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Jiřík M, Hácha F, Gruber I, Pálek R,

Mírka H, Zelezny M and Liška V (2021)

Why Use Position Features in Liver

Segmentation Performed by

Convolutional Neural Network.

Front. Physiol. 12:734217.

doi: 10.3389/fphys.2021.734217

Why Use Position Features in Liver
Segmentation Performed by
Convolutional Neural Network
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Liver volumetry is an important tool in clinical practice. The calculation of liver volume

is primarily based on Computed Tomography. Unfortunately, automatic segmentation

algorithms based on handcrafted features tend to leak segmented objects into

surrounding tissues like the heart or the spleen. Currently, convolutional neural networks

are widely used in various applications of computer vision including image segmentation,

while providing very promising results. In our work, we utilize robustly segmentable

structures like the spine, body surface, and sagittal plane. They are used as key

points for position estimation inside the body. The signed distance fields derived from

these structures are calculated and used as an additional channel on the input of our

convolutional neural network, to be more specific U-Net, which is widely used in medical

image segmentation tasks. Our work shows that this additional position information

improves the results of the segmentation. We test our approach in two experiments on

two public datasets of Computed Tomography images. To evaluate the results, we use

the Accuracy, the Hausdorff distance, and the Dice coefficient. Code is publicly available

at: https://gitlab.com/hachaf/liver-segmentation.git.

Keywords: liver volumetry, semantic segmentation, machine learning, convolutional neural network, medical

imaging, position features

1. INTRODUCTION

3D medical imaging methods are an essential tool in diagnostics and treatment strategy selection.
Magnetic Resonance Imaging is available in all major hospitals, and the Computed Tomography
(CT) is available even in smaller ones. The analysis of the image data is traditionally done by the
expert—radiologist. During this procedure, the 3D data are usually viewed on a 2D monitor as
slices. This makes the process complicated and time-consuming, even for a trained operator.

Semantic segmentation is a task where each pixel in an input image is classified into a specific
class, i.e., per-pixel image classification. In the previous two decades, along with developments
in the field of computer vision, semi-automatic and automatic liver segmentation tools based
on traditional computer vision have been proposed (Moghbel et al., 2018) and many complex
Computer-Aided diagnostic systems were introduced (Christ et al., 2017). However, despite all the
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effort, the problem is not been perfectly solved till today. The
main problem is that in a CT image, the intensity of the liver is
similar to the intensity of adjacent tissues. Therefore, solely based
on the intensity, it is impossible to decide which tissue belongs to
the liver and which belongs to another organ. Another challenge
is the variability of the liver shape.

Since 2012, when AlexNet by Krizhevsky et al. (2012)
dominated ImageNet challenge (Deng et al., 2009), the popularity
of the traditional computer vision methods decreases at expenses
of neural networks. Most of the recent approaches for semantic
segmentation are based on Convolutional Neural Networks
(CNNs) (for example, Long et al., 2015; Chen et al., 2017a,b),
nevertheless, from 2020 Transformer (Vaswani et al., 2017;
Dosovitskiy et al., 2020) based architecture become increasingly
popular (for example, Carion et al., 2020; Zheng et al., 2021).
Their main disadvantages are the necessity of big amount of
training data, and their high computational complexity.

In medical imaging, U-Net (Ronneberger et al., 2015) is
the golden standard architecture for semantic segmentation. A
nested version of U-Net utilizes authors in Zhou et al. (2018).
In the work (Radiuk, 2020), the author proposes 3D U-Net
to perform multi-organ segmentation. In recent papers, the
authors also experiment with transformers (Valanarasu et al.,
2021), and their combination with the U-Net architecture (Chen
et al., 2021). In our work, we decided to utilize the standard U-
Net architecture with some modifications tailored specifically to
our task.

The standard procedure in machine learning is the
normalization of the data. Removing the data variability by
normalization makes learning more straightforward because the
algorithm can be focussed on the simpler problem. In image
processing, the most common normalization algorithms are
oriented on the object’s intensity, size, or position. In CT images,
the position normalization is done by the standard pose of the
patient, while the calibration of the device provides the intensity
normalization.

In this paper, we take a step beyond the limit of the standard
CT normalization. We focus on the use of robustly segmentable
tissues in the human body, and we show that the precise
knowledge of the position of these structures can be used for
a relative position determination in the body. Furthermore,
this information can be used with benefit for the automatic
segmentation of the liver.

The typical size of an abdominal CT image is about 512× 512
× 100, which gives us 26.214.400 voxels. It is hardly possible to
train a neural network with such massive input. The usual way
to solve this problem is to split the input image into smaller
parts. The two most common attempts to solve this problem
are separating the 2D slices or splitting the 3D input image into
smaller blocks. However, by this procedure, some information
is lost by the cropping operation. Each small slice or block of
image data contains essential information about the surrounding
tissues, but the position context is missing.

We suggest inserting additional position information into the
training procedure. In our work, we used an adapted algorithm
from the bodynavigation Python package (Jirik and Liska, 2018)
to extract the robustly segmentable tissues and the Signed

FIGURE 1 | Flowchart of the segmentation process.

Distance Field (SDF) to each of these segmentations. During
the training procedure, The SDFs are attached to the intensity
image as additional channels. We tested this setup for two
different segmentation approaches and show that it improves the
segmentation results for both of them.

2. PROPOSED METHOD

Our segmentation method is based on a convolutional neural
network with U-Net architecture. In this work, we tested two
different approaches. The first approach is based on processing
a single 2D slice from the original 3D volumetric image using
standard U-Net architecture. This approach uses a discrete
convolution of two-dimensional signals. Volumetric image is
processed slice by slice, and the individual solutions are then
assembled back into the original 3D image.

The second approach is based on the use of 3D signal
convolution. The volumetric input image is cut into cubes of size
32 × 32 × 32 voxels to overcome memory limits. These cubes
are then processed by the neural network and then assembled
back into the original 3D image once again. When preparing the
training data, these cubes were cut using an offset of 8, 16, and 24
voxels in each direction, significantly increasing the amount of
training data. For this approach, all 2D convolution layers in U-
Net are replaced by 3D convolution layers, as well as max-pooling
layers. The rest of the architecture remains the same.

In addition to the neural network, the entire segmentation
process is complemented by data normalization, feature space
expansion using body-navigation features, and postprocessing
of neural network output. The diagram of the whole process is
shown in Figure 1.
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Jiřík et al. Position Features in Liver Segmentation

FIGURE 2 | U-Net 3D architecture diagram.

2.1. Data Normalization
Before the segmentation itself, we need to normalize the input CT
image. The measured X-ray intensities given by the absorption
of various tissue types are already partially normalized at the
output of the CT scanner. Therefore, we only rescale them to
the interval [0, 1] using standard min-max normalization (see
Equation 1). The same normalization method is applied to the
body-navigation features.

xnorm =
x− xmin

xmax − xmin
(1)

2.2. U-Net
The U-Net architecture consists of a contracting path and an
expansive path. The contracting path is formed by repeating
convolutional layers, followed by a rectified linear unit (ReLU)
and a max-pooling layer for downsampling. The expansive path
consists of an upsampling of the feature map followed by a
convolution layer, a concatenation with the correspondingly
cropped feature map from the contracting path, and two
convolution layers, each followed by a ReLU. To avoid overfitting
the network, we add dropout layers after the fourth and fifth
levels of the contracting path.

To create a U-Net working with 3D cubes, it is necessary to
replace 2D convolution layers with 3D convolution layers, as well
as replace 2D max-pooling layers and 2D upsampling layers with
their 3D counterparts. In other aspects, the architecture remains
the same. A diagram describing the architecture is shown in
Figure 2.

2.3. Body-Navigation Features
The extraction of the body-navigation features is based on
robustly segmentable structures which are accessible to segment,
and its position in the body is stable - bones, body surface, and
lungs (see Figure 3). We used previously introduced algorithms
(Jirik and Liska, 2018) from the bodynavigation package
for Python. In addition, we fine-tuned the algorithms for
the sake of robustness. The first step is the image resize
to a lower resolution for the sake of speed. Generally, for
most features, the next step is segmentation, followed by
SDF construction.

The body surface is extracted by thresholding of filtered image.
A used threshold (parameter TB) is −300 [HU](Hounsfield
Units), and a Gaussian filter does the filtration with a standard
deviation (parameter SB) of 3 mm.

The detection of the sagittal plane starts with the localization
of the spine.

Gaussian filter does it with a standard deviation (of 100 mm in
the axial (or transversal) plane and 15 mm in the perpendicular
directions (parameter SS). It is applied on volumetric data
thresholded by value 320[HU] (parameter TS). Then the center
of the body surface and the center of the spine is used to construct
a vector that defines the first estimation of the sagittal plane.
In the following step, the 2D projection of bones into an axial
plane is constructed. Then the mirror image of this projection
is prepared. Finally, the symmetry is found by the iterative
minimalization of the difference of 2D projection and its rotated
and translated mirror image.
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FIGURE 3 | Intensity features and position features based on robustly segmentable structures: The axial view on the middle slice of the CT scan can be found in the

top row, while the coronal view is in the second row. The first column is the intensity image. The other columns show the Signed Distance Field (SDF) to the sagittal

plane, coronal plane, the axial plane on the bottom level of the heart, and the body surface. The zero level of the SDF is red. The border of the liver is green.

FIGURE 4 | Localization of the top of the diaphragm: Image (A,B) in the first row show the CT scan’s coronal view. The green and blue delineation show the liver and

the mask. The red dashed line is the detected level of the top of the diaphragm. The green dashed line shows the top level of the liver. The image (C) in the first row is

the plot with the area of the masked cavity in square mm. Images (D–F) show three consecutive axial slides of the CT scan. In the middle (E) is the slice from the top

level of the diaphragm can. On the left (D) is the slice above the diaphragm. The right image (F) shows the slide under the top level of the diaphragm. A small

“shadow” of the diaphragm can be seen in this image.
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The coronal plane is the plane perpendicular to the sagittal
plane, and it is going through the spine. Thus, the orientation of
SDF is given by the position of the center of the body surface.

We introduce the reference point in the craniocaudal axis,
located at the top of the diaphragm. The localization of the point
is based on the analysis of the series of slides. The internal cavity
is defined by the density lower than−200 [HU] (parameter TLA).
For each slide, the area of the internal cavity was measured. The
areas closer than 30 mm to the sagittal plane (parameter DSA)
and closer than 1 mm to the body surface (parameter DBA) are
excluded from the calculation. This mask can be seen in the
bottom row in Figure 4.

2.4. Postprocessing
After performing segmentation using a neural network, we
obtain an output image formed by one channel with the same
dimension as the input of the neural network. The values of the
output image are in the range from 0 to 1. This output is further
processed. First, thresholding is performed with a threshold
value Th = 0.5.

The image is then divided into contiguous areas, and their
volume is measured for each of them, given the number of voxels.

The area with the largest volume is left in the image, and the
others are overwritten into the background.

We use mathematical morphology for further processing of
the resulting image. The main reason for including this step was
to simplify the boundary of the resulting object and to remove
high-frequency noise. In the search for a suitable sequence of
morphological operations on the test dataset, the best results were
obtained by repeated use of four binary erosions.

3. EXPERIMENTS

To compare the benefits of usage of the body-navigation
features in liver segmentation, we designed and implemented two
experiments, one using U-Net 2D and one using U-Net 3D. In
both experiments, the results of segmentation using the body-
navigation features were compared with the results achieved
without their use.

Section 3.1 describes the data on which the neural networks
were trained and used to validate and test the segmentation
model. In section 3.2 we describe metrics used to evaluation
of the segmentation results. In section 3.3, we describe the

TABLE 1 | Segmentation methods comparison on validation and test dataset.

2D model 3D model

Image Body-nav. Accuracy MaxD Dice Accuracy MaxD Dice

3Dircadb-15 No 0.9898 50.8189 0.9094 0.1340 279.6009 0.1025

3Dircadb-16 No 0.9773 52.0738 0.8713 0.1610 305.2199 0.1498

3Dircadb-17 No 0.9773 54.6727 0.8755 0.1610 269.8953 0.1498

Sliver07-16 No 0.9831 37.2269 0.8912 0.1877 316.4408 0.1944

Sliver07-17 No 0.9911 224.5562 0.8361 0.1414 253.8510 0.1158

Sliver07-18 No 0.9849 250.1329 0.7539 0.1359 284.2670 0.1059

3Dircadb-18 No 0.9732 79.9842 0.8892 0.1528 335.1785 0.1356

3Dircadb-19 No 0.9678 71.5489 0.7918 0.1032 406.9116 0.0453

3Dircadb-20 No 0.9851 50.0576 0.8815 0.1032 304.3232 0.0453

Sliver07-19 No 0.9616 118.8727 0.7853 0.1504 274.8742 0.1315

Sliver07-20 No 0.9731 245.2699 0.7165 0.1141 274.7924 0.0660

Avg. value No 0.9786 131.9546 0.8240 0.1404 300.4868 0.1129

St. dev. No 0.0092 85.0098 0.0646 0.0250 40.3931 0.0445

3Dircadb-15 Yes 0.9871 34.0230 0.8897 0.9746 100.6067 0.7981

3Dircadb-16 Yes 0.9706 31.3055 0.8118 0.9576 88.0981 0.7201

3Dircadb-17 Yes 0.9780 53.7383 0.8799 0.9675 128.1953 0.8191

Sliver07-16 Yes 0.9818 33.5785 0.8801 0.9545 90.1366 0.7766

Sliver07-17 Yes 0.9931 45.1112 0.8695 0.9633 83.2325 0.7538

Sliver07-18 Yes 0.9928 151.0889 0.8645 0.9565 139.8558 0.6247

3Dircadb-18 Yes 0.9761 41.7075 0.8964 0.9680 93.3783 0.7934

3Dircadb-19 Yes 0.9721 46.9303 0.8146 0.9868 69.3535 0.7698

3Dircadb-20 Yes 0.9817 48.7038 0.8584 0.9872 99.6428 0.7317

Sliver07-19 Yes 0.9693 57.9692 0.8209 0.9624 83.0969 0.7634

Sliver07-20 Yes 0.9829 187.7416 0.7968 0.9860 65.3701 0.8196

Avg. value Yes 0.9816 75.4617 0.8509 0.9695 94.6333 0.7609

St. dev. Yes 0.0083 52.1915 0.0353 0.0118 21.4375 0.0528

All the values are without post-processing.
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training setup for the experiments, and finally, in section 3.4, we
present the results obtained in our experiments using the above
approaches. The source code used to perform these experiments
is located on the LiverSegmentation repository.

3.1. Dataset
For our experiments, the dataset was composed of two public
datasets. The Sliver07 dataset has been created by The Medical
Image Computing and Computer-Assisted Intervention Society
(MICCAI) for liver segmentation challenge (Heimann et al.,
2009). In this dataset, the liver is outlined by a radiological expert
in 20 CT scans. The other dataset is 3Dircadb by Soler (2016),
and it was created by Research Institute against Digestive Cancer
(IRCAD). It also contains 20 CT scans and liver segmentations
made by the radiologist. The number of slices in each series
is from 64 to 515. Slice thickness and pixel spacing vary from
0.5 to 5.0 and from 0.54 to 0.87 mm, respectively. By the
combination of these datasets, we get 5,777 2D slices and
733,037 3D cubes in total. For our experiments, the dataset
was split into three parts—training, validation, and testing. The
number of CT slices in training, validation, and testing is 24,
6, and 5, respectively. The entire dataset contains 564,200,960
voxels, while the liver, according to annotations, makes up only
7.72% of images. Segmented classes are therefore significantly
unbalanced, so it is appropriate to use a weighted loss function
(see section 3.3).

3.2. Evaluation Metrics
To compare the results of the individual segmentation methods,
we used three commonly used metrics. The first metric is
accuracy. This metric expresses the ratio of correctly classified
voxels to the total number of voxels in the image. The formula
for calculating this metric is shown in the Equation (2), where
TP is true positives, TN is true negatives, FP is false positives,
and FN is false negatives. This metric is often used not only in
segmentation but also in classification tasks. However, due to the
unbalanced ratio of the number of voxels that contain liver and
the total number of voxels, it is not very suitable. To be more
specific, the ratio between voxels of the liver and the other voxels
is approximately 1:16.816. However, we decided to list accuracy
because it is the standard metric.

Acc =
TP + TN

TP + TN + FP + FN
(2)

As another metric, we used the Dice similarity coefficient (also
known as Intersection over Union), which is more suitable
for our segmentation task. It was independently developed by
Dice (1945) and (Sørenson, 1948). Dice similarity coefficient
measures the similarity between two sets of data X and Y . In our
case, these sets are formed by predicted segmentation and true
segmentation. The calculation of this metric is described by the
Equation (3).

Dice = 2
|X ∩ Y|

|X| + |Y|
(3)

In medical imaging of the parenchymatous organs, the position
of the wrongly classified voxel is critical. It is not a big problem

if the voxel is adjacent to the segmented organ. However, it
is more severe if the voxel far from the liver is classified as a
liver. For this reason, we also measured the Hausdorf distance
(see Aspert et al., 2002). This metric measures the maximum
distance between the surfaces of the actual segmentation and
the predicted segmentation. The maximum distance between
surfaces S1 and S2 can be calculated according to the Equation
(4) where d(S1,S2) is the distance from surface S1 to surface S2
and can be calculated with the Equation (5).

MaxD = max(d(S1,S2), d(S2,S1)) (4)

d(S1,S2) = maxp∈S1 (d(p,S2)) (5)

3.3. Training Setup
For both neural networks (2D and 3D U-Net), the Adam
optimizer with a learning rate of 0.01 was used for the training.
Weighted binary cross-entropy was used as a loss function, where

FIGURE 5 | Example of segmentation results from 3D U-Net. Top:

Segmentation without body-navigation features. Middle: Segmentation with

body-navigation features. Bottom: True mask.

TABLE 2 | Evaluation of postprocessing in 3D segmentation model.

3D model

Postprocessing Body-nav. Accuracy MaxD Dice

No No 0.1404 300.4868 0.1129

No Yes 0.9695 94.6333 0.7609

Yes No 0.1552 292.2695 0.1237

Yes Yes 0.9767 50.1791 0.7918
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TABLE 3 | Sensitivity of the parameters for the positional features algorithm measured by relative displacement of the origin of the coordinate system: k is the default

parameter value multiplicator.

Error [mm]

k 25% 50% 75% 100% 125% 150% 175%

Param (default value) Reference

SB (3 [mm]) 3.3002 2.7002 3.3002 0.0 10.5750 19.7250 24.9750

TB (−300 [HU]) 80.2767 39.3823 10.9500 0.0 3.1501 3.9002 3.5253

TS (320 [HU]) 77.9674 41.8941 31.0902 0.0 24.7194 42.3552 65.1209

SS (100× 15× 15 [mm]) 28.8292 22.3974 10.0019 0.0 21.7733 28.1594 31.8916

TLA (−200 [HU]) 88.2000 25.4250 0.3750 0.0 0.6750 0.7500 1.2750

DBA (1 [mm]) 0.0000 0.0000 0.0000 0.0 0.0000 0.2250 0.2250

DSA (30 [mm]) 0.6750 0.6000 0.4500 0.0 2.7000 3.2250 5.1000

The k = 100% is used as a reference origin point. SB and TB are parameters sigma and threshold for body extraction. TS and SS are parameters for spine extraction. TLA, DBA, and

DSA are parameters for axial plane extraction.

the weights of the individual classes were adjusted inversely
proportional to class frequencies in the input data. In the
2D experiments, the batch size was set to 32 and in the 3D
experiments to 4. In all experiments, the networks were trained
for five epochs.

3.4. Results
The performed experiments can be divided into two groups—
2D and 3D—according to the dimensionality of input data. In
both of these groups, we performed the experiment with and
without the body-navigation features. The measurements on the
validation dataset and test dataset can be found in Table 1. An
example of output segmentation is shown in Figure 5.

Based on measured data, it can be seen that the body-
navigation features enhance the quality of segmentation. The
effect is stronger in the 3D experiment where the Dice coefficient
increased noticeably. In both experimental setups, there has been
a significant decrease in the Hausdorff distance. In the 3D setup,
the improvement was much more significant once again.

The direct comparison of the 2D and the 3D neural network
is inappropriate because, in the 2D setup, the whole slide gives a
good idea about the relative position of each pixel in the human
body. While using the 3D blocks, there is excellent information
about the detail, but the spatial context is lost.

To evaluate the influence of the postprocessing step, the
Table 2 contains all the metrics with and without postprocessing.
The benefits of postprocessing are most evident in the
measurement of the MaxD metric. The cause is the removal of
incorrectly segmented small areas that are far from the segmented
organ.

The position features can be generally used not only for
liver segmentation. The CT density is not sufficient for the
identification of the organ. I.g, the density of the liver is often
similar to the density of the heart or spleen. The position of an
organ is an important clue in the identification and segmentation
process. We believe that there is potential benefit in using our
positional feature-based algorithm to segment the other organs
and anatomical structures in the abdominal cavity.

In our future work, it would be appropriate to consider the
use of a combined segmentation method that would use a 3D
convolution network working with local cubes as preprocessing
for a 2D convolution network that would process entire 2D slices.
Another possible approach would be to extend the input shape of
the 3D convolutional network to include several whole 2D slices.

3.5. Position-Features Sensitivity
The position features algorithm is based on several parameters.
To check the sensitivity to these parameters, we decided to
include a test based on the stability of the point in the origin
of the 3D space given by the sagittal plane, coronal plane, and
the top level of the diaphragm. The default parameter value
was multiplied by the parameter value multiplicator k. Then the
position of the origin point obtained with default parameters
is compared to the origin point obtained with the parameter
multiplied with k. The origin of the coordinance system obtained
by k = 100% is used as a reference.

Table 3 shows the mean error for all the investigated
parameters over 20 images of the Ircadb1 dataset. It can be seen
that the input parameters can be changed in a wide range with
no significant impact on the result. The only exception is the
threshold used for surface extraction. However, because of the
intensity calibration of the CT data and the high contrast between
the body and the air, it is easy to set it correctly. The example of
the position features extracted with changed parameters can be
found in Figure 6.

4. CONCLUSION

Our paper presents a method for incorporating position
information into automatic liver segmentation performed by a
neural network. In addition, we introduced a novel feature for
the estimation of the position in the craniocaudal axis. To show
the effect of the positional information, we perform experiments
utilizing two different data structures. The experiments showed
that the position information could significantly enhance the
final segmentation quality. Furthermore, the effect is even more
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FIGURE 6 | Example of sensitivity of positional features to the algorithm parameters. k is the parameter value multiplicator. SB and TB are parameters sigma and

threshold for Body extraction. TS is the threshold used in spine extraction. The surface segmentation error can be seen if the parameter TB is set to 0.25 of its default

value. The sagittal and coronal plane position is lost if the parameter TS is set to 0.25 of its default value.

substantial if the training data are split into smaller blocks where
the spatial context is hidden beyond their borders.

In our future work, we would like to prove the possibilities
of using the positional features to segment other organs in the
abdominal cavity. Furthermore, we plan to combine both tested
approaches and test other possible data processing, especially in
the 3D domain.
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