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Atrial fibrillation (AF) is characterized by complex and irregular propagation patterns, and

AF onset locations and drivers responsible for its perpetuation are the main targets

for ablation procedures. ECG imaging (ECGI) has been demonstrated as a promising

tool to identify AF drivers and guide ablation procedures, being able to reconstruct the

electrophysiological activity on the heart surface by using a non-invasive recording of

body surface potentials (BSP). However, the inverse problem of ECGI is ill-posed, and

it requires accurate mathematical modeling of both atria and torso, mainly from CT or

MR images. Several deep learning-based methods have been proposed to detect AF,

but most of the AF-based studies do not include the estimation of ablation targets. In

this study, we propose to model the location of AF drivers from BSP as a supervised

classification problem using convolutional neural networks (CNN). Accuracy in the test set

ranged between 0.75 (SNR = 5 dB) and 0.93 (SNR = 20 dB upward) when assuming time

independence, but it worsened to 0.52 or lower when dividing AF models into blocks.

Therefore, CNN could be a robust method that could help to non-invasively identify target

regions for ablation in AF by using body surface potential mapping, avoiding the use

of ECGI.

Keywords: atrial fibrillation, body surface potentials, driver position, convolutional neural networks, deep learning

1. INTRODUCTION

Atrial fibrillation (AF) is the most common type of arrhythmia in clinical practice, affecting more
than 33 million patients in the world (Chugh et al., 2014). AF is also a condition that increases
the risk of the patients to suffer embolism, cardiac failure, stroke, and in the worst of cases, death
(Fuster et al., 2006).

Therefore, one of the clinical goals in AF patients is to restore sinus rhythm. This objective
can be achieved by pharmacological treatment (Lip and Tse, 2007), but termination of arrhythmic
processes is usually accomplished by ablation of the cardiac tissue. Main targets of ablation are AF
onset locations and drivers responsible for AF perpetuation (Guillem et al., 2016).

Previous human in vivo research showed different strategies to locate AF drivers and guide
pulmonary veins isolation (PVI). In the case of invasive mapping procedures (Narayan et al.,
2012; Krummen et al., 2017; Navara et al., 2018), several catheters are introduced inside the atrial

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.733449
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.733449&domain=pdf&date_stamp=2021-10-14
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:acliment@itaca.upv.es
mailto:oscar.barquero@urjc.es
https://doi.org/10.3389/fphys.2021.733449
https://www.frontiersin.org/articles/10.3389/fphys.2021.733449/full


Cámara-Vázquez et al. CNN in Driver Position Estimation

chambers to record from 8 to 128 simultaneous electrograms
(EGM) (Narayan et al., 2012). Despite the number of intracardiac
signals, the large distance between catheter sensors (up to 1–
2 cm) and the complex atrial anatomy limits the capability of
intracardiac mapping systems to characterize the global electrical
activity in AF (Oesterlein et al., 2016). Non-invasive procedures
based on ECG imaging (ECGI) have been also tested to guide PVI
(Haissaguerre et al., 2013, 2014; Dubois et al., 2015). However,
PVI success rate gets lower in persistent AF, and phase singularity
(PS)-guided ablation is suggested to be a reliable alternative for
these more complicated cases (De Greef et al., 2018; Rottner et al.,
2020).

Although ECGI has not been validated during AF propagation
patterns, it has been demonstrated as a promising tool to identify
AF drivers and guide ablation procedures (Cuculich et al., 2010;
Haissaguerre et al., 2013, 2014; Pedrón-Torrecilla et al., 2016;
Rodrigo et al., 2016). ECGI combines both numerical modeling
of the bioelectric properties of the thorax and signal processing,
with the aim of reconstructing the electrophysiological activity
on the heart surface by using a non-invasive recording of body
surface potentials (BSP) (Brooks and Macleod, 1997; Gulrajani,
1998). However, the inverse problem of ECGI has several
drawbacks. First, it requires an accurate mathematical modeling
of both atria and torso, mainly from CT or MR images. Next,
the inverse problem of ECGI is ill-posed because the propagation
between the epicardium and the torso implies information loss
due to signal attenuation (Rodrigo et al., 2014), and BSP are also
blurred compared to the signals on the heart due to the laws of
electromagnetic field theory. Therefore, regularization methods
are needed to obtain reliable and stable epicardial potential
reconstructions (Tikhonov and Arsenin, 1977; Oster and Rudy,
1992; MacLeod and Brooks, 1998; Pedron-Torrecilla et al., 2011;
Milanic et al., 2014). For these reasons, inverse problem-based
approaches still need further improvement.

In the last decade, machine learning (ML) and deep learning
(DL) techniques have undergone considerable development in
bioengineering, and this include novel research in AF. For
example, DL has been used in AF detection by using recurrent
neural networks (RNN) and convolutional neural networks
(CNN) (Xiong et al., 2017), by STFT, stationary wavelet transform
and CNN (Xia et al., 2018), and in the detection of individuals
at risk of suffering from Paroxysmal AF by CNN (Pourbabaee
et al., 2018). However, most of AF-based studies do not
include the estimation of ablation targets. Nonetheless, recent
research showed that ML and DL methods can be also used
in more complex tasks, like heart surface potentials estimation
from BSP using autoencoders (Bujnarowski et al., 2020) and
rotor identification from 12-lead ECG using decision trees
(Luongo et al., 2021).

Therefore, in this study we propose to model the location of
AF drivers from BSP as a supervised classification problem. We
used CNN, which accounts for spatial characteristics, to address
the location of AF drivers from previously labeled realistic
computerized AF models (Figuera et al., 2016; Cámara-Vázquez
et al., 2020).

The remaining of the study is organized as follows. In Section
2, we introduce the computational models used for this study, the
experimental set-up, performance metrics, and DL architecture.

Final results are summarized in sections 3 and in section 4 main
conclusions are presented.

2. MATERIALS AND METHODS

2.1. Computerized Models
Geometric Models and EGM Computation

Realistic 3D model for the atrial anatomy was composed of
284,578 nodes and 1,353,783 tetrahedrons (673.4 ± 130.3µm
between nodes) (Dössel et al., 2012) that considers a simplified
single endocardium-epicardium layer for the atrial tissue.

We simulated 13 different AF propagation patterns in both left
atria (LA) and right atria (RA), with different complexity and
driver positions: posterior left atrial wall (PLAW), left inferior
pulmonary vein (LIPV), left superior pulmonary vein (LSPV),
right inferior pulmonary vein (RIPV), right superior pulmonary
vein (RSPV), right atrial appendage (RAA), and right atria free
wall (RAFW). Sampling rate of the signals was fs = 500Hz, while
their duration ranged from 2 to 5 s.

The final computerized models were comprised of N = 2, 048
nodes for atria, and M between 2,206 and 3,970 nodes for torsos
(10 different geometries were used), under the assumption of a
homogeneous, unbounded, and quasi-static conducting medium
by summing up all effective dipole contributions over the entire
model (García-Molla et al., 2014; Figuera et al., 2016; Pedrón-
Torrecilla et al., 2016; Rodrigo et al., 2017). Therefore, the EGMs
of the entire model were computed as:

V(−→r ) =
∑

−→r

(−→r

r3

)

·
−→
∇ Vm (1)

where V(−→r ) is the EGM signal at the measuring point, Vm is
the transmembrane potential distribution across the atria, −→r is
the distance vector between the measuring point and a point
in the tissue domain, and r is its corresponding scalar distance.
The transmembrane potentials were defined in a scattered 3D
mesh, so the gradient was computed by interpolating a quadratic
function that involves two surrounding points (Lawson, 1984):

Vm,i−Vm,j = c1x+c2y+c3z+c4x
2
+c5y

2
+c6z

2
+c7xy+c8yz+c9xz

(2)

where Vm,i and Vm,j are the transmembrane potentials at the
points i and j; x, y, z are the incremental Cartesian coordinates
from j to i, and coefficients c1 to c9 were computed by the
least square method in, at least, nine neighboring points of
each location.

Atrial cell model

The atrial cell model used is based on the one proposed in
Nygren et al. (1998) and Koivumäki et al. (2014), where the
electrical activity of a single myocyte is described in terms of their
transmembrane potentials and ionic currents:

∂V

∂t
= −

Iion

Cm
(3)
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FIGURE 1 | Position of the electrodes for body surface potential mapping (BSPM, left) and regions in atria where AF drivers can be found (right).

where V is the transmembrane potential, Iion is the
transmembrane ionic currents, and Cm is the cell
membrane capacitance.

Then, the electrical propagation across the atrial tissue was
simulated by including the transmembrane currents caused by
the intercellular Gap junction current (due to the transmembrane
potential gradient) in the previous formulation:

∂Vk

∂t
= −

Iion

Cm
−

N
∑

i=1

DK,i
Vk − Vi

d2
k,i

(4)

where Vk is the transmembrane potential at node k, Vi is
the transmembrane potential at the neighbor node i, Dk,i

is the diffusion coefficient between the node k and i, and
dk,i is the distance between those nodes. Since the atrial
electrical conduction is anisotropic (its velocity is higher in the
longitudinal fiber orientation than at transverse), the diffusion
coefficient Dk,i that modulates the intercellular ionic current is
determined as follows:

DK,i = Dlong · cos
2α + Dtrans · sin

2α (5)

where α is the angle between the longitudinal fiber orientation
and the vector linking nodes k and i, and Dlong and Dtrans are
the longitudinal and transverse diffusion coefficients, respectively
(Rodrigo, 2016). Fibrotic and scar tissues weremodeled by setting
the diffusion values of the involved nodes to 0. In the case
of the fibrotic tissue, a certain percentage of random nodes
were disconnected, depending on the pattern to simulate. The
final system of differential equations was solved by Runge-Kutta
integration (using NVIDIA Tesla C2075 6G).

2.2. Input Data
2.2.1. Atrial Fibrillation Driver Detection as a ML

Classification Problem
We proposed to address the location of AF drivers as a supervised
classification problem. We divided the atria into seven regions
(Figure 1, right) where the AF driver can be found (Haissaguerre
et al., 2014). Each region, which ranged from 1 to 7, represents
a class to which the AF driver belongs. To obtain labeled data,

AF driver location from the computerized model was manually
classified into one region for each time-instant. An additional
label (0) is assigned when no driver is found.

2.2.2. Body Surface Potentials (BSP)
Input data for DL algorithms are simulated BSP from each of
the 10 torso geometries available. To compute the initial BSP
y, the forward problem of ECGI was solved by computing the
corresponding M × N transfer matrix A using the boundary
element method (Barr et al., 1977; De Munck, 1992; Pedrón-
Torrecilla et al., 2016):

yt = Axt (6)

where yt are the BSP from each time instants. Those simulated
BSP must be referenced to the Wilson Central Terminal (WCT).
This step is essential since real ECG recordings are referenced to
this point due to the electrical noise of the ground, and it can be
mathematically represented as:

ECG = ECGnotref − ECGWCT (7)

where ECGnotref is the not-corrected ECG, ECGWCT is the WCT
signal, computed as the average of the ECG signals at the WCT
points, and ECG is the final corrected ECG. Therefore, if we
apply the same methodology to BSP, yt referenced signals can be
computed as:

yt,ref = Axt−
1

NWCT

∑

N∈WCT

Axt = Axt−
1

NWCT
MWCTxt = (8)

=

(

A−
1

NWCT
MWCT

)

xt (9)

where NWCT is the number of WCT points, and MWCT is a
matrix of zeros except the rows that correspond to the WCT
leads, that have the same values as the corresponding rows of
the Amatrix (Rodrigo, 2016). Therefore, to directly compute the
BSP referenced to the WCT, it is possible to compute a corrected
ACTW matrix as:

AWCT = A−
1

NWCT
MWCT (10)
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FIGURE 2 | Construction of the different tensor layouts. Above: 3-channel tensor. Below: 1-channel tensor.

Once the WCT-referenced simulated BSP were computed, they
were corrupted with additive Gaussian noise and filtered using:
fourth-order bandpass Butterworth filter (fc1 = 3 Hz and fc2
= 30 Hz) (Figuera et al., 2016; Pedrón-Torrecilla et al., 2016).
Signal-to-noise ratios (SNR) ranged from 5 to 50 dB. Finally, a
set of 64 electrodes from each torso were chosen to represent a
realistic multi-electrode vest used in electrophysiological studies,
as shown in Figure 1 (left).

2.2.3. Image Representation of BSP
To obtain final input data, we represented the layout of electrodes
in Figure 1 as images. For this purpose, we build two different
types of tensors for each time instant (see Figure 2):

• 3-channel tensor. This first approach consists on creating 3D
matrices of shape (6 × 4 × 3). The first and last channel
contain the BSP of the torso and back, respectively (24
electrodes each), whereas the second channel contains BSP
from the sides (16 electrodes distributed on the last 4 rows,
while the rest are filled with zeroes).

• 1-channel tensor. This second approach consists on organizing
the BSP in a single-channel 2D matrix of shape (6 × 16
× 1). To do that, we considered a multielectrode vest as a
cylinder that was unrolled to a 12-column flat layout. Then,
we added two additional mirror columns to each side of the
matrix to represent the fact that the first and last columns
of the tensor are in touch in a real 3D geometry. Finally,
since sides electrodes are four for each column (instead of
6), the empty values are filled with the mean of the three
nearest electrodes.

Finally, to increase the size of the images, we performed a bilinear
interpolation to create tensors with shape (150 × 152 × 3) and
(78× 192× 1), respectively.

2.3. Convolutional Neural Network (CNN)
Architectures
2.3.1. Custom CNN
CNN are a type of DL algorithm used mainly in image
recognition and image classification. Comparing with other
types of DL algorithms, this approach has a superior ability
to extract features, increasing classification performance
(Krizhevsky et al., 2017).

CNN-based architectures consist on the following layers:

• Input layer. In this case, input data are an image, i.e., a 3D
matrix. This input matrix is also named as tensor.

• Convolutional layer. In this type of layer, a filter of size
(s, t) is applied to the input tensor. The main aim of the
convolutional layer is to extract feature maps that can reflect
certain characteristics of interest (edges, shape detection,
etc.) (Li et al., 2019). This filtering process is performed
using the convolution operation, which can be mathematically
represented as:

ai,j = f

(

s
∑

m=0

t
∑

n=0

wm,nxi+m,j+n + b

)

(11)

where ai,j is the output (activation) on coordinates (i, j),
xi+m,j+n is the value of the input tensor in coordinates (i +
m, j + n), wm,n is the coefficient of the filter in coordinates
(m, n), b is the bias, and f (·) is a nonlinear activation function.

• Pooling layer. This type of layers is frequently used between
convolutional layers, since they reduce the amount of
information that convolutional layers generate. There are
several ways to implement a pooling layer, and one of the
most used is the max-pooling. In this case, a non-overlapped
window is applied to the input feature map, and the output is
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FIGURE 3 | Schematic overview of the CNN-based proposed architectures. (A) Custom CNN. (B) Adaptation of pre-trained network to a 8-unit output.

the maximum value of the considered window. If we consider
a square window, the output feature map shape will be reduced
in a 1/m factor, wherem is the dimension of the window.

• Dense layer. After applying a certain combination of
convolutional and pooling layers, a multilayer perceptron
(MLP) can be applied afterwards. Therefore, it is necessary
to create an unidimensional vector from the output of
the convolutional network (flatten operation). As explained
before, the output layer of the MLP will have one unit for each
value the network should output.

The proposed CNN-based architecture is shown in Figure 3A.
Input data are tensors of shape (150 × 152 × 3) or (78 × 192
× 1), depending on the tensor architecture evaluated. We used
three convolutional layers with 32, 64 and 64 filters with (3 ×

3) size. ReLU activation function was used in both convolutional
layers. Max-pooling is applied after each convolutional layer
[(2,2) window size]. Final dense layers are composed by layers
of (128, 64) units (ReLU activation function), while the output
layer is a Softmax layer composed by 8 units, one for each label.
Finally, we used dropout between dense layers (0.6 dropout rate)
to avoid overfitting.

2.3.2. Pre-trained CNN
Finding the right parameters for a CNN (number and dimensions
of layers, pooling, etc.) can be a very complicated task, and
training this type of network is also very computationally
expensive. To address this task, there are several models that were
previously trained with a certain dataset that can be also used to
solve similar problems. This approach is called transfer learning
(Pan and Yang, 2009).

In this study, we decided to adapt the DenseNet121 (DN121,
Huang et al., 2016), InceptionResNetV2 (IRNV2, Szegedy
et al., 2016), and Xception (Chollet, 2016) models to our
problem. These models were trained with the ImageNet database
(Russakovsky et al., 2015), comprised of 14 million images
corresponding to 1,000 different classes. Therefore, since we want
to obtain an output with the prediction for 8 cases instead of
1,000, we added several fully connected layers to the output of
the pre-trained models. This adaptation is showed in Figure 3B.
Dense layers were composed of (128,64) units (ReLU activation

function), while the output layer is a Softmax layer composed by
8 units.

Finally, it is essential to remark that these pre-trained models
require 3-channel input tensors. Therefore, to use the previously
described 1-channel tensor, we decided to repeat the 2D matrix
twice to obtain a 3-channel tensor [(78× 192× 3) shape].

2.4. Performance Metrics
To assess the performance of the implemented DL models, we
used four different metrics:

• Accuracy (Acc). It is measured as

Acc =
TPfull

Total
(12)

where TPfull is the total number of well-classified drivers (true
positives), and Total is the total number of drivers.

• Cohen’s Kappa (κ). It is a robust statistic used for rating
reliability testing (McHugh, 2012), and is computed as

κ =
po − pe

1− pe
(13)

where po is the relative agreement among raters (identical
to accuracy), and pe the hypothetical probability of chance
agreement. A score of 1 represents a perfect agreement
between raters, and a score of 0 represents the agreement that
can be expected from random chance. Scores less than 0 mean
that there is less agreement than chance.

• Sensitivity (or true positive rate, TPR). It is the proportion of
positive samples for a class that are correctly classified. It is
measured as:

TPR =
TP

TP + FN
(14)

where TP is the number of well-classified drivers for a certain
class (true positives), and FN is the number of drivers that
was wrongly classified to another class (false negatives). It
is considered a measure of how well a test can identify
true positives.
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• Specificity (or true negative rate, TNR). It is the proportion of
negative samples for a class that are correctly classified. It is
measured as:

TNR =
TN

TN + FP
(15)

where TN is the number of drivers that did not belong to
a certain class that were correctly classified (true negatives),
and FP is the number of drivers that was classified as positive
for the same class, but they correspond to another class (false
positives). It is considered a measure of how well a test can
identify true negatives.

2.5. Experimental Set-Up
Final data set is composed of input data tensors, xi, of shape (150
× 152 × 3) or (78 × 192 × 1) [(78 × 192 × 3) in the case of the
pre-trained models], obtained from 64 BSP electrodes, and their
corresponding label yi, which can have values 0, 1, . . . , 7.

Training and test sets were split using two
different approaches:

• Time independence of input data. In this case, each time
instant is considered as an independent sample. The whole
data set was then randomly split into training (80%) and
test (20%) sets, using hold-out validation during the training
process (20%). In this scenario, samples from each AF model
are randomly distributed to the training, validation, and test
sets, but training, validation, and test processes are carried
out with completely different samples, i.e., samples from the
training set are not used in the validation and test sets.

• Division of AF models in consecutive blocks. To describe
a more realistic scenario, we divided each AF computerized
model in three independent blocks: training (first 80% of the
length of the signals), hold-out validation (last 20% of the
training set), and test (final 20% of the length of the signals).
Therefore, these three blocks contain consecutive samples, i.e.,
the training process is carried out using the first block of time
instants, and test is achieved with the last block of samples.

On the other hand, we had to address imbalance of data. In
our computerized models, there are several atrial areas where
the driver only appears in one single AF computerized model,
whereas other areas are more susceptible of containing a driver.
Therefore, there are several atria regions that are over represented
in the data set. To address this problem, we tried to weigh
the classes accordingly to the probability of occurrence (class
weight). It applies a higher penalization in wrong classifications
in under-represented classes.

Regarding the training process, we trained the different
models for a maximum number of epochs of 1,000, with
reduction in the learning rate and early stopping if there is
no improvement in the loss value during a certain number
of training epochs. Moreover, we use the model checkpoint
technique to get the best model obtained during the training
process according to a metric of interest (loss value for the
custom CNN, and validation loss for the pre-trained CNN).
Finally, in the case of the pre-trained models, we followed two

different training approaches: training the dense layers and the
last two convolutional layers (while freezing the rest of the CNN,
partial training), and re-training the whole pre-trained network
(full training).

3. RESULTS

3.1. Performance of CNN
The first carried out experiment consisted on assessing the
obtained performance with each tensor architecture. For this
purpose, we trained the CNN architecture explained in Figure 3

with 1-channel and 3-channel tensors. In both cases, tensors
were obtained from the same BSP dataset. Therefore, we got two
different CNN models to be compared. Moreover, to simulate a
realistic scenario, we used noisy BSP (SNR = 20 dB).

Table 1 shows the results considering each time instant as an
independent sample and division in blocks. In the first case, we
were able to correctly locate the 95 and 91% of drivers in the
training and test sets, respectively (Cohen’s kappa of 0.92 and
0.88) when using 3-channel tensors. Results obtained with the
CNN model trained with 1-channel tensors were very similar,
with an accuracy of 0.94 and 0.91 in training and test sets,
respectively (Cohen’s kappa of 0.92 and 0.88).

On the other hand, results for division in blocks were worse.
In this scenario, accuracy was 0.97 and 0.49 in training and test
sets when training with 3-channel tensors, respectively (Cohen’s
kappa of 0.96 and 0.33). Metrics when training with 1-channel
tensors were similar in the training set but slightly better in
the test set (accuracy of 0.52 and Cohen’s kappa of 0.37), but
worse compared with time independence approach. These results
suggest that we are overfitting the model to the training set.

Figure 4 shows the confusion matrix obtained in the test set
for both training approaches and tensor types, while Table 2

shows the accuracy, sensitivity and specificity obtained for each
label when training with 1-channel tensors. In the case of time
independence, accuracy ranged from 0.81 to 0.975, although it
worsened to 0.43 in the case of the drivers located in the septum
area (label 7, accuracy of 0.430). These results are justified by
the imbalance of our dataset. Labels from 0 to 5, although their
population are also imbalanced, are highly represented, but the
number of samples with labels 6 and 7 is very low. Results for
the CNN model trained with 3-channel tensors were slightly
worse. Regarding sensitivity, the system is able to detect with
high precision clinically relevant regions. Those areas where
ECGI has less reconstruction capacity (like the septum area), the
sensitivity is lower. However, it is essential to remark that both in
clinical practice and in our database these regions present a lower
probability of present drivers. Regarding specificity, obtained
scores were always above 0.94.

In the case of division in blocks, results were significantly
worse. Highest accuracy was obtained for the label 3 (0.80),
which is the one with the largest representation in the dataset.
However, accuracy for the rest of labels ranged from 0.22 to 0.56,
and near 0 for labels 6 and 7. The high temporal redundancy
between consecutive signal samples could explain overfitting in
this scenario, although the training set was previously shuffled
before fitting the model. The low number of computerized
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TABLE 1 | Performance metrics obtained with CNN assuming independent time instants and division in blocks.

Independent time instants Division in blocks

3-channel tensor 1-channel tensor 3-channel tensor 1-channel tensor

Training accuracy 0.954 0.942 0.971 0.965

Training Kappa 0.940 0.924 0.962 0.955

Test accuracy 0.913 0.912 0.499 0.526

Test Kappa 0.887 0.886 0.336 0.373

FIGURE 4 | Confusion matrices obtained in the test set (1-channel tensor) for time independence (A) and division in blocks (B).

AF models makes also difficult to help the CNN model to
generalize. Regarding sensitivity, results were also significantly
worse, although the system was able to get a sensitivity of 0.799 in

the most represented atrial zone (label 3). Finally, the rate of TN
is very high for every label, except for the label 3, with a specificity
of 0.635.
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TABLE 2 | Accuracy, sensitivity, and specificity scores obtained with 1-channel CNN assuming time independence and division in blocks (by labels, test set).

Atrial region (time independence)

No driver (0) 1 2 3 4 5 6 7

Accuracy 0.951 0.851 0.810 0.975 0.959 0.813 0.620 0.430

Sensitivity (TPR) 0.951 0.850 0.810 0.974 0.959 0.813 0.620 0.430

Specificity (TNR) 0.987 0.989 0.998 0.948 0.968 0.992 0.999 0.999

Atrial region (division in blocks)

No driver (0) 1 2 3 4 5 6 7

Accuracy 0.567 0.228 0.261 0.801 0.499 0.457 0 0.002

Sensitivity (TPR) 0.569 0.231 0.268 0.799 0.494 0.457 0 0.001

Specificity (TNR) 0.935 0.918 0.993 0.635 0.918 0.962 1 0.998

FIGURE 5 | Performance of CNN models on noisy test signals when assuming time independence (T) and division in blocks (D). Partially trained CNN models are

marked with (p), and fully trained ones are identified as (f).

3.2. Performance of Pre-trained CNN and
Noise Robustness
In this second experiment, we evaluated the possibility of using
pre-trained CNN models for AF driver localization, instead of
using a custom CNN architecture. Models were trained with 1-
channel tensors obtained with noisy BSP (SNR = 20 dB). Since
pre-trained models require 3-channel tensors, we repeated the
tensor twice to obtain 3-channel tensors. The customCNNmodel
was trained with the original 1-channel tensor.

Moreover, to assess the noise robustness of those DL models,
we tested themwith tensors whose associated BSPwere corrupted
with noise (SNR from 5 to 50 dB, in steps of 5 dB). This procedure
was repeated 20 times in order to obtain test signals with different
noise but same SNR. Then, the mean and SD of performance
metrics were computed.

Figure 5 shows the performance metrics obtained for the test
set, assuming time independence and division in blocks, for
each CNN model, whereas Table 3 shows the average accuracy
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TABLE 3 | Average accuracy values obtained for the different fully trained networks and noisy PSD (SNR = 5, 10, 15 and 20 dB, test set).

Independent time instants

5 dB 10 dB 15 dB 20 dB

Custom CNN 0.751± 0.001 0.872± 0.001 0.905± 0.0005 0.912± 0.0003

Xception (f) 0.788± 0.001 0.899± 0.001 0.927± 0.0007 0.933± 0.0005

InceptionResNetV2 (f) 0.802± 0.001 0.904± 0.001 0.929± 0.0008 0.934± 0.0003

DenseNet121 (f) 0.799± 0.001 0.902± 0.001 0.927± 0.0006 0.932± 0.0005

Division in blocks

5 dB 10 dB 15 dB 20 dB

Custom CNN 0.479± 0.002 0.514± 0.001 0.524± 0.001 0.527± 0.001

Xception (f) 0.453± 0.003 0.498± 0.002 0.513± 0.001 0.517± 0.0006

InceptionResNetV2 (f) 0.452± 0.002 0.490± 0.002 0.504± 0.001 0.508± 0.0006

DenseNet121 (f) 0.437± 0.002 0.477± 0.001 0.496± 0.001 0.503± 0.001

values for the custom CNN model and fully trained pre-trained
models (SNR from 5 to 20 dB). In both cases, performance of
pre-trained networks was significantly better when training the
full network instead of performing a partial training (where the
network was freezed except the last two convolutional layers
and the fully connected ones). For time independence, average
accuracy values obtained with fully trained pre-trained models
ranged from 0.788 (5 dB) to 0.93 (20 dB upward), whereas
the best accuracy value obtained for partially trained models
was 0.90 (Xception model). Regarding average Cohen’s kappa
metric, it ranged from 0.72 (5dB) to 0.91 (20 dB upward)
for fully-trained models, while the highest obtained score for
all partially trained pre-trained models was 0.87 (Xception
model).

On the other hand, average accuracy values obtained for
the division in blocks approach were significantly worse for
all the CNN models. The best average accuracy value was
0.51 among the different pre-trained models (SNR = 20
dB upward, Xception fully trained model), whereas the best
overall accuracy value was 0.527 for the custom CNN model.
Both are much lower values than the ones obtained for
time independence.

Regarding the performance when testing with much noisier
signals, performance degraded for SNR = 5 dB, with average
accuracy scores below 0.802 when assuming time independence
(0.479 with division in blocks). However, it improved from SNR
= 10 dB with average accuracy values over 0.87 in the time
independence approach (in the division in blocks approach the
best score for SNR = 10 dB was 0.51 for the custom CNN
model). Additionally, SD values of the accuracy were always
below 0.001, which suggests that the CNN models are robust to
noise changes.

Finally, performance metrics for fully trained pre-trained
models were very similar between them when assuming time
independence, outperforming the custom CNNmodel. However,
in the case of division in blocks, the custom CNN outperformed
fully trained pre-trained networks, although differences between
these models were very small.

4. DISCUSSION AND CONCLUSIONS

The use of CNNs can help to identify target regions for
ablation using body surface potential mapping, avoiding ECGI.
The proposed method, which converts BSP into images,
has been demonstrated to be accurate and robust to noise,
i.e., the performance just degrades for very low values
of SNR.

Regarding the architecture of the tensors, the 1-channel
tensor-based architecture was able to obtain more accurate
results than the 3-channel one, both assuming time
independence or division in blocks. In relation to the
training process, the single-channel tensor-based CNN
model required a higher number of epochs to be fitted
than in the 3-channel one. However, since each epoch
is slower in the 3-channel architecture (3D matrix),
the final training process becomes faster when using
single-channel tensors.

Moreover, this methodology makes transfer learning very easy
to apply, since it can be used to adapt much more complex
pre-trained CNN models to a very specific task with promising
results. However, results were significantly better when re-
training the whole network (much slower procedure) than when
training just the final layers. Therefore, using pre-trained models
requires further research.

Although this study showed very promising results, it
has several limitations that should be taken into account.
The first one is the size and balance of our dataset. It
is composed by 130 sets of BSP, obtained with 10 torso
geometries but from only 13 AF computerized models, so the
number of represented propagation patterns is low. Moreover,
the distribution of drivers across the seven defined atrial
regions is not balanced, i.e., there are regions that are
over-represented, and performance will be worse on under-
represented regions. However, we have decided to use the
proposed division in seven regions because it represents a
clinical-based classification of the areas where the AF drivers
are more commonly found and has been already clinically
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used to guide AF ablation strategies demonstrating to have a
clear clinical significance (Haissaguerre et al., 2014). Besides,
the proposed classification method can be easily extrapolated
to other atrial geometry divisions based on a higher number
of smaller regions, being able to get a higher resolution in the
driver classification.

Another important problem to be faced is the training
approach. In this study, we first trained the models with
random samples that belongs to the 13 AF models available
(time independence). However, in a real situation, the DL
model will have to compute a prediction with a data set
that the network has never seen. Therefore, we decided to
train the models with a chunk of signals of each model,
while testing with the rest. In this scenario, performance
substantially worsened because of the high temporal redundancy
between consecutive time instants and the low number of
AF models. Both facts lead to overfit to the training set,
even when using tools like dropout. Using RNNs could be
useful to face the redundancy problem, since they are able to
extract temporal characteristics of BSP that are omitted when
using CNN.

In a real scenario, assumingmodel independence (i.e., training
with some AF models and testing with the rest) should be
the way to go, but it will require the availability of a higher
number of computerized models and propagation patterns.
Finally, another point of future work will be applying this
methodology with real patient data. However, nowadays there is
a lack of gold standard for the identification of AF drivers, and
there are not labeled clinical data that could help us to validate
this methodology.

DATA AVAILABILITY STATEMENT

Some of the computerized models used in our study are
publicly available at the Experimental Data and Geometric
Analysis Repository (EDGAR, https://edgar.sci.utah.edu/)
by the Consortium for ECG Imaging (CEI, https://www.
ecg-imaging.org/). Further inquiries can be directed to the
corresponding authors.

AUTHOR CONTRIBUTIONS

MÁC-V and OB-P: experimental setup, code implementation,
and computational tests. MÁC-V, IH-R, MG, AC, and OB-P:
data collecting, cleaning, and pre-processing. MÁC-V, IH-R,
EM-R, MG, AC, and OB-P: manuscript preparation. All authors
contributed to the article and approved the submitted version.

FUNDING

This work has been partially supported by: Ministerio de
Ciencia e Innovación (PID2019-105032GB-I00), Instituto de
Salud Carlos III, and Ministerio de Ciencia, Innovación
y Universidades (supported by FEDER Fondo Europeo de
Desarrollo Regional PI17/01106 and RYC2018-024346B-750),
Consejería de Ciencia, Universidades e Innovación of the
Comunidad de Madrid through the program RIS3 (S-2020/L2-
622), EIT Health (Activity code 19600, EIT Health is supported
by EIT, a body of the European Union) and the European Union’s
Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement No. 860974.

REFERENCES

Barr, R. C., Ramsey, M., and Spach, M. S. (1977). Relating epicardial
to body surface potential distributions by means of transfer coefficients
based on geometry measurements. IEEE Trans. Biomed. Eng. 24, 1–11.
doi: 10.1109/TBME.1977.326201

Brooks, D. H., and Macleod, R. (1997). Electrical imaging of the heart. IEEE Signal

Process. Mag. 14, 24–42. doi: 10.1109/79.560322
Bujnarowski, K., Bonizzi, P., Cluitmans, M., Peeters, R., and Karel, J. (2020). “Ct-

scan free neural network-based reconstruction of heart surface potentials from
ecg recordings,” in 2020 Computing in Cardiology (Rimini: IEEE), 1–4.

Cámara-Vázquez, M., Á., Oter-Astillero, A., Hernández-Romero, I., Rodrigo, M.,
Morgado-Reyes, E., et al. (2020). “Atrial fibrillation driver localization from
body surface potentials using deep learning,” in 2020 Computing in Cardiology

(Rimini,: IEEE), 1–4.
Chollet, F. (2016). Xception: Deep learning with depthwise separable convolutions.

CoRR, abs/1610.02357. doi: 10.1109/CVPR.2017.195
Chugh, S. S., Havmoeller, R., Narayanan, K., Singh, D., Rienstra, M.,

Benjamin, E. J., et al. (2014). Worldwide epidemiology of atrial fibrillation:
a global burden of disease 2010 study. Circulation 129, 837–847.
doi: 10.1161/CIRCULATIONAHA.113.005119

Cuculich, P. S., Wang, Y., Lindsay, B. D., Faddis, M. N., Schuessler,
R. B., Damiano, R. J., et al. (2010). Noninvasive characterization of
epicardial activation in humans with diverse atrial fibrillation patterns.
Circulation 122, 1364–1372. doi: 10.1161/CIRCULATIONAHA.110.
945709

De Greef, Y., Schwagten, B., Chierchia, G. B., de Asmundis, C., Stockman, D., and
Buysschaert, I. (2018). Diagnosis-to-ablation time as a predictor of success:
early choice for pulmonary vein isolation and long-term outcome in atrial

fibrillation: results from the Middelheim-PVI Registry. EP Eur. 20, 589–595.
doi: 10.1093/europace/euw426

De Munck, J. (1992). A linear discretization of the volume conductor boundary
integral equation using analytically integrated elements. IEEE Trans. Biomed.

Eng. 39, 986–990. doi: 10.1109/10.256433
Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., and Seemann, G. (2012).

Computational modeling of the human atrial anatomy and electrophysiology.
Med. Biol. Eng. Comput. 50, 773–799. doi: 10.1007/s11517-012-
0924-6

Dubois, R., Shah, A. J., Hocini, M., Denis, A., Derval, N., Cochet, H.,
et al. (2015). Non-invasive cardiac mapping in clinical practice: application
to the ablation of cardiac arrhythmias. J. Electrocardiol. 48, 966–974.
doi: 10.1016/j.jelectrocard.2015.08.028

Figuera, C., Suárez-Gutiérrez, V., Hernández-Romero, I., Rodrigo, M., Liberos,
A., Atienza, F., et al. (2016). Regularization techniques for ECG Imaging
during atrial fibrillation: a computational study. Front. Physiol. 7:466.
doi: 10.3389/fphys.2016.00556

Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B.,
Ellenbogen, K. A., et al. (2006). Acc/aha/esc 2006 guidelines for the
management of patients with atrial fibrillation: full text. Europace 8, 651–745.
doi: 10.1093/europace/eul097

García-Molla, V., Liberos, A., Vidal, A., Guillem, M., Millet, J., González, A.,
et al. (2014). Adaptive step {ODE} algorithms for the 3d simulation of electric
heart activity with graphics processing units. Comput. Biol. Med. 44, 15–26.
doi: 10.1016/j.compbiomed.2013.10.023

Guillem, M., Climent, A., Rodrigo, M., Fernández-Avilés, F., Atienza, F., and
Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation:
evidence and therapeutic implications. Cardiovasc. Res. 109, 480–492.
doi: 10.1093/cvr/cvw011

Frontiers in Physiology | www.frontiersin.org 10 October 2021 | Volume 12 | Article 733449

https://edgar.sci.utah.edu/
https://www.ecg-imaging.org/
https://www.ecg-imaging.org/
https://doi.org/10.1109/TBME.1977.326201
https://doi.org/10.1109/79.560322
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1161/CIRCULATIONAHA.113.005119
https://doi.org/10.1161/CIRCULATIONAHA.110.945709
https://doi.org/10.1093/europace/euw426
https://doi.org/10.1109/10.256433
https://doi.org/10.1007/s11517-012-0924-6
https://doi.org/10.1016/j.jelectrocard.2015.08.028
https://doi.org/10.3389/fphys.2016.00556
https://doi.org/10.1093/europace/eul097
https://doi.org/10.1016/j.compbiomed.2013.10.023
https://doi.org/10.1093/cvr/cvw011
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Cámara-Vázquez et al. CNN in Driver Position Estimation

Gulrajani, R. (1998). The forward and inverse problems of electrocardiography.
IEEE Eng. Med. Biol. 17, 84–101. doi: 10.1109/51.715491

Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S.,
et al. (2014). Driver domains in persistent atrial fibrillation. Circulation 130,
530–538. doi: 10.1161/CIRCULATIONAHA.113.005421

Haissaguerre, M., Hocini, M., Shah, A. J., Derval, N., Sacher, F., Jais, P.,
et al. (2013). Noninvasive panoramic mapping of human atrial fibrillation
mechanisms: a feasibility report. J. Cardiovasc. Electrophysiol. 24, 711–717.
doi: 10.1111/jce.12075

Huang, G., Liu, Z., andWeinberger, K. Q. (2016). Densely connected convolutional
networks. CoRR, abs/1608.06993. doi: 10.1109/CVPR.2017.243

Koivumäki, J. T., Seemann, G., Maleckar, M. M., and Tavi, P. (2014). In silico

screening of the key cellular remodeling targets in chronic atrial fibrillation.
PLoS Comput. Biol. 10:e1003620. doi: 10.1371/journal.pcbi.1003620

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification
with deep convolutional neural networks. Commun. ACM. 60, 84–90.
doi: 10.1145/3065386

Krummen, D. E., Baykaner, T., Schricker, A. A., Kowalewski, C. A., Swarup, V.,
Miller, J. M., et al. (2017). Multicentre safety of adding Focal Impulse and Rotor
Modulation (FIRM) to conventional ablation for atrial fibrillation. Europace 19,
769–774. doi: 10.1093/europace/euw377

Lawson, C. L. (1984). C1 surface interpolation for scattered data on a sphere. Rocky
Mountain J. Math. 14, 177–202. doi: 10.1216/RMJ-1984-14-1-177

Li, Z., Feng, X., Wu, Z., Yang, C., Bai, B., and Yang, Q. (2019). Classification of
atrial fibrillation recurrence based on a convolution neural network with svm
architecture. IEEE Access. 7, 77849–77856. doi: 10.1109/ACCESS.2019.2920900

Lip, G. Y., and Tse, H.-F. (2007). Management of atrial fibrillation. Lancet 370,
604–618. doi: 10.1016/S0140-6736(07)61300-2

Luongo, G., Azzolin, L., Schuler, S., Rivolta, M. W., Almeida, T. P., Martínez,
J. P., et al. (2021). Machine learning enables non-invasive prediction
of atrial fibrillation driver location and acute pulmonary vein ablation
success using the 12-lead ECG. Cardiovasc. Digit. Health J. 2, 126–136.
doi: 10.1016/j.cvdhj.2021.03.002

MacLeod, R. S., and Brooks, D. H. (1998). Recent progress in inverse problems in
electrocardiology. Biol. Soc. Mag. 17, 73–83. doi: 10.1109/51.646224

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochem. Med. 22,
276–282. doi: 10.11613/BM.2012.031

Milanic, M., Jazbinsek, V., MacLeod, R. S., Brooks, D. H., and Hren, R. (2014).
Assessment of regularization techniques for electrocardiographic imaging. J.
Electrocardiol. 47, 20–28. doi: 10.1016/j.jelectrocard.2013.10.004

Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., and
Miller, J. M. (2012). Treatment of atrial fibrillation by the ablation of localized
sources. J. Am. Coll. Cardiol. 60, 628–636. doi: 10.1016/j.jacc.2012.05.022

Navara, R., Leef, G., Shenasa, F., Kowalewski, C., Rogers, A. J., Meckler, G.,
et al. (2018). Independent mapping methods reveal rotational activation near
pulmonary veins where atrial fibrillation terminates before pulmonary vein
isolation. J. Cardiovasc. Electrophysiol. 29, 687–695. doi: 10.1111/jce.13446

Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., et al.
(1998). Mathematical model of an adult human atrial cell: the role of k+
currents in repolarization. Circ. Res. 82, 63–81. doi: 10.1161/01.RES.82.1.63

Oesterlein, T., Frisch, D., Loewe, A., Seemann, G., Schmitt, C., Dössel, O., et al.
(2016). Basket-type catheters: diagnostic pitfalls caused by deformation and
limited coverage. Biomed. Res. Int. 2016:5340574. doi: 10.1155/2016/5340574

Oster, H. S., and Rudy, Y. (1992). The use of temporal information in the
regularization of the inverse problem in electrocardiography. IEEE Trans.

Biomed. Eng. 39:65–75. doi: 10.1109/10.108129
Pan, S. J., and Yang, Q. (2009). A survey on transfer learning. IEEE Trans. Knowl.

Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191
Pedron-Torrecilla, J., Climent, A., Millet, J., Berne, P., Brugada, J., Brugada, R.,

et al. (2011). Characteristics of inverse-computed epicardial electrograms of
brugada syndrome patients. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011,
235–238. doi: 10.1109/IEMBS.2011.6090044

Pedrón-Torrecilla, J., Rodrigo, M., Climent, A., Liberos, A., Pérez-David, E.,
Bermejo, J., et al. (2016). Noninvasive estimation of epicardial dominant high-
frequency regions during atrial fibrillation. J. Cardiovasc. Electrophysiol. 27,
435–442. doi: 10.1111/jce.12931

Pourbabaee, B., Roshtkhari, M. J., and Khorasani, K. (2018). Deep convolutional
neural networks and learning ECG features for screening paroxysmal atrial
fibrillation patients. IEEE Trans. Syst. Man Cybernet. Syst. 48, 2095–2104.
doi: 10.1109/TSMC.2017.2705582

Rodrigo, M. (2016). Non-invasive identification of atrial fibrillation drivers (Ph.D.
thesis). Tesis doctoral). Universitat Politècnica de València, Valencia, Espa na.

Rodrigo, M., Climent, A. M., Liberos, A., Calvo, D., Fernández-Avilés, F.,
Berenfeld, O., et al. (2016). Identification of dominant excitation patterns
and sources of atrial fibrillation by causality analysis. Ann. Biomed. Eng. 44,
2364–2376. doi: 10.1007/s10439-015-1534-x

Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld,
O., Atienza, F., et al. (2017). Technical considerations on phase mapping
for identification of atrial reentrant activity in direct-And inverse-
computed electrograms. Circ. Arrhythm. Electrophysiol. 10:e005008.
doi: 10.1161/CIRCEP.117.005008

Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos,
A., Millet, J., et al. (2014). Body surface localization of left and right
atrial high-frequency rotors in atrial fibrillation patients: a clinical-
computational study. Heart Rhythm 11, 1584–1591. doi: 10.1016/j.hrthm.201
4.05.013

Rottner, L., Bellmann, B., Lin, T., Reissmann, B., Tönnis, T., Schleberger, R.,
et al. (2020). Catheter ablation of atrial fibrillation: state of the art and future
perspectives. Cardiol. Therapy 9, 45–58. doi: 10.1007/s40119-019-00158-2

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115,
211–252. doi: 10.1007/s11263-015-0816-y

Szegedy, C., Ioffe, S., andVanhoucke, V. (2016). Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261.

Tikhonov, A. N., and Arsenin, V. Y. (1977). Solutions of Ill-Posed Problems. New
York, NY: Wiley.

Xia, Y., Wulan, N., Wang, K., and Zhang, H. (2018). Detecting atrial fibrillation
by deep convolutional neural networks. Comput. Biol. Med. 93, 84–92.
doi: 10.1016/j.compbiomed.2017.12.007

Xiong, Z., Stiles, M. K., and Zhao, J. (2017). “Robust ecg signal classification for
detection of atrial fibrillation using a novel neural network,” in 2017 Computing

in Cardiology (CinC) (Rennes: IEEE), 1–4.

Conflict of Interest: AC, MG, and IH-R hold equity in Corify Care. AC have
received honoraria from Corify Care.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Cámara-Vázquez, Hernández-Romero, Morgado-Reyes, Guillem,

Climent and Barquero-Pérez. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 11 October 2021 | Volume 12 | Article 733449

https://doi.org/10.1109/51.715491
https://doi.org/10.1161/CIRCULATIONAHA.113.005421
https://doi.org/10.1111/jce.12075
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1371/journal.pcbi.1003620
https://doi.org/10.1145/3065386
https://doi.org/10.1093/europace/euw377
https://doi.org/10.1216/RMJ-1984-14-1-177
https://doi.org/10.1109/ACCESS.2019.2920900
https://doi.org/10.1016/S0140-6736(07)61300-2
https://doi.org/10.1016/j.cvdhj.2021.03.002
https://doi.org/10.1109/51.646224
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1016/j.jelectrocard.2013.10.004
https://doi.org/10.1016/j.jacc.2012.05.022
https://doi.org/10.1111/jce.13446
https://doi.org/10.1161/01.RES.82.1.63
https://doi.org/10.1155/2016/5340574
https://doi.org/10.1109/10.108129
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/IEMBS.2011.6090044
https://doi.org/10.1111/jce.12931
https://doi.org/10.1109/TSMC.2017.2705582
https://doi.org/10.1007/s10439-015-1534-x
https://doi.org/10.1161/CIRCEP.117.005008
https://doi.org/10.1016/j.hrthm.2014.05.013
https://doi.org/10.1007/s40119-019-00158-2
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.compbiomed.2017.12.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Non-invasive Estimation of Atrial Fibrillation Driver Position With Convolutional Neural Networks and Body Surface Potentials
	1. Introduction
	2. Materials and Methods
	2.1. Computerized Models
	2.2. Input Data
	2.2.1. Atrial Fibrillation Driver Detection as a ML Classification Problem
	2.2.2. Body Surface Potentials (BSP)
	2.2.3. Image Representation of BSP

	2.3. Convolutional Neural Network (CNN) Architectures
	2.3.1. Custom CNN
	2.3.2. Pre-trained CNN

	2.4. Performance Metrics
	2.5. Experimental Set-Up

	3. Results
	3.1. Performance of CNN
	3.2. Performance of Pre-trained CNN and Noise Robustness

	4. Discussion and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References


