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The onset and progression of pathological heart conditions, such as cardiomyopathy or

heart failure, affect its mechanical behaviour due to the remodelling of the myocardial

tissues to preserve its functional response. Identification of the constitutive properties of

heart tissues could provide useful biomarkers to diagnose and assess the progression of

disease. We have previously demonstrated the utility of efficient AI-surrogate models

to simulate passive cardiac mechanics. Here, we propose the use of this surrogate

model for the identification of myocardial mechanical properties and intra-ventricular

pressure by solving an inverse problemwith two novel AI-based approaches. Our analysis

concluded that: (i) both approaches were robust toward Gaussian noise when the

ventricle data for multiple loading conditions were combined; and (ii) estimates of one and

two parameters could be obtained in less than 9 and 18 s, respectively. The proposed

technique yields a viable option for the translation of cardiac mechanics simulations and

biophysical parameter identification methods into the clinic to improve the diagnosis

and treatment of heart pathologies. In addition, the proposed estimation techniques are

general and can be straightforwardly translated to other applications involving different

anatomical structures.

Keywords: optimisation, cardiac mechanics, surrogate model, MLP, parameter estimation

1. INTRODUCTION

Cardiovascular disease is the largest cause of death worldwide. Effective diagnosis and treatment
are hampered by a lack of knowledge of the pathophysiological mechanisms underlying the
development of the disease. Biomechanical factors, such as stiffness and stress, are known
to have important influences on heart function, but are difficult to quantify. Patient-specific
computer models of heart biomechanics allow intrinsic constitutive muscle properties, including
stiffness, contraction, relaxation, stress and work, to be assessed using medical data from cardiac
catheterisation and imaging (Wang et al., 2018). Such cardiac tissue indices provide a new
dimension of diagnosis that can help to elucidate the mechanisms of heart disease, thus enabling
more specific targeting of treatment and ultimately better outcomes for patients.

Simulating biomechanics via computational models of the heart is challenging due to the
stress-strain non-linearities intrinsic of cardiac tissue undergoing large deformation. The finite
element method (FEM) is the most commonly used approach to solve the finite elasticity governing
equations to enable accurate predictions of these large deformations (Nash and Hunter, 2000).
This requires specifying constitutive relations to describe the stress-strain behaviour of the
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myocardium. Calibration of patient-specific parameters of these
constitutive relations typically involves minimising an objective
function that quantifies kinematic discrepancies between the FE
model’s predictions and measurements from medical images.
These kinematic measurements typically involve quantifying
shape change or the displacement of the myocardium over the
cardiac cycle. For example, segmentations of the endocardial and
epicardial contours of the heart from Cine MRI (Chen et al.,
2020) have been used as shape-based kinematic measurements
for FE model calibration (Wang et al., 2018). Kinematic
measurements that involve quantify the displacement of the
heart wall have also been used for FE model calibration
(Hadjicharalambous et al., 2017; Zhang et al., 2021). These
approaches track the displacements of the tissue using techniques
such as optical flow (Queiros et al., 2017) or cardiac magnetic
resonance tagging (Aletras et al., 1999; Zhong et al., 2010;
Ibrahim, 2011; Shi et al., 2012; Amzulescu et al., 2019).

A number of non-linear optimisation methods have been
used to calibrate constitutive parameters of cardiac mechanics
models. This includes the application of gradient-based methods
(Gao et al., 2015; Wang et al., 2018) and gradient-free
methods (Rumindo et al., 2020; Zhang et al., 2021). Each of
these methods requires multiple evaluations of the objective
function for each update of the parameters, and each evaluation
involves a costly FE simulation of the mechanics model. The
evaluation of the gradient is often obtained from finite difference
approximations, which can involve a significant computational
cost when increasing number of parameters need to be identified.
Calibration procedures using gradient-based or gradient free
methods are therefore computationally expensive, often taking
many hours or days to complete [e.g., (Gao et al., 2015) reported
calibration times of 63 h, and (Zhang et al., 2021) reported
calibration times of 15 h]. This presents a significant barrier to
clinical translation of cardiac mechanics models.

Surrogate models have been developed to improve simulation
efficiency, replacing computationally expensive FE simulations
with inexpensive surrogate simulations (Dabiri et al., 2019;
Maso Talou et al., 2020; Cai et al., 2021). These surrogate
models have also been used to accelerate calibration procedures
(Di Achille et al., 2018; Davies et al., 2019; Noe et al.,
2019; Longobardi et al., 2020; Cai et al., 2021). For example,
Cai et al. (2021) presented an approach that used surrogate
models with a trust-region-reflective gradient-based optimiser
for estimating personalised constitutive parameter of the left
ventricle. While these advancements are promising, existing
calibration approaches do not exploit the full potential of neural
networks-based surrogate models, which can directly provide the
analytic gradients of objective functions of interest during the
calibration procedure via automatic differentiation (Raissi et al.,
2019). By using these analytic gradients, we only need to evaluate
the model once for each iteration of gradient-based optimisation
procedures. This can lead to an efficient personalisation of these
cardiac models, and enable their future application to real-time
continuous monitoring of cardiac function.

In this work, we propose a novel approach that uses AI-
surrogate model and automatic differentiation to efficiently
identify constitutive parameters or loading conditions of

a biomechanical model given kinematic measurements
from medical images. This builds upon our recent work in
developing deep learning approaches that substantially reduce
the computational cost of simulating cardiac biomechanics,
by training an AI-surrogate model that accurately reproduces
mechanics predictions with a fraction of the computational
cost of numerical methods that solve the governing partial
differential equations (Maso Talou et al., 2020). We demonstrate
this approach for estimating passive stiffness or pressure of
the left ventricle (LV). This approach involves performing
an optimisation of the AI-surrogate inputs to best match its
kinematic response against a set of given observations from
medical images. We present two different strategies: (i) a
full-field tracking approach, which requires the displacement
field between two medical images; and (ii) a contour matching
approach, which requires only the geometry of the ventricular
surfaces in between two medical images. The latter approach
relaxes the requirement for determining the displacement field
of the tissue, and only requires contours describing the surface
of the ventricle from medical images to determine the best
matching kinematic response of the AI-surrogate.

The manuscript is structured as follows. In section 2, we
introduce the FE mechanical model for the left ventricle of
the heart, and its AI-surrogate. Then, we present the proposed
parameter identification strategies followed by the setup of the
optimisation scheme. In section 3, we study the performance of
both strategies for the identification of constitutive parameters
and haemodynamic loading conditions. Finally, we discuss the
contributions and limitations of this work in section 4 and outline
our final remarks in section 5.

2. METHODS

2.1. Mechanical Model
Kinematics of the LV are simulated using a patient-specific
FE model (Wang et al., 2018). This involves solving the finite
elasticity equilibrium equations during the diastolic phase of the
cardiac cycle under an endocardial pressure boundary condition
to simulate passive filling. Patient-specific geometrical models
of the LV are constructed at the diastasis frame of the cardiac
cycle for a range of individuals, which are assumed to be in
a load-free configuration. Cubic Lagrange basis functions are
used for constructing the FE mesh of the geometry. A typical
mammalian description of the myocyte orientation through the
LV wall (Nielsen et al., 1991) is incorporated into the geometry
through a material fibre field. The LV myocardium is modelled
as an ideally-incompressible transversely isotropic material by
means of a Fung-type exponential constitutive model (Guccione
et al., 1991) with the following strain energy density function

9 =
c1

2
(eQ − 1)

Q = c2E
2
ff + c3(E

2
cc + E2rr + E2cr)+ 2c4(E

2
fc + E2fr)

(1)

where the c1 parameter scales the overall stiffness of the
myocardium, and c2, c3, and c4 control the material non-linearity
and anisotropy in the fibre (f), cross-fibre (c), and radial (r)
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directions, respectively. Incompressibility of the myocardium
was enforced through a mixed formulation that uses linear
Lagrange basis functions for describing the hydrostatic pressure
(Nash and Hunter, 2000). Homogeneous Dirichlet boundary
conditions were applied on nodes of the FE mesh at the
epicardial perimeter of the basal surface of the model. All FE
simulations were performed using the OpenCMISS-Iron open-
source computational modelling software package (Bradley et al.,
2011).

2.2. Surrogate Network Model
From the FE mechanical model defined in section 2.1, we derive
a surrogate model as described in Maso Talou et al. (2020).
The AI-surrogate model predicts the displacement of a material
point x = (xd, yd, zd) for a given intra-ventricular pressure p,
domain description g = (g1, g2) (PCA weights as explained in
Maso Talou et al., 2020) and the constitutive parameters (c1, c2).
Particularly, we fixed parameters c3 = 3.67 and c4 = 25.77 as
their identifiability from macro-scale observations is low.

To train the AI-surrogate, we minimised the squared
displacement error with the FE predictions given by training the
following loss function

l(B) =
∑

ud∈Bd

‖ud − ũd‖
2
L2

+ α
∑

ub∈Bb

‖ub − ũb‖
2
L2

(2)

where Bb and Bd define sets of points (training batches) on
the basal/endocardial boundary (where Dirichlet or Neumann
boundary conditions were applied) and inside the domain,
respectively, ui and ũi are the displacements predicted with the
neural network and the FE model, respectively, α = 4.5 is the
penalty factor to impose the boundary conditions, and B =

Bb + Bd is a given training batch. For further details about the
training of the AI-surrogate, refer to (Maso Talou et al., 2020).

2.3. Parameter Identification Strategies
In this work, we propose two strategies to identify inputs
of the surrogate model from a given set of observations of
ventricular kinematics from medical images. As presented in our
previous work (Maso Talou et al., 2020), we can encode boundary
conditions, applied tractions, domain geometry and constitutive
parameters as inputs of these networks, thus the proposed
techniques can be used to characterise any of these inputs.

The estimation of parameters is studied using two approaches,
which differ based on the image data available to quantify the
kinematics of the heart. One approach considers a displacement
field description of the cardiac wall throughout the cardiac
cycle, which can be derived from medical images using motion
tracking methods (Wang and Amini, 2011; Shi et al., 2012),
or post-processing functions for MR sequences that provide
effective tracking of material points (e.g., CMR tagging). For
the second approach, the input data describe the kinematics
of the cardiac wall surfaces during the heart cycle. For each
approach, two different time-points, corresponding to the initial
and final positions of the cardiac walls, were combined with the
measured intra-ventricular pressures that obtained from cardiac
catheterisation for the analyses. Quantification of the cardiac

wall surfaces can be obtained through segmentation of clinical
images, such as 3D echocardiography or cardiovascular magnetic
resonance imaging (CMR) (Chen et al., 2020).

2.3.1. Full-Field Tracking Approach
The full-field tracking approach involves finding the parameters
2 (inputs of the surrogate model) that minimise the error
between the surrogate model’s predictions of tissue motion and
displacement data derived from medical images, i.e.,

2 = arg min
2̂

L(2̂, û)

= arg min
2̂

‖u(2̂)− û‖L2 (3)

where u(2̂) is the displacement field predicted by the surrogate
model for parameters 2̂, and û is the displacement field from
medical images.

2.3.2. Contour Matching Approach
Let us define a contour st at the time-point t composed of P points
as st = (x0t , . . . , x

P
t ). The endocardial and epicardial contours

are extracted from medical images at the reference (diastasis)
and pressure loaded (end-diastolic) time-points.We denote these
contours as sendo and sepi for endocardial and epicardial contours,
respectively, and in the following we use subscripts i or f to
indicate the absence or presence, respectively, of pressure load.

The contour matching approach involves finding the
parameters 2 (inputs of the surrogate model) that minimise the
error between the initial contours (s·i) displaced by surrogate
model predictions, and the end-diastolic contours identified
from the medical images, namely

2 = arg min
2̂

L(2̂, sendoi , sendof , s
epi
i , s

epi
f
)

= arg min
2̂

(

d(sendoi + u(2̂), sendof )+ d(s
epi
i + u(2̂), s

epi
f
)
)

(4)

where the surface-field addition yields a predicted surface st+u =

(x0t + u|x0t
, . . . , x

p
t + u|

x
p
t
) with u|x being the displacement of the

cardiac wall at the spatial position x, and

d(s1, s2) =
1

|s1|

∑

x∈s1

min
y∈s2

‖x− y‖ (5)

where ‖·‖ is the Euclidean norm and |s| is the cardinality of s.

2.4. Optimisation Scheme
A surrogate model of the ventricle is obtained as described in
Maso Talou et al. (2020) by minimising a displacement error
metric (see Equation 2) between the model predictions and a
finite element model. During the training of the AI-surrogate,
both the training and testing errors decreased monotonically
across epochs, reaching a plateau at 4.43 × 10−4 mm2 and
1.30 × 10−3 mm2, respectively. The resulting surrogate model
presents an absolute displacement error of 0.0499 ± 0.0374 mm
in ranges of intraventricular pressure (p ∈ [0.15, 1.5] kPa) and
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FIGURE 1 | (left) AI-surrogate depicting its inputs and outputs (Maso Talou et al., 2020); (right) Example of the geometry of the ventricle at diastasis for g = 0.

myocardial elasticity (c1 ∈ [2, 5] kPa and c2 ∈ [4, 40]) within the
physiological ranges.

As the parameters to be estimated are inputs of surrogate
model’s network, we freeze the weights of the network layers
and optimise the inputs by solving Equations (3) or (4). By
using Tensorflow v2.1, we implemented the network and the
objective function in a Tensorflow graph. Via this execution
graph and automatic differentiation, we obtain the analytic
derivatives of Equations (3) or (4) with respect to the parameters
to be estimated. Finally, we employ the derivatives in an ADAM
method with exponential decay of the learning rate given by

τi = τ0 0.985
i/10 (6)

where τi is the learning at the ith epoch, and τ0 is the initial
learning rate. We empirically choose τ0 = 1 for both full-
field tracking and contour matching approaches. By using
learning decay, the optimisation proceeds more rapidly in
the neighbourhood of the target value, and the overshooting
oscillations are damped, as the learning rate diminishes, leading
to convergence. The optimisation process stops when estimates
of all of the parameters show a relative change lower than 10−5 in
the last epoch, i.e.,

∥

∥

∥

∥

2n+1 − 2n

2ref

∥

∥

∥

∥

∞

< 10−5 (7)

where 2i is the estimate of the parameters at the ith epoch, 2ref

is a vector with reference values for each parameter, and vector
division is the element-wise division of the vector components.

3. RESULTS

In this section, we analyse the ability of both formulations
(see Equations 3 and 4) to identify myocardial constitutive
parameters, and the intra-ventricular pressure. In our
assessment, we disregard the representation error of the
domain associated with the PCA and learning space presented
in Maso Talou et al. (2020), as it can be reduced by including
additional PCAmodes as inputs of our surrogate model. Without
loss of generality, we fixed the geometry to g = 0 (i.e., mean
ventricular shape across our population, see Figure 1). The

analyses reported here will be analogous for different geometrical
variations of the left ventricle as well as for different Dirichlet
boundary conditions. All observations û, sendo

f
and s

epi
f

in this

work have been generated using the same FE model (see section
2.1) to train the surrogate model, thus there is no model error in
this study.

Additionally, we studied the effect of tracking and
segmentation errors (observation errors) on the estimates
of interest. The observation error is modelled as

uǫ =
r

‖r‖
η (8)

where r is a randomly oriented vector with components ri ∈

U(0, 1) and η ∈ N (0, σ ) is the magnitude of uǫ . Note that
the magnitude of our error is normally distributed with zero-
mean, and we choose σ = 1 mm to represent errors of similar
magnitude to the image resolution of MRI images for myocardial

structures. This error is added to û, sendo
f

, and s
epi
f

for the cases

with noise.
Regarding spatial discretisation of the observations (i.e., the

number of samples for û, sendo
f

, and s
epi
f
), we sampled 1, 109

points across the cardiac wall and 7, 579 points over each of
the ventricular surfaces to describe û and s·

f
, respectively. In

turn, for the spatial discretisation of the AI-surrogate inputs,
we sampled 1, 109 points across the cardiac wall for the full-
field tracking approach and 1, 072 points to describe each of the
surfaces s·i. By oversampling s·

f
with respect to s·i, we can compute

the distance between these surfaces by substituting s1 = s·
f
into

Equation (5). This approximation yields a reasonable trade-off
between computation time and discretisation error (note that the
discretisation error decreases as |s1| increases).

3.1. Identification of Constitutive
Parameters
We first studied the precision of simultaneously estimating
the constitutive parameters c1 and c2 for a known intra-
ventricular pressure p. The estimates were generated for both
approaches under three experimental scenarios: (i) a two time-
point experiment without observation error, i.e., only two images
are available during the cardiac cycle; (ii) a two time-point
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FIGURE 2 | Mean displacement of the ventricular wall (denoted µû) for different combinations of the constitutive parameters c1 and c2, and an intra-ventricular

pressure load of p = 0.9 kPa. For details of mean displacements for other loads, refer to the Supplementary Material.

experiment with observation error; and (iii) a multiple time-
point (N = 10) experiment with observation error. The first
two experiments illustrate the degradation of c1 and c2 estimates
for both approaches as measurements become less reliable due
to observation errors. This indicates the robustness of the
approaches with respect to observation error. A comparison
of the last two experiments shows the benefits of including
additional observations (time-points), which diminish the impact
of the stochastic component of the observation error.

3.1.1. Experiment 1
Both approaches showed a similar accuracy in the absence
of observation errors. Since variations in the predicted
displacements are more sensitive with respect to c1 than
c2, we observed better estimates of c1 (see Figure 3). The
distribution of the error in the parametric space (c1, c2) does not
show an association between the displacement magnitudes and
the estimation error (compare Figures 2, 3).

3.1.2. Experiment 2
To analyse the effect of observation errors, we repeated the
previous study 10 times while adding different independent
instances of uǫ (see Equation 8) to the observations û, sendo

f
and

s
epi
f
. To quantify the effect of the noise on the estimates across

these different samples, we computed the mean and standard

deviation of the relative error when estimating the parameters c1
and c2 (see Figure 4).

The contour matching approach provided more accurate
estimates than the full-field tracking approach in the presence
of observation errors (see Figure 4). This is shown by the
lower overall error of the contour matching approach, which is
insensitive to displacements within the muscular heart wall, and
within the surfaces of the ventricles. As only a small tangential
component of displacement is expected in the endocardial and
epicardial surfaces from the loading process in our FE model,
the insensitivity toward such component is beneficial for the
estimation process. Note that this may not be true in practical
scenarios, where the quantification of such components is yet to
be thoroughly explored.

The full-field tracking approach showed larger estimation
errors for c1 in stiffer materials. In such cases, the displacement-
to-uǫ ratio (analogous to the signal-to-noise ratio in signal
processing) was smaller, hindering the estimation due to the
increasing effects of noise in the observations. c2 presented
lower identifiability due to the plateau in the objective function,
L(2), associated with the observation error (see Equation 3 and
Figure 9). The sensitivity of c2 with respect to the displacements
was higher than that of c1 due to the form of the constitutive
equation (Equation 1). The identifiability of c2 is susceptible
to surrogate approximation errors, i.e., discrepancies between
the AI-surrogate and the FE model. An example of this, is the
increase in error of c2 as shown in Figure 4. The AI-surrogate
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FIGURE 3 | Relative error of the two-parameter estimation. Estimates of the constitutive parameters c1 (left) and c2 (right) are presented using the full-field tracking

and contour matching approaches with a load of p = 0.9 kPa in the absence of noise in the observations. For details of estimations for other loads, refer to the

Supplementary Material.

underestimates ∂u/∂c2 in its predictions contributing to the
plateau inL(2) described previously. Note that, as the pressure is
increased the AI-surrogate error has a diminishing effect on the
predicted displacement (see Supplementary Figures 7, 8).

3.1.3. Experiment 3
We analysed the effect of adding multiple time-points for the
estimation of the constitutive parameters when observation
errors were present. We assumed that the observation errors,
uǫ , for all time-points, were independent and identically
distributed (uncorrelated).

We observed that both approaches showed an improvement
in reducing the mean relative error in the estimation of c1 and c2
(see Figure 5), closer to values from error-free estimates reported
in Figure 3. As the observation error is normal, zero-mean
and independent between the time-points, both formulations
efficiently cope with the uncertainty, because the Euclidean norm

involved in both formulations (Equations 3 and 5) optimises
toward the mean of the error distribution.

The contour matching approach is slightly more accurate,
mainly in the estimation of c2 (maximum error of 3%, in
comparison to the full-field tracking approach, with a maximum
error of 5± 4 %).

3.2. Identification of Intra-Ventricular
Pressure
The previous section studied the accuracy of estimating the
constitutive parameters, c1 and c2, given a known intra-
ventricular pressure, p. In this section, we analogously analyse the
accuracy in the estimation of p, assuming that the constitutive
parameters are known. Two experiments were conducted: (i) a
two time-point experiment without observation error where only
two images are available; and (ii) a two time-point experiment
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FIGURE 4 | Mean and standard deviation of the relative error for the two-parameter estimation of c1 (left) and c2 (right) constitutive parameters using the full-field

tracking and contour matching approaches with a load of p = 0.9 kPa and the presence of Gaussian noise (σ = 1mm ≈ 2 pixels) in the observations. For details of

estimations for other loads, refer to the Supplementary Material.

with observation error. Analogous to the previous section, we
studied the degradation in the ability to recover the intra-
ventricular pressure for both approaches as the observations
become less reliable.

3.2.1. Experiment 1
Both approaches estimated intra-ventricular pressure p with a
similar accuracy (relative error ≤ 1%, see Figure 6). The results
did not present evidence of a correlation between the magnitude
of the displacements and the error in the estimation of p.

3.2.2. Experiment 2
Introducing observation errors slightly reduced the accuracy
of the full-field tracking approach (see Figure 7), especially for
stiffer materials. The interpretation of these results is analogous
to the analysis presented for the estimation of c1 in Experiment 2

of section 3.1. As reported in the previous section, with increasing
material stiffness, the displacements of the ventricle for the same
intra-ventricular pressure are smaller and the same intensity of
noise will havemore detrimental effects on the estimation process
(due to less displacement-to-uǫ ratio in the observations).

3.3. Convexity of the Objective Function
Both approaches are based on measuring the displacement
error by means of the Euclidean distance between the ground
truth and the AI-surrogate prediction. As the mechanical model
monotonically increases the ventricular displacements with the
increase of p and the decrease of c1 and c2, the minimisation
problem defined in Equations (3) or (4) with respect to p, c1 or
c2 is convex if the AI-surrogate sufficiently approximates the FE
model response.
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FIGURE 5 | Mean and standard deviation of the relative error for the two-parameter estimation of c1 (left) and c2 (right) constitutive parameters using full-field

tracking and contour matching approaches, a pressure trace with 10 time-points, and independent Gaussian noise (σ = 1mm ≈ 2 pixels) in the observations.

The AI-surrogate used in this manuscript, satisfies such
a condition (see Figures 8, 9). We can observe convexity
in the loss function with respect to p and the constitutive
parameters c1 and c2. Because we use a stochastic gradient
descent optimiser, the identifiability of the parameters is related
to the rate of change of the loss function with respect to

the parameter of interest. We observed a decrease in
∂L

∂c1

and
∂L

∂c2
for stiffer materials. Nonetheless, both approaches

presented good accuracy in recovering physiologically realistic
ranges of parameters (2.0 kPa ≤ c1 ≤ 5.0 kPa and 4.0 ≤

c2 ≤ 40.0, even in the presence of noise (see Figures 8,

9). The identifiability of p does not exhibit degradation in

the physiological range, even in the presence of noise (see

Figure 8).

3.4. Computational Cost
We quantify the performance of the formulations by measuring
the wall-clock time taken to estimate four different set
of parameters: (i) intra-ventricular pressure; (ii) constitutive
parameter c1; (iii) constitutive parameter c2; and (iv) constitutive
parameters c1 and c2. For each test, we executed the
estimation 50 times with different observation errors (using
the same noise distribution presented in section 3). During
these tests, the observation û corresponded to a ground
truth FE model prediction obtained using p = 0.9 kPa,
c1 = 3.5 kPa and c2 = 22.0. We then estimated the
mean and standard deviation of the wall-clock times over the
50 executions (see Table 1). The networks and optimisation
schemes were implemented in TensorFlow 2.1 with GPU-
support, using an NVIDIA Quadro P6000 and CUDA v11.0 for
their executions.
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FIGURE 6 | Relative error in estimating intra-ventricular pressure p using full-field tracking and contour matching approaches with a load of p = 0.9 kPa in the

absence of noise in the observations. For details of the estimation of other loads, refer to the Supplementary Material.

FIGURE 7 | Mean and standard deviation of the relative errors for recovering ground truth intra-ventricular pressure using the full-field tracking and contour matching

approaches and an intra-ventricular pressure of p = 0.9 kPa with Gaussian noise (σ = 1 mm ≈ 2 pixels) in the observations. Refer to the Supplementary Material

for details of the relative errors for other intra-ventricular pressures.

Both approaches were able to estimate the different set
of parameters in less than 18 s. In particular, the full-field
tracking approach executed 6.2, 7.3, 6.4, and 3.6 times faster
for experiments (i)-(iv), respectively, than the contour matching
counterpart. The slower response of the contour matching is
due to the oversampling of the ventricular surface s·

f
that is

necessary for obtaining a good approximation of Equation (5).
Such oversampling increases the number of points in s2 requiring
more model evaluations and thus computational expense.

In terms of computational complexity, the full-field tracking
approach has a cost of O(|û|) where |û| is the number of
points across the ventricular wall, and the contour matching

approach has a cost of O(|s1| |s2|) where |si| is the number of
points at the ventricular surfaces si. This analysis shows a higher
computational complexity for the contour matching approach,
which detrimentally impacts the scaling of the approach with

respect to the discretisation of the ventricle. Specifically, the

computational cost grows linearly and quadratically for the full-
field tracking and contour matching approaches, respectively.

Another contribution to the lower performance of the

contour matching approach is given by the number of
network evaluations. The total number of evaluations of
u(2̂) scales linearly with respect to the discretisation of
the ventricle for both formulations. However, contour
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FIGURE 8 | Loss function for the full-field tracking and contour matching approaches with respect to p in the presence (right) and absence (left) of noise in the

observations. The surface plot in the p-p̂ plane and the opaque manifold represent the loss function value L(p) when p̂ is the ground truth (optimal) value. Level curves

in L-p̂ and L-p planes correspond to parallel cuts of the opaque manifold for fixed values of p and p̂, respectively (blue to red shades indicate values of p and p̂ that

correspond to the ticks on their respective axes). Note that for a given p̂, L(p) is convex with the minimum p = p̂ resulting in precise and well-behaved formulations for

gradient-based optimisers.

matching requires almost twice the number of evaluations
when compared to the full-field tracking approach (1109
evaluations for each contour, vs. 1072 evaluations for tracking).
Thus, less refined representations of the ventricular surfaces
may help reduce the computational expense if needed for
clinical translation.

It is worth noting that we optimised Equations (3)
and (4) using the ADAM algorithm, because of its
direct support toward neural network optimisation.
It is possible that the use of efficient optimisers for
convex problems, such as L-BFGS (Liu and Nocedal,
1989) or even Newton’s method, may further enhance
convergence and reduce the computational effort in the
proposed formulations.

4. DISCUSSION

The two techniques proposed for parameter estimation feature
appealing properties such as low computational cost, simple
implementation, and no need for analytical derivatives of
the objective function. To achieve this, we used automatic
differentiation, already implemented in neural networks
frameworks (such as Tensorflow and PyTorch), for solving
Equations (3) and (4). This allow us to use exact gradient
information from complex AI-surrogate models without any
additional effort. Thus, we were able to assess the sensitivity
of the objective function residuals with respect to its inputs,
allowing for an efficient convex optimisation of the inputs.
Additionally, the same neural network frameworks are endowed
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FIGURE 9 | Loss function for the full-field tracking and contour matching approaches with respect to c1 and c2 in the presence (right) and absence (left) of noise in

the observations. The first and second rows present the loss function values when c1 = 3.5 kPa, c2 = 22.0 and c1 = 2.5 kPa, c2 = 10.0 are the ground truth

(Continued)
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FIGURE 9 | parameters, respectively. Surface plots in c1-c2 plane and the opaque manifolds represent the loss function value L(c1, c2). Level curves in L-c1 and

L-c2 planes correspond to parallel cuts of the opaque manifold for fixed values of c2 and c1, respectively (blue to red shades indicate values of c1 and c2 that

correspond to the ticks on their respective axes). Note that the objective functions are more sensitive to perturbations of c1 and c2 for softer materials (as highlighted

by the blue level curves, which represent lower values of c1 and c2).

TABLE 1 | Wall-clock times for parameter estimation using the proposed

strategies.

Approach Estimated parameters

p (s) c1 (s) c2 (s) c1, c2 (s)

Full-field tracking 1.0± 0.3 1.2± 0.3 1.2± 0.3 5.0± 1.6

Contour matching 6.1± 1.2 8.6± 0.8 7.7± 1.0 17.7± 1.0

The convergence criterion introduced in Equation (7) was used for all cases. The

observation data corresponds to the FE model prediction using parameters p = 0.9 kPa,

c1 = 3.5 kPa and c2 = 22.0.

with GPU-efficient implementations, accelerating the evaluation
of models by orders of magnitude with respect to a cost
equivalent CPU infrastructure.

Regarding the estimation of the intra-ventricular pressure
and constitutive parameters of the left ventricle, we conclude
that both of the proposed approaches can provide accurate
predictions of parameters, even in the presence of measurement
noise. The noise was modelled as a normal zero-mean
distribution with a standard deviation of two pixels. This
noise represented reconstruction errors of the ventricle wall
displacement (full-field tracking approach), or the ventricular
surface geometry (contour matching approach). Note that in our
analysis, the errors present no biases. If a bias were present (e.g.,
consistent segmentation errors due to mis-identification of the
structures, or assimilating experimental data with a model with
a significant modelling error), this may lead to larger estimation
errors than those reported here.

Both approaches demonstrated good identification properties
for the physiological range considered in our experiments.
Particularly, we focused on the analysis of relatively stiffer
materials (c1 > 2.0 kPa) and lower intraventricular pressures
(p = 0.9 kPa) because it present a more challenging scenario
to assess the parameter estimation task. As displacements are
smaller for lower pressures and stiffer materials, the noise and the
displacement field are within the same displacement magnitudes,
and a lower performance for the estimation is expected. However,
the results only showed this degradation under those conditions
for the full-field tracking approach, increasing its error estimate
from 0.6 to 1.8% in c1, from 1.9 to 4.6% in c2 and from 0.3 to
2.7% in p (see Figures 5, 7). The contour matching approach
only presented a slight degradation in parameter estimates
of c2 when c1 reached the upper bound of its physiological
range. Note that, after estimating the constitutive parameters,
the displacement errors between the AI-surrogate predictions
and the target observations were visually negligible when the
corresponding ventricle contours were overlaid. The case with
the largest disagreement across all simulations reported here
is shown in Figure 4 for the full-field approach with target

parameters c1 = 3.5 kPa and c2 = 10.0 (the specific sample
estimated c1 = 3.76 kPa and c2 = 7.05). In this case, the
displacements of the AI-surrogate had an error of 0.06 ± 0.02
mm with respect to the FE ground truth. In particular, when not
using information from multiple frames, the full-field tracking
approach failed to precisely identify c2 with errors reaching
16 ± 9.6%. Nonetheless, in practical applications, clinical MR
datasets often contain enough temporal resolution to perform a
multi-frame kinematic assessment.

For normal human physiological cases (diastasis pressures
of approximately 1.2 kPa), both methods present a slight
improvement in performance due to the larger displacements in
the observations (see Supplementary Figures 3, 7, 11, 15). As the
observed displacements increase, the approximation error of the
AI-surrogate to the FE model has a smaller contribution, leading
to more accurate estimates. Specifically, we can observe this for
the estimates of stiffer materials, where the larger displacements
improved the parameter identification in comparison with the
0.9 kPa pressure case.

Regarding clinical translation, this approach offers rapid
and efficient estimation of the mechanical properties using
commodity computational resources, e.g., a standard computer
with state-of-the-art GPU. The generated training datasets used
in section 3 assume realistic data constraints (i.e., observation
errors and resolution) expected in medical data. In this study,
we assumed segmentation errors of two pixels, and a temporal
resolution of 10 frames during diastole (see section 3), which
are both attainable using a 3T clinical MRI scanner. FE models
(which are used to train our AI-surrogate) have demonstrated
clinical utility (Wang et al., 2018; Hasaballa et al., 2021),
evidencing the suitability of this approach for mechanical
characterisation of the heart. Nonetheless, robust uncertainty
quantification analysis should be performed to analyse all sources
of error in the specific clinical environment. For the assessment
of mechanical properties of the ventricular wall, it is important
to quantify the uncertainty in the pressure measurements,
segmentation error, and geometric representation error. The
characterisation of such uncertainties is out of the scope of the
present work.

In terms of the number of parameters to be estimated, our
study demonstrated reasonable efficiency for the simultaneous
estimation of two parameters. Compared to the single parameter
problem, the computational time for the two parameter problem
was more than two-fold, but still presenting time ranges
compatible with clinical practice. This is due to the coupled effect
of the parameters in the model response which is a problem
shared by all parameter estimation techniques. The extension of
our technique for the simultaneous identification of additional
parameters is possible, as long as the objective function remains
strictly convex with respect to the parameters of interest.
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While the estimation approaches considered in this work
involved solving convex optimisation problems, the use of AI-
surrogates can offer advantages for non-convex problems. In
such cases, non-convex optimisation solvers, such as genetic
algorithms, may benefit from the use of AI-surrogates due to
the computationally inexpensive model evaluations. This feature
enables a more efficient exploration of the parameter space with
reduced computational intensity.

Finally, both of the proposed estimation techniques are
general, and can be translated straightforwardly to other
applications (e.g., to estimate constitutive properties of other
tissues, such as the breast, lung or liver) as long as an AI-surrogate
can be generated from the appropriate models. The full-field
tracking approach is limited to applications where material point
tracking measurements are available (e.g., using CMR tissue
tagging, or image registration techniques). On the other hand, the
contour matching approach can be applied to any applications
where the surfaces of the tissues or organs of interest can be
quantified experimentally.

5. CONCLUSIONS

This study proposed two approaches for parameter estimation
using AI-surrogates, depending on whether (i) tracking
kinematic measurements, or (ii) only surface measurements
are available. We focused our application on the estimation of
left ventricular constitutive properties and its intra-ventricular
pressure during the passive filling phase of the cardiac cycle.

We conclude that: (i) both approaches are robust with respect
to Gaussian noise when the measurement data for multiple
loading conditions were combined; and (ii) estimates of one or
two constitutive parameters could be obtained in less than 9 or
18 s, respectively. We found that the contour matching approach
was more robust toward Gaussian noise, recovering the ground
truth parameters with high accuracy even when only one loaded
configuration was available. Conversely, the full-field tracking

approach was more efficient than its counterpart by a factor of≈
4, while providing the possibility of further improving scalability
as medical imaging resolution improves.
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