantly outperform
all other models in prediction, including ImRex. Finally, when
peptides are present in both train sets (Case 3), ERGO
outperforms all models except the ones which include Atchley
factors information.

Taken together, these results suggest that the structure-based
models developed in this study perform as well as the state-of-
the-art sequence-based models in predicting binding to novel
pMHC, despite learning from a much smaller training set.

4. DISCUSSION

Prediction of TCR-pMHC binding is a fundamental challenge.
With TCR repertoire sequencing (TCR-seq) gaining popularity, a
large body of paired TCR-peptide sequences has become available
in the recent years and many have attempted to leverage this vast
amount of sequence information to predict TCR-antigen binding
(Dash et al., 2017; Glanville et al., 2017; Huang et al., 2020; Moris
et al., 2020; Springer et al., 2020; Tong et al., 2020; Sidhom et al.,
2021). However, TCR-pMHC binding is at the core a biophysical
problem, as it depends on the 3D structure of the two molecules
and the interactions that can be formed between the two.
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FIGURE 5 | Homology modelled binding and non-binding TCR-pMHC complexes can not be discriminated by PCA. (A) Summary of the number of STCRDab derived
binding and non-binding structures which were modelled. For each peptide in the set, the barplot shows the number of models of binding and non-binding TCRs
(blue and magenta, respectively). (B) PCA of all sets combined showing no separation between binding and non-binding TCR/pMHC homology models. The PCAs for
each feature set separately are in Supplementary Figure 4. (C) Frequency distributions of 4 characteristics of the TCR-pMHC complexes comparing the distribution
between binding and non-binding models. Minimum distance: minimum distance between TCR and peptide; Contacts: number of TCR-peptide residue pairs that are
<5Å apart; Favourable atr/elec interactions: number of favourable (energy < 0) interactions between TCR and peptide.

The use of structure-derived features, energies in particular,
for TCR-pMHC binding prediction had been explored before.
For instance, Ogishi and Yotsuyanagi (2019) successfully
modelled an energy-based sequence alignment score that can

take a CDR and a peptide sequence, align them and calculate
how likely they are to interact. Although sequence-based, this
approach was trying to take into account biological interactions
in the sequence encoding. Similarly, Lin et al. (2021) showed
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FIGURE 6 | A discriminative classification model can be trained using extracted structural features. (A) ROC AUC curves of 10-fold CV on the STCRDab training set
with each feature set separately. The faint lines are the results for each individual fold, whilst the dark lines represent the interpolated average results, with the shaded
area as the standard deviation. (B) Interpolated ROC AUC curves for 10-fold CV obtained when combining different feature sets for prediction. (C) Tabular results for

(Continued)

Frontiers in Physiology | www.frontiersin.org 14 September 2021 | Volume 12 | Article 730908

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Milighetti et al. TCR-pMHC Binding From Homology Models

FIGURE 6 | curves showed in (A,B). (D) (Left) ROC curves obtained when the model trained on the STCRDab set is used for prediction on the 10XGenomics
validation set. (Right) For the model trained on STCRDab using the distance dataset only, the diagram shows which proportion of examples from each epitope are
classified correctly (true positives and true negatives) or incorrectly (false positives and false negatives). This is shown in the form of a Sankey diagram, where from
each epitope annotated on the left-hand side of the plot, a line is drawn for each TCR recognising that specific epitope to the final result for the complex (correctly
classified as binder or non-binder, or incorrectly classified). The width of each section is proportional to the number of complexes that follow that classification.

TABLE 2 | Results of out-of-sample validation.

Set % pos Combo Roc Avg precision Accuracy Precision Recall

10X 26.90%

distances 0.581 0.295 0.727 0.307 0.230

Dist-atr 0.566 0.265 0.739 0.315 0.197

Atchley 0.669 0.443 0.807 0.742 0.132

Atchley-dist 0.616 0.359 0.782 0.459 0.163

Atchley-dist-atr 0.592 0.322 0.773 0.406 0.159

Dash 7.33%

distances 0.605 0.108 0.740 0.111 0.362

Dist-atr 0.650 0.124 0.802 0.139 0.326

Atchley 0.690 0.183 0.910 0.237 0.104

Atchley-dist 0.611 0.180 0.799 0.133 0.316

Atchley-dist-atr 0.648 0.147 0.824 0.154 0.311

Expt 12.70%

distances 0.733 0.332 0.730 0.275 0.688

Dist-atr 0.707 0.454 0.714 0.250 0.625

Atchley 0.809 0.698 0.786 0.333 0.688

Atchley-dist 0.807 0.667 0.738 0.270 0.625

Atchley-dist-atr 0.768 0.532 0.722 0.256 0.625

Atlas 86.60%

distances 0.463 0.852 0.840 0.866 0.964

Dist-atr 0.504 0.863 0.777 0.864 0.881

Atchley 0.570 0.897 0.866 0.866 1.000

Atchley-dist 0.471 0.867 0.863 0.867 0.993

Atchley-dist-atr 0.497 0.869 0.834 0.866 0.957

NewVdj 0.70%

distances 0.528 0.010 0.832 0.009 0.205

Dist-atr 0.535 0.009 0.908 0.013 0.159

Atchley 0.516 0.008 0.981 0.014 0.023

Atchley-dist 0.549 0.010 0.953 0.004 0.023

Atchley-dist-atr 0.559 0.009 0.953 0.000 0.000

Results of predicting the validation sets with the model trained on the STCRDab set, using different subsets of features. In each section, the best-performing model is highlighted in bold

and underlined. The precision and recall are measured for the optimum SVC hyperplane giving the highest AUC.

that it is possible to optimise a sequence-based energy model
starting from the interactions observed in the existing crystal
structure for a TCR-pMHC complex. This function can separate
strong binders from weak binders to then predict whether an
epitope would bind a TCR of interest in an MHC-restricted way.
Lanzarotti et al. (2018) had also previously shown that some
combination of energy terms derived from structural models
could be used to predict TCR-antigen binding and Borrman
et al. (2020) successfully ranked candidate peptide epitopes from
a phage screen against target TCRs using predicted binding

energies by modelling mutations within the existing crystal
structures for the TCR-pMHC complexes.

Here, we too have approached the TCR-pMHC binding
question from a structural perspective and wondered whether
structural information could be integrated with sequence
information to improve the prediction. We have here developed
a method to extract features to try and recapitulate both
the conformation and the energetic profile of the TCR-
pMHC binding interface and integrate it with existing
sequence information.
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FIGURE 7 | The performance of the model is pMHC dependent. (A) Examples of four different epitopes. The frequency distributions of model decision function scores
(for an SVM, this corresponds to the distance from the separating hyperplane, drawn as a dotted line) for binding and non-binding TCRs recognising each epitope

(Continued)
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FIGURE 7 | when the model uses distance, attractive van der Waals and Atchley factors. The bar at the top shows the order in which binding and non-binding
examples appear when ranked by decision function. For good classification, the bar should be mostly blue on the left and mostly red on the right. (B) The bar plot
shows ROC AUC for all peptides which have at least 2 positive and 2 negative examples. This data comes from concatenating the predictions for all the validation
sets when Atchley factors, distances and attractive van der Waals forces are used.

First, we validated the ability of our structural features to
recapitulate the known biology and characteristics of the system.
In a survey of the crystal structures available we showed that, in
agreement with previous reports (Glanville et al., 2017; Ostmeyer
et al., 2019), we can detect stretches of amino acids at the centre
of the CDR3 in the TCRα and β chains that are within contact
distance of the peptide. This information was also recapitulated
by the energy profiles, suggesting that not only can these residues
interact, but that they make favourable interactions.

Binding geometry is a known important factor in TCR-pMHC
binding, which may be restricted by the way the peptide is
presented by theMHC (Blevins et al., 2016). Recently, Singh et al.
(2020) have shown that a difference can be detected between
pMHC class I and class II binding geometry. The features we
extracted also differentiate class I and class II complexes, both
at the conformational level (in terms of pairwise distances) and
at the energetic level. As reported by Singh et al. (2020), our
analysis also showed that TCRs binding MHC class I tend to
be closer to the C-terminus of the peptide, whilst TCRs binding
class II complexes sit more centrally or toward the N-terminus.
Moreover, our energetic features suggest that the interactions
of class I and class II complexes also differ on an energetic
level. As well as the difference between class I and class II, the
spatial features extracted from the structures were readily able
to distinguish TCRs which bind with reversed polarity to the
pMHC complex, as described by Gras et al. (2016) and Beringer
et al. (2015), and identify class I complexes with different, non-
canonical bindingmodes to the peptide (Yin et al., 2011; Liu et al.,
2013). This suggests that the features extracted are informative of
the biology of this system.

The information collected from these structures was used
to build a classifier able to discriminate between TCR-pMHC
binding from non-binding pairs. Here, we see from the weights
assigned to each combined kernel in the model including all
features (atchley-dist-atr) that the physical interactions encoded
by the distances and the attractive van der Waals forces
were equally as important to the prediction as the sequence
information, suggesting that physical interactions can be used to
predict binding.

The generalisability of the classifier was tested on multiple
datasets, collected and analysed independently. None of the
available models, whether based on sequence, structure or a
hybrid could successfully discriminate sets of complexes which
had no overlap at all with the training set. However, for the
other sets physical interaction features on their own proved
sufficient to observe some discrimination between binding and
non-binding complexes (Figure 9). Interestingly, integration of
sequence and physical features in the same model did not
improve the performance in terms of ROC AUC, although often
improved the recall of the sequence-based model. This is an

important characteristic, as in real-life applications a classifier
like the one presented could be used to screen candidate TCRs
against an epitope of interest, for example with the aim of
identifying tumour-infiltrating lymphocytes that can recognise
tumour neoantigens. In this context, in-silico screening would
be followed by experimental validation. Because the events of
interest are a very small number compared to the total number
of events (i.e., binders << non-binders), it would be more
important to correctly classify more of the binders than of the
non-binders, i.e., a higher number of false positives, which can
be screened out during experimental validation, would be less
problematic than a higher number of false negatives, which
would not be experimentally validated. The validity of using
the method proposed to enrich for binders is explored in the
newVdj set, in which<1% of all pairs are true binders. Whilst the
enrichment is modest, it is a stepping stone in the right direction
and shows promise for this kind of approach.

Most of the results presented have been based on a binary
classification of TCR-pMHC complexes as binding or non-
binding. In reality, the interaction between TCR and pMHC
is characterised by a graded affinity scale. We showed that
performance of the classifier is not impacted by affinity of the
TCR for the pMHC (Table 3). However, affinity prediction would
be of interest as there are multiple metrics that contribute to
overall affinity and are known to be important for T cell activation
dynamics—KD, kon, koff , half-life—(Stone et al., 2009; Lever et al.,
2016; Gálvez et al., 2019) and we are not yet able to manipulate
them systematically by acting on the TCR. The original TCR
ATLAS publication (Borrman et al., 2017) showed a correlation
between the attractive van derWaal force as calculated by Rosetta
(here atr) and the experimentally-measured affinity, similar to
the one reported by Erijman et al. (2014) on an unrelated
system. Because the affinity is driven by structure, we believe the
PDB classifier might also be optimised for approximate affinity
prediction, although better methods of modelling the mutations
into the structures might have to be explored. However, this
is known to be a very hard problem, which is only starting to
become tractable on simpler systems (see, for instance, Leidner
et al., 2019; Abbasi et al., 2020; Jiang et al., 2020).

Compared to other published classifiers (Dash et al., 2017;
Glanville et al., 2017; Tong et al., 2020), the classifier presented
here is different in that it does not need to be trained on a
known subset of TCRs recognising a specific peptide to be able to
predict more binders, but rather it can learn from any set of TCR-
pMHC pairs already available and generalise what it has learnt
to the problem at hand. This suggests that there are conserved
features to the TCR-pMHC interface which can be learnt and
used for prediction. Tools such as ERGO (Springer et al., 2020),
ImRex (Moris et al., 2020), TcellMatch (Fischer et al., 2020),
and NetTCR (Jurtz et al., 2018) have pioneered this approach,
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FIGURE 8 | Classifier performance is dependent on sequence homology of the target TCR-pMHC. (A) The performance from all validation sets were combined, and
stratified by the similarity between the sequence of the target complex to be classified and the relevant homology modelling template (as outputted by

(Continued)
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FIGURE 8 | TCRpMHCmodes and outlined in Jensen et al., 2019). Mean performance (ROC AUC) in each range of homology is calculated and plotted at the range
midpoint. The bars show the number of structures that contribute to the performance for each point, the proportion in blue showing the number of non-binders and
the proportion in red showing the number of binders. (B) Results of 10-fold CV when different thresholds are used for structure prediction. In each panel, the coloured
lines show the average ROC AUC over 10-fold CV when setting the threshold on the TCR, pMHC, or Complex templates, or on all at the same time (All). The error
bars show the standard deviation of the average ROC AUC computed over the 10-folds. The grey areas show 1 standard deviation from the performance of the
model when no threshold is set (100). (C) Equivalent analysis to (A) but calculating the BLOSUM score between each example and the closest example in the train
set, for each chain separately. The higher the BLOSUM score, the more similar the sequence is to one found in the training set. In each plot, the bars show the
number of structures in each bin, the proportion in blue showing the number of non-binders and the proportion in red showing the number of binders.

TABLE 3 | Correlations of affinity metrics and decision function scores.

Distances Dist-atr Atchley Atchley-dist Atchley-dist-atr

Spearman R p-value Spearman R p-value Spearman R p-value Spearman R p-value Spearman R p-value

KD (µM) −0.062 0.278 −0.075 0.195 0.006 0.911 −0.069 0.231 −0.060 0.297

kon (Ms−1) 0.143 0.126 0.136 0.147 0.074 0.428 0.162 0.083 0.151 0.107

koff (s−1) 0.080 0.397 −0.102 0.276 0.311 0.001 0.087 0.358 0.019 0.839

1G (kcal/mol) −0.067 0.243 −0.083 0.151 −0.008 0.886 −0.074 0.198 −0.072 0.215

Spearman correlation is calculated for each affinity metric for predictions made for each of the models trained.

although they only focused on information that can be extracted
from the sequence. Interestingly, Fischer et al. (2020) showed
that prediction of antigens as categorical classes (where a TCR
is assigned to the most likely class), is an easier problem than
encoding of TCR and antigen simultaneously to predict binding,
although the latter is of more practical use when new epitopes
are of interest. Of note, all of the results that we have presented
here use the model originally trained on the STCRDab set, which
was never re-trained on a new sets of structures. Moreover, the
classifier here presented is trained on about 400 binding and non-
binding pairs, which recognise 93 different epitopes. This is a
much smaller set than the VDJdb used by ERGO and ImRex
(40,000 TCRs and 200 peptides in ERGO and 14,000 CDR3β and
118 peptides in ImRex), but achieves similar performances. This
might indicate that the information learnt from the structural
information is more readily generalised to an unseen case.

We have investigated the potential of structural data to predict
TCR-pMHC binding, with the hope that this study can act as a
stepping stone for further work which can improve the accuracy
of a structure based approach. In particular, we have identified a
number of limitations to this approach and highlighted avenues
which show promise.

Firstly, throughout the analysis, interactions between the
TCR and MHC were disregarded. Whilst this simplified the
feature extraction process, it is an over-simplification of the
problem, as the MHC is an active determinant of TCR specificity
(Piepenbrink et al., 2013;Wang et al., 2017). For instance, Blevins
et al. (2016) showed that a TCR needs to be able to complement
a hot-spot region of positively-charged residues to bind peptide-
HLA-A2 complex, effectively constraining binding. Addition of
the MHC in the models presented might therefore significantly
boost performance.

Secondly, the very large number of potential combinations of
TCR-pMHC complexes that could be formed makes homology
modelling a very attractive approach. However, accuracy of
the modelling is severely limited by the number of available

crystal structures that can be used as templates. The most
interesting regions for TCR-pMHC prediction, the CDR loops,
are the most variable and hardest to model, and have RMSD
between predicted and solved structures which range between
0.5 and 5Å (Jensen et al., 2019), making the prediction most
unreliable where the key information is encoded. In addition,
because the prediction relies on templates, homology modelling
may be fitting the predicted structures to look more like their
templates than they should, thus reducing the variability between
complexes. To be noted that TCRpMHCmodels was unable to
predict all the TCR-pMHC in the set, which might have further
skewed the validation sets to be more similar in sequence to the
train set.

Accurately estimating the impact of homology modelling
accuracy in our model has been challenging. We have here relied
on the published set of crystal structures both for homology
modelling and for training of the classifier. This overlap makes
it hard to disentangle the effects of accuracy homology modelling
from the effects of similarity to the training set (Figure 8). Whilst
setting a threshold of sequence similarity for structure prediction
has shed some light on the impact of homology modelling
accuracy, use of a different training set with non-overlapping
sequences with the homology modelling templates and for which
estimation of homology modelling performance can be estimated
might help to further clarify this point. Moreover, the set of
TCR-pMHC available from the PDB is currently heavily skewed
toward a few epitopes that have been studied in great detail, only
a small fraction of all the possible TCR-pMHC combinations. We
believe that this might be the reason why cross-validation on
the classifier performed significantly better than out-of-sample
validation (Figure 6 and Supplementary Figure 5), as structures
in the training set will be more similar to each other and therefore
easier to classify.

As more structures for more diverse epitopes and TCRs
become available, we expect that both homology modelling
accuracy and performance of the classifier will improve.
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FIGURE 9 | Comparison of performance with other published tools. In each violin plot, a dot is an epitope for which performance is calculated. In Case 1, only
epitopes that are not present in the PDB or in the VDJDb train sets are included. In Case 2, only epitopes that are present in the VDJDb but not in the PDB are
included. In Case 3, only epitopes which are in both training sets are included. To look for differences, a Mann-Whitney U-test was calculated and significance values
are shown: *p < 0.05; **p < 0.01; ***p < 0.001.
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Structure-prediction is now a fast-moving field and we might
soon be able to apply newer and improved methods to the
TCR-pMHC prediction problem, able to account for the highly
diverse CDR loops (Teraguchi et al., 2020). Compared to other
tools, TCRpMHCmodels is attractive in its ability to produce
a quick prediction of the entire TCR-pMHC complex, without
relying on docking methods, which still need to be optimised
for this task (Peacock and Chain, 2021). Another interesting
tool for this is ImmuneScape (Li et al., 2019), which also
separately models the TCR and the pMHC, and combines them
using a docking template. However, the complex biology of
the system might always be a limiting factor for structure and
binding prediction, from structural and/or sequence features. For
example, if a small proportion of TCRs bound to the pMHC
complex with conformations or sequence interactions that are
significantly different from canonical binding, we might never
be able to predict their binding with a tool that has learnt on
a subset of canonical TCRs. This may well be the case with
other structures with reversed polarity or complexes with unusual
binding highlighted in Figure 2A.

Finally, the major difference between this classifier and most
of the work published so far is that it relies on an available
TCRαβ pairs and cannot be used on unpaired chains. This
is a limitation to the direct application of the classifier as
αβ pairing is typically not available from bulk TCRseq data.
However, unpaired α and β chains only contain a portion of
the binding site information, and the assumption that binding
of the β chain only is sufficient is clearly not true in every case.
Carter et al. (2019) show that the information encoded in the
αβ pair is synergistic, i.e., that the pairing carries more than
the sum of the individual chain information. Their survey of
the VDJdb also shows instances where the same α chain paired
with different β chains recognise different epitopes, or where
CDR3α and β annotated to bind epitopes from different species
come together to bind yet another peptide. Lanzarotti et al.
(2019) and Fischer et al. (2020) also showed that their prediction
performance increases when information about both the α and
the β TCR chains is included. Overall, we believe this to be

strong motivation to work on αβ pairs. Future work will focus
on understanding whether candidate αβ pairs that bind a specific
antigen can be inferred from TCR clones that are expanded
during an immune response.
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