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Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues
in response to various physiological and pathological conditions. As a hallmark of the
altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the
atmosphere with elevation. A hypoxic stress can also occur at the cellular level when
the oxygen supply through the local microcirculation cannot match the cells’ metabolic
needs. This has been suggested in contracting skeletal myofibers during physical
exercise. Regardless of its origin, ambient or exercise-induced, muscle hypoxia triggers
complex angio-adaptive responses in the skeletal muscle tissue. These can result in
the expression of a plethora of angio-adaptive molecules, ultimately leading to the
growth, stabilization, or regression of muscle capillaries. This remarkable plasticity of the
capillary network is referred to as angio-adaptation. It can alter the capillary-to-myofiber
interface, which represent an important determinant of skeletal muscle function. These
angio-adaptive molecules can also be released in the circulation as myokines to act
on distant tissues. This review addresses the respective and combined potency of
ambient hypoxia and exercise to generate a cellular hypoxic stress in skeletal muscle.
The major skeletal muscle angio-adaptive responses to hypoxia so far described in
this context will be discussed, including existing controversies in the field. Finally, this
review will highlight the molecular complexity of the skeletal muscle angio-adaptive
response to hypoxia and identify current gaps of knowledges in this field of exercise
and environmental physiology.
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INTRODUCTION

Our review aims to revisit the complexity of the skeletal muscle angio-adaptive response to hypoxia,
particularly when combining exposure to ambient hypoxia and exercise-induced tissue hypoxia.
Indeed, in the context of high-altitude expeditions, mountaineers usually engage into prolonged
periods of intense physical activity over several weeks or months (West, 2006, 2012). In the context
of sport performance at sea level, hypoxia training has become a complex and very specialized area
of research (Millet et al., 2010; Lundby et al., 2012; Girard and Chalabi, 2013; Girard and Pluim,
2013; Girard et al., 2013). Finally, the use of exercise training under hypoxia has recently emerged as
a new and promising therapeutic avenue to improve some metabolic and cardiovascular conditions
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(obesity, type-2 diabetes, hypertension) as well as for the training
of elderly subjects (Verges et al., 2015; Millet et al., 2016;
Figure 1).

Skeletal muscles represent one of our largest tissues,
accounting for about 40% of human body weight. Skeletal
muscles adapt to environmental, physiological, and pathological
conditions with a remarkable plasticity. This can include
changes in muscle mass, in the size of myofibers and their
metabolic and contractile phenotype, as well as changes in muscle
capillarization (Booth and Thomason, 1991; Hudlicka et al., 1992;
Hudlicka, 2011).

Since August Krogh’s pioneering work about a century ago
(Krogh, 1919a,b,c), our understanding of the regulation of muscle
blood flow and oxygen delivery to muscle cells has considerably
evolved and was recently revisited in great review articles
(Angleys and Østergaard, 2020; Poole et al., 2020, 2021; Kissane
et al., 2021). The oxygen cascade from skeletal muscle arterioles
to capillaries, interstitial tissue, sarcolemma, and mitochondria
can be influenced at several levels: The vasomotricity of upstream
arterioles and the subsequent regulation of capillary blood flow;
the content and velocity of red blood cells; the hemoglobin
and myoglobin concentrations; the tortuosity and number of
capillaries; and the surface area of myofibers.

The capillary-to-myofiber interface plays a crucial role for
muscle function. Indeed, it represents the site of exchange for
oxygen, nutrients, metabolic heat and waste between the blood
and the myofibers. The density of capillaries within a given area
of muscle tissue will greatly contribute to matching the delivery
of oxygen and nutrients with the myofibers’ metabolic needs,
particularly during contractile activity (Hudlicka et al., 1987;
Hoppeler and Kayar, 1988; Mathieu-Costello, 1994; Hudlicka,
2011). The capillary network can therefore be considered as
a key determinant of skeletal muscle function and several
studies have reported strong correlations between the level
of muscle capillarization and mitochondria volume density,
muscle oxidative capacity, and oxygen consumption (Hoppeler
et al., 1987; Hudlicka et al., 1987; Hoppeler and Kayar, 1988;
Poole and Mathieu-Costello, 1996; Howlett et al., 2003). For
instance, Howlett et al. (2003) reported a strong correlation
between skeletal muscle capillary density and muscle oxygen
conductance in rats selectively bred for running endurance
(Howlett et al., 2003).

SKELETAL MUSCLE CAPILLARIZATION
AND THE CONCEPT OF MUSCLE
ANGIO-ADAPTATION

The capillary density in a muscle section can vary in response to
various environmental, physiological, or pathological conditions.
An increase in muscle capillary density is usually observed in
human subjects and animal models in response to prolonged
endurance training or high-altitude sojourn (Hudlicka et al.,
1992; Breen et al., 2008; Hudlicka, 2011). Conversely, skeletal
muscle capillary rarefaction has been described in response
to physical deconditioning as well as in the context of some
pathologies such as chronic obstructive pulmonary disease,

chronic heart failure, or diabetes (Roudier et al., 2010; Gouzi et al.,
2013; Olfert et al., 2015; Aiken et al., 2019).

Skeletal muscle angio-adaptation refers to the complex
and dynamic processes of capillary formation, stabilization,
or regression in response to acute and chronic physiological
or pathological conditions. These processes are regulated at
the molecular level by a plethora of pro- and anti-angiogenic
molecules (Hoppeler, 1999; Breen et al., 2008; Egginton, 2009;
Olfert and Birot, 2011; Egginton and Birot, 2014; Olfert
et al., 2015). At the cellular level, endothelial cells proliferate,
migrate, and assemble to form new capillaries in the context of
angiogenesis, or conversely, undergo apoptosis during capillary
regression. Myofibers can represent an important source of
production and release of angio-regulatory molecules such as
the well-described pro-angiogenic Vascular Endothelial Growth
Factor-A (VEGF-A).

Importantly, changes in capillary density can also be a direct
consequence of alterations in the size of myofibers (hypertrophy
or atrophy) without any true capillary loss or formation. Also,
no change in capillary density is not necessarily synonymous
of an absence of angio-adaptive activity. For example, during
myofiber hypertrophy, a formation of new capillaries might occur
simply to prevent a decrease in the capillary density that would
result from the increase in the myofibers surface area. It is also
important to note that some angio-adaptive molecules, such
as the pro-angiogenic VEGF-A, are not only required for the
growth of capillaries but also to maintain existing ones. Evidence
suggests an autocrine expression of VEGF-A being important
for endothelial cell survival and vascular homeostasis (Lee et al.,
2007; Domigan et al., 2015). Finally, the skeletal muscle could
also be seen as an endocrine organ releasing “angio-adaptive
myokines” in circulation, potentially affecting distant tissues.

SKELETAL MUSCLE HYPOXIA: IMPACT
OF ALTITUDE AND EXERCISE

Hypoxia, defined as a lack of oxygen supply to a given tissue,
is a powerful pro-angiogenic stimulus for various cell types
and tissues including skeletal muscle (Hoppeler and Vogt, 2001;
Semenza, 2001; Breen et al., 2008; Fraisl et al., 2009; Favier et al.,
2015). Ambient hypoxia is a hallmark of the altitude environment
and results from a drop in the oxygen pressure in the atmosphere
with elevation. However, the impact of ambient hypoxia per se on
skeletal muscle angio-adaptive responses and capillarization still
remains a source of scientific debate. A hypoxic stress can also be
generated locally at the muscle tissue level in response to intense
exercise if oxygen delivery cannot match the metabolic needs of
contracting myofibers (Figure 1).

Several studies have aimed at determining the oxygen
partial pressure (PO2) cascade in human and animal models
using different techniques such as proton magnetic resonance
spectroscopy, surface electrodes, microcatheter, and more
recently phosphorescence quenching. The intramuscular PO2
at rest is estimated around 27 mmHg with some variations
(10-34 mmHg) among studies (different species, muscles, and
techniques), below the microvascular PO2 but well above the
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FIGURE 1 | Contribution of ambient hypoxia and exercise to induce a hypoxic stress in skeletal muscle. A drop in the partial pressure of oxygen (PO2) in the muscle
tissue can result from a decrease in ambient PO2 (e.g., altitude) as well as an unbalanced between blood supply to the muscle cells and their increase metabolic
needs during exercise. In response to muscle hypoxia angio-adaptive responses will take place to maintain an optimal oxygen supply to myofibers and to preserve
muscle function. This is of particular relevance in the context of mountaineering activity as well as exercise training strategies using ambient hypoxia for athletes or
clinical populations. As discussed in the text, the impact of ambient hypoxia on skeletal muscle PO2 seems rather modest (+) compared to the impact of exercise in
generating a local hypoxic stress (++). The combination of ambient hypoxia exposure and exercise might exacerbate this hypoxic stress (+++).

intra-myocyte PO2 (1-3 mmHg) (Prewitt and Johnson, 1976;
Boegehold and Johnson, 1988; Richardson et al., 1995, 2006;
Richmond et al., 1997, 1999; Hutter et al., 1999; Molé et al.,
1999; Lombard et al., 2000; Richardson, 2000; Kindig et al., 2003;
Johnson et al., 2005; Liu et al., 2012; Hirai et al., 2018, 2019;
Colburn et al., 2020; Poole et al., 2020, 2021).

A few of these studies have investigated the impact of
ambient hypoxia on skeletal muscle PO2. A modest reduction
in PO2 (from 34 mmHg under normoxia to 23 mmHg under
hypoxia) was observed in human quadriceps muscle following
an exposure to an inspired O2 fraction of 10% (FiO2 0.10),
equivalent to an altitude of about 5,800 m (Richardson et al.,
2006). In another study, the interstitial PO2 in rat cremaster
muscles was reduced from 26 to about 10 mmHg following

one minute exposure to an inspired O2 fraction of 7% (FiO2
0.07), equivalent to an altitude of about 8,300 m (Johnson et al.,
2005). However, the physiological relevance of this conditioning
(1 min of exposure at FiO2 0.07) can be questioned. These
few studies suggest that ambient hypoxia exposure might not
alter muscle PO2 to a large extent. Conversely, the impact
of physical exercise on the muscle PO2 seems much more
important. One bout of exercise, even at moderate intensity
(50% maximal leg O2 uptake) was shown to decrease muscle
PO2 to values around 3-5 mmHg (Richardson et al., 1995, 2006;
Molé et al., 1999; Angleys and Østergaard, 2020). This exercise-
induced hypoxic stress could be further exacerbated (muscle PO2
down to 2 mmHg) when exercise was performed in a hypoxic
environment (Richardson et al., 2006).
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At a molecular level, the Hypoxia Inducible Factor-1 (HIF-1)
is a transcription factor widely recognized as a hallmark of the
hypoxia signaling pathway (Semenza and Wang, 1992; Semenza,
2001). HIF-1 is a heterodimeric complex formed of two subunits
alpha and beta. Whereas the expression of the beta subunit
remains stable under both normoxic and hypoxic conditions, the
alpha subunit (HIF-1α) confers on HIF-1 most of its regulation.
Under normoxia, the HIF-1α protein is constantly synthesized in
the cytoplasm, and rapidly undergoes proteosomal degradation
within a few minutes. This involves HIF-1α hydroxylation on
certain proline residues by HIF prolyl hydroxylases (PHD1-3)
(Ke and Costa, 2006; Lindholm et al., 2014). If the PO2 drops
enough to generate a hypoxic stress at the cellular level, the
function of PHD1-3 is inhibited, HIF-1α is stabilized and can
translocate into the nucleus to dimerize with the beta subunit.
HIF-1 binds to hypoxia responsive elements (HRE) in the
promoter regions of target genes to regulate their transcription.
Both the erythropoietin (EPO) and pro-angiogenic VEGF-A
genes possess HRE sites in their promoters (Semenza, 2001).

Whether ambient hypoxia exposure results in an increased
expression of HIF-1α protein in skeletal muscle remains largely
understudied. Stroka et al. (2001) have observed a strong HIF-
1α protein expression level in mouse skeletal muscle even under
normoxic conditions (Stroka et al., 2001). In the same study, 1 h
exposure to extreme normobaric hypoxia (FiO2 0.06, equivalent
to 9,100 m) did not seem to increase the expression level
much further. As noted previously, the physiological relevance of
conditionings combining very short exposures (1 min to 1 h) and
extreme hypoxia levels (FiO2 0.06-0.07) are questionable (Stroka
et al., 2001; Johnson et al., 2005).

Intense physical exercise can be at the origin of a local hypoxic
stress in the muscle tissue. In an elegant study, Ameln et al. (2005)
quantified HIF-1α protein expression in response to one single
bout of moderate intensity exercise in human vastus lateralis
muscle biopsies (Ameln et al., 2005). HIF-1α protein levels were
increased immediately after exercise and remained elevated for
up to 6 h post-exercise. An increased nuclear staining for HIF-
1α was also observed as well as an increased DNA binding to
HRE binding sites. mRNA levels for HIF-1 target genes EPO and
VEGF-A were also higher post-exercise. These results suggest that
HIF-1 expression and activity were both increased post-exercise
in human skeletal muscle.

An increase in HIF-1α protein expression could result from
the inhibition of HIF-1α protein degradation but also from an
increased expression of HIF-1α mRNA and protein translation.
Vogt et al. (2001) have measured HIF-1α mRNA in human
vastus lateralis muscle biopsies before and after an endurance
training program conducted at low or high intensity either under
normoxia or normobaric hypoxia (simulated altitude of 3,850 m)
(Vogt et al., 2001). HIF-1α mRNA expression was increased
after hypoxia training regardless of the training intensity whereas
training under normoxia had no effect. Interestingly, VEGF-A
mRNA levels were also measured and found to be increased
only in the high-intensity hypoxia training group but not under
low exercise training conditions. This could reveal a synergetic
effect of combining ambient hypoxia and exercise-induced local

hypoxia. Here, biopsies were performed at least 24 h post-
exercise to assess the effect of prolonged training on HIF-
1α basal levels. In line with this study, Lundby et al. (2006)
have evaluated the impact of prolonged exercise training on
HIF-1α acute response to one single bout of exercise (Lundby
et al., 2006). HIF-1α mRNA levels were increased in vastus
lateralis biopsies at 6 h post-exercise only in the untrained
group. Whether exercise training could blunt the acute HIF-1α

response to one single bout of exercise was then questioned by
Lindholm et al. (2014), Lindholm and Rundqvist (2016) who
showed that several inhibitors of HIF-1α expression and HIF-
1 activity were increased in trained muscles. The analysis of
trained muscle biopsies indeed revealed higher expression levels
of prolyl hydroxylases (PHD1-3), Factor Inhibiting HIF-1 (FIH)
and Sirtuin-6 (SIRT6) (Lindholm et al., 2014). By catalyzing
hydroxylation on specific prolyl residues, PHD1-3 target HIF-1α

for proteasomal degradation. FIH, a HIF-1α-specific asparagine
hydroxylase, can inhibit HIF-1 transactivation. SIRT6, a histone
deacetylase, can act as an epigenetic co-repressor of HIF-1.
Another explanation to the results from Lundby et al. (2006)
could be an increased level of muscle capillarization post-
training. Angiogenesis is a well-described tissular adaptation of
the skeletal muscle tissue to endurance training. This would result
in a better capillary-to-myofiber interface and oxygen delivery to
contracting myofibers, and as such, a reduced exercise-induced
hypoxic stress in trained muscles.

In addition to inducing a local cellular hypoxic stress, exercise
combines other pro-angiogenic stimuli such as increased shear
stress on endothelial cells due to enhanced muscle blood flow,
mechanical tissue stretch, and oxidative stress (Hudlicka et al.,
1992; Milkiewicz et al., 2001; Breen et al., 2008; Egginton, 2009;
Hoier et al., 2012; Egginton and Birot, 2014; Hellsten and Hoier,
2014; Haas and Nwadozi, 2015; Olfert et al., 2015). The increase
in muscle blood flow results from active vasodilation, and the
resultant increase in shear stress represents a well-described
pro-angiogenic stimulus for skeletal muscle endothelial cells,
mediating the production of angio-adaptive molecules such as
nitric oxide, metalloproteinases, and VEGF-A (Milkiewicz et al.,
2001, 2011; Egginton, 2009, 2011; Hudlicka and Brown, 2009;
Hellsten and Hoier, 2014; Haas and Nwadozi, 2015). If local
cellular hypoxia and shear stress are often presented side by side
as exercise-induced pro-angiogenic stimuli, passive exposure to
ambient hypoxia also stimulates vasodilation and increases blood
flow in skeletal muscle (Casey and Joyner, 2011, 2012; Joyner and
Casey, 2014; Dinenno, 2016). Therefore, ambient hypoxia could
then represent an upstream stimulus of muscle shear stress. The
degree of vasodilation observed seems linked to the degree of
ambient hypoxia, at least for acute exposures. Interestingly, the
combination of ambient hypoxia exposure and exercise seems to
synergistically induce greater vasodilation and muscle blood flow
than what could be expected by simply adding their respective
contributions (Casey and Joyner, 2011, 2012; Joyner and Casey,
2014). Finally, to add more complexity, HIF-1α expression can
also be stimulated under normoxic conditions in skeletal muscle
in response to increased shear stress or mechanical tissue stretch
(Milkiewicz et al., 2007).
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ALTITUDE, EXERCISE, AND SKELETAL
MUSCLE HYPOXIA: KEY POINTS

• Exercise is a more powerful stimulus than ambient hypoxia
to decrease muscle PO2.
• Combining ambient hypoxia and exercise might further

decrease muscle PO2.
• Hypoxia Inducible Factor-1 is a well-established hallmark

of hypoxia signaling.
• Skeletal muscle angio-adaptive activity can locally

change the level of muscle capillarization and can also
release angio-adaptive myokines in the circulation for
distant effects.

INCREASED MUSCLE
CAPILLARIZATION IN RESPONSE TO
EXERCISE TRAINING AND AMBIENT
HYPOXIA

We previously discussed how increasing the capillary-to-
myofiber interface could be beneficial for maintaining or
improving muscle function when oxygen delivery becomes a
challenge. The capillary density (CD), which represents the
number of capillaries per surface unit of tissue, is often used
to assess the level of muscle capillarization (Andersen, 1975;
Hudlicka et al., 1992). The CD can however be influenced
both by changes in the number of capillaries and alterations
in the size of myofibers. Changes in CD might therefore not
always be representative of angiogenesis or capillary regression.
Conversely, the capillary-to-fiber ratio (C/F) represents one of
the best histological parameters to truly appreciate capillaries
formation or rarefaction.

Exercise training is a powerful and well-established pro-
angiogenic stimulus for the skeletal muscle tissue (Andersen,
1975; Andersen and Henriksson, 1977; Hudlicka et al., 1992;
Egginton, 2009). Human and animal studies have shown that
one single bout of exercise leads to the production and
release of several angio-adaptive molecules both in the muscle
microenvironment, for example to stimulate skeletal muscle
endothelial cells (Roudier et al., 2012; Aiken et al., 2016), and
in the circulation as myokines (Hudlicka et al., 1992; Vogt
et al., 2001; Egginton, 2009; Olfert and Birot, 2011; Hoier
et al., 2012; Egginton and Birot, 2014). During prolonged
exercise training, the chronic repetition of these exercise-induced
angiogenic responses can ultimately lead to the formation of new
capillaries. This increase in muscle capillarization will usually be
reflected by higher C/F and CD in trained muscles (Andersen,
1975; Andersen and Henriksson, 1977; Hudlicka et al., 1992;
Egginton, 2009). As previously mentioned, the exercise stimulus
combines several stressors such as local tissue hypoxia, increased
shear stress, tissue stretch, and oxidative stress. The exact
contribution of hypoxia per se during exercise remains difficult
to study and still unclear. Conversely to regular exercise, muscle
hypokinesia or deconditioning can lead to capillary regression

(Fujino et al., 2005; Egginton, 2009; Malek et al., 2010; Roudier
et al., 2010; Olfert and Birot, 2011).

The effect of passive exposure to ambient hypoxia on skeletal
muscle capillarization is less clear than the impact of exercise
training. A well-established consensus of the literature is that
prolonged exposure to field or simulated high altitude hypoxia
results in improved skeletal muscle capillarization and increased
capillary density. This alteration in capillary density seems
however mainly due to the atrophy of myofibers rather than a
true angiogenic response. Several studies have indeed reported
an increase in CD concomitantly to a decrease in the myofiber
surface area, with no change in the C/F ratio (Oelz et al., 1986;
Green et al., 1989; Hoppeler et al., 1990a,b; MacDougall et al.,
1991; Kayser et al., 1996).

This should be taken with a certain caution since there are
in fact almost as many original studies reporting an increase
in muscle CD as studies showing no change (Figure 2A;
Banchero et al., 1976; Sillau and Banchero, 1977; Oelz et al.,
1986; Poole and Mathieu-Costello, 1989; Hoppeler et al., 1990a,b;
Bigard et al., 1991; Green et al., 1992; Kayser et al., 1996;
Olfert et al., 2001; Lundby, 2004; Mizuno et al., 2008; Levett
et al., 2012). We searched the PubMed database for original
research studies that analyzed skeletal muscle CD and C/F in
animals or human subjects passively exposed to normobaric
or hypobaric hypoxia. Studies combining ambient hypoxia and
exercise interventions were included only if they had all the
required experimental groups to assess the impact of passive
hypoxia exposure independently of the exercise training stimulus.
We identified a total of 22 original research studies (Figure 2).
Interestingly, 55% reported a significant increase or a trend for
an increase in CD by at least 10% whereas 45% showed no
change (Figure 2A).

The lack of change in CD could be attributed to an absence
of muscle atrophy, and some authors have in fact observed
no reduction in myofiber size at high altitude (Green et al.,
1992; Lundby, 2004; Levett et al., 2012; D’Hulst et al., 2016).
It was then suggested that both the exposure duration and the
altitude level could determine whether myofibers would atrophy
or not, leading to the notion of hypoxic dose (D’Hulst and
Deldicque, 2017; Millet et al., 2017). Some conditionings were
indeed performed at moderate altitude (3,000-4,000 m) over 2-
3 weeks only, as opposed to longer exposures (8-10 weeks) at
higher altitudes (>5,200 m) (Oelz et al., 1986; Green et al., 1989,
1992; Hoppeler et al., 1990a,b; MacDougall et al., 1991; Lundby,
2004; Mizuno et al., 2008; Levett et al., 2012).

It is difficult to identify the source of discrepancy between
these studies regarding myofiber size and CD. In rodent studies
for example, the age of the animals can be a confounding
factor if they are still growing (Banchero, 1985; Snyder
et al., 1992). Calorie intake can also influence body and
muscle weights. Prolonged mountaineering expeditions at
high-altitude can involve logistical constraints for proper
nutrition and gastroenteritis disorders are often described
(West, 2012; Swenson and Bärtsch, 2013). Hypophagia
has been well observed in rodents exposed to prolonged
hypoxia, usually requiring the use of pair-fed control animals
(Daneshrad et al., 2001, 2003).

Frontiers in Physiology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 735557

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-735557 August 30, 2021 Time: 12:36 # 6

Lemieux and Birot Skeletal Muscle Angio-Adaptation to Hypoxia

FIGURE 2 | Twenty-two research articles analyzing changes in skeletal muscle capillary density (CD) (Panel A) or capillary-to-fiber ratio (C/F) (Panel B) in response to

prolonged exposure to ambient hypoxia were surveyed. ( ) indicates human studies. ( ) indicates the use of animal models (not restricted to rodents). (∗) indicates
significant finding. Red coloration indicates an increase in magnitude by 10% or greater. Blue coloration indicates a decrease in magnitude by 10% or greater. Black
coloration indicates no change. Y- and X-axis, respectively, reflect the level of altitude (real or simulated) and the duration exposure. Corresponding references:
(1) Banchero et al. (1976); (2) Banchero et al. (1985); (3) Basset et al. (2006); (4) Bigard et al. (1991); (5) Cassin et al. (1971); (6) Deveci et al. (2001); (7) Deveci et al.
(2002); (8) Green et al. (1989); (9) Green et al. (1992); (10) Hoppeler et al. (1990a); (11) Hoppeler et al. (1990b); (12) Levett et al. (2012); (13) Lundby (2004); (14)
MacDougall et al. (1991); (15) Mathieu-Costello and Agey (1997); (16) Mizuno et al. (2008); (17) Olfert et al. (2001); (18) Panisello et al. (2008); (19) Poole and
Mathieu-Costello (1989); (20) Sillau and Banchero (1977); (21) Sillau et al. (1980a); (22) van Ekeren et al. (1992).

Muscle atrophy could also result from reduced physical
activity and muscle deconditioning, particularly during
prolonged and passive exposure in hypoxic chambers. For
example, when maintaining an isocaloric state and matching
physical activity levels, Green et al. (1992) did not observe
any atrophy in their study. There is however still a lack of
consensus around the contribution of physical activity or the
notion of a hypoxic dose on muscle atrophy. This can nicely be
illustrated by two studies from Mizuno et al. (2008), Levett et al.
(2012). Both compared very active versus less active subjects
during similar conditions of prolonged exposure (66-75 days) to
high altitude (>5,000 m). Whereas the less active participants
remained moderately active at the Everest Base Camp (5,250-
5,300 m), active subjects were repeating climbing sessions at
higher altitudes. In Levett’s study, climbers reached Camp 2

(6,400 m) and some even summited the Mount Everest (8,848 m)
(Levett et al., 2012). Mizuno et al. (2008) observed a significant
increase in muscle CD (+14%) associated with a reduction in
muscle circumferences and myofiber size. Conversely, Levett
et al. (2012) did not observe any significant myofiber atrophy
or change in CD.

Some authors have also concluded that ambient hypoxia alone
might not be sufficient to stimulate skeletal muscle angiogenesis
and that a combination of cold and hypoxia stressors might be
required (Banchero, 1985; Jackson et al., 1987; Snyder et al., 1992;
Hoppeler, 1999). Interestingly, cold per se was recently identified
as a pro-angiogenic stimulus in rodent skeletal muscle (Sillau
et al., 1980b; Egginton, 2002; Deveci and Egginton, 2003).

An increase in muscle CD can also result from the
formation of new capillaries via the process of angiogenesis.
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The capillary-to-fiber ratio (C/F) is often used to assess capillary
formation. Some earlier studies in species adapted to high
altitude, including deer mice, gooses, finches or pigeons have
reported increased C/F values compared to sea level animals
(Mathieu-Costello and Agey, 1997; Hepple et al., 1998; Hepple,
2000; Lui et al., 2015; Scott et al., 2015). Yet, as previously
mentioned, a general interpretation is that the increase in CD
in response prolonged exposure to hypoxia results from tissue
remodeling and myofiber atrophy without any angiogenesis.
Methodological artifacts in tissue preparation for histology
procedures, such as variation in the sarcomere length, were
pointed out (Sillau and Banchero, 1977; Sillau et al., 1980b;
Banchero, 1985; Banchero et al., 1985; Hoppeler and Kayar,
1988; Poole and Mathieu-Costello, 1989; Hoppeler et al., 1990a,b;
Hudlicka et al., 1992; Mathieu-Costello, 1994). The impact of
prolonged hypoxia on muscle C/F was however, revisited by
Deveci et al. (2001, 2002) in rats passively exposed to 3 or 6 weeks
of hypoxia (FiO2 0.12, equivalent to 4,400 m). The effect of
hypoxia on C/F could vary accordingly to muscle and fiber types
as well as exposure duration. After 3 weeks of conditioning,
CD and C/F were increased in the diaphragm and soleus
muscles without any significant myofiber atrophy, suggesting a
true angiogenic response to ambient hypoxia. No indication of
angiogenesis was observed in the tibialis anterior and extensor
digitorum longus muscles (Deveci et al., 2001). At 6 weeks, an
increase in C/F was observed all muscles (Deveci et al., 2002).
Interestingly, the analysis of different areas from each muscle also
suggested that angiogenesis might occurs predominantly around
larger and glycolytic myofibers (Deveci et al., 2001, 2002).

When re-analyzing our 22 original research studies that
measured the C/F ratio in animal and human skeletal muscles in
response to prolonged exposure to hypoxia, we found that about
64% mentioned no change and only 13% reported a significant
increase or a trend for it (Figure 2B). Interestingly, 23% indicated
a significant or a trend for a decrease in C/F (Green et al., 1989;
Hoppeler et al., 1990a,b; MacDougall et al., 1991; Lundby, 2004).
For example, in the study from Hoppeler et al., 1990a,b, the
significant decrease in C/F (-10%) is of the same magnitude as
the increase in CD (+11%).

Based on the current literature, the understanding of the
effect of prolonged exposure to hypoxia on skeletal muscle
capillarization is still unclear and difficult to generalize.
Responses can vary between species, muscles, and fiber types,
and can be different when combining different stressors such as
cold or physical activity. The idea of CD increasing because of
myofiber atrophy can be seen as an interesting and economic
way to improve the capillary-to-myofiber interface without the
need of angiogenesis. However, having smaller myofibers might
represent a disadvantage when it comes to muscle performance.

Divergent from passive exposure to ambient hypoxia, the
utilization of hypoxia in conjunction with exercise has gained
popularity as a possible training avenue for improving sea-
level exercise performance (Levine, 2002; Levine and Stray-
Gundersen, 2006; Millet et al., 2010; Lundby et al., 2012;
Chapman, 2013; Girard and Chalabi, 2013; Girard et al., 2013,
2020; Brocherie et al., 2018). As discussed earlier, exercise can
generate a local hypoxic stress in the skeletal muscle tissue. It is

therefore appealing to consider how the combination of ambient
hypoxia and exercise training would affect muscle capillarization.

Several rodent and human studies suggest that skeletal muscle
capillarization might improve to a larger extent when exercise
training is performed under ambient hypoxia compared to sea
level conditions (Terrados et al., 1988; Bigard et al., 1991;
van Ekeren et al., 1992; Desplanches et al., 1993, 1996; Olfert
et al., 2001; Vogt et al., 2001). To assess the impact of ambient
hypoxia on the angiogenic effect of training, some authors
trained their animals or subjects at the same relative intensity,
for example at a similar percentage of VO2 max determined
under hypoxia and normoxia, thus expecting similar endurance
times. Conversely, some authors utilized training protocols with
the same absolute intensity, which then can represent a higher
stimulus in hypoxic conditions.

Bigard et al. (1991) observed a greater increase in C/F ratio
in the plantaris, extensor digitorum longus and soleus muscles
of rats housed and trained in a hypobaric chamber at an
altitude equivalent to 4,000 m compared to animals trained
under normoxic conditions (Bigard et al., 1991). Yet, in the same
study C/F values were not different when comparing sedentary
normoxic and hypoxic animals, suggesting that hypoxia alone
is insufficient to promote muscle angiogenesis. Similarly, Olfert
et al. (2001) trained rats for 8 weeks under ambient hypoxia (FiO2
0.12) or normoxia. The C/F ratio was only increased in muscles
from animals trained under hypoxia (Olfert et al., 2001).

Interestingly, Vogt et al. (2001) have also evaluated the effect
of exercise intensity during hypoxia training in human subjects.
They reported a significant increase in capillarization only in
the vastus lateralis muscles of subjects trained at high intensity
for 12 weeks under hypoxia (simulated altitude of 3,850 m).
Training under normoxia, even at high intensity, did not improve
significantly muscle capillarization.

Overall, these laboratory and well-controlled studies indicate
a greater angio-adaptive response of the skeletal muscle tissue
when exercise training is performed in ambient hypoxia. This
reflects into a higher level of muscle capillarization. Yet, it
remains unknow whether muscle angio-adaptation occurs faster.

Field studies in humans for prolonged sojourn to altitude
focusing on exercise and muscle angiogenic activity have
provided mixed results. Mizuno et al. (1990) reported a
significant increase in the triceps C/F of competitive cross-
country skiers after 2 weeks of training at an altitude of 2,700 m
(Mizuno et al., 1990). However, because of the absence of proper
control groups (sedentary and trained subjects in normoxia
and hypoxia) it cannot really be discerned that these results
were simply a response to exercise training. No change in C/F
ratio was described in the rectus femoris or biceps brachii
of climbers regularly engaged into intense climbing, walking,
carrying activities at altitudes above 5,250 m (Mizuno et al., 2008;
Levett et al., 2012).

Finally, the use of exercise training in hypoxia for improving
certain health outcomes (biomechanical limitations, obesity,
hypertension, aging) is also gaining a high interest (Burtscher
et al., 2004; Wiesner et al., 2010; Verges et al., 2015; Millet
et al., 2016; Kong et al., 2017; Pramsohler et al., 2017; Camacho-
Cardenosa et al., 2018, 2019, 2020; Ramos-Campo et al., 2019;
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Jung et al., 2021). In regard to skeletal muscle blood flow,
capillarization and angio-adaptation, we and others have shown
in rodent models and human patients that exercise interventions
could represent a powerful therapeutic avenue to prevent, delay
or improve alterations in chronic conditions such as peripheral
limb ischemia, diabetes, obesity, chronic obstructive pulmonary
diseases (Armstrong et al., 1986; Hudlicka et al., 1994; Gardner
and Poehlman, 1995; McDermott et al., 2009; Roudier et al.,
2009; Gouzi et al., 2013; Amouzou et al., 2016; Aiken et al.,
2019). Yet, to the best of our knowledge the impact of hypoxia
training as a therapeutic or preventive approach specifically for
conditions affecting muscle capillarization and angio-adaptive
activity remains to be investigated.

MUSCLE CAPILLARIZATION, EXERCISE
TRAINING, AND AMBIENT HYPOXIA:
KEY POINTS

• Prolonged exposure to hypoxia can improve skeletal
muscle capillary density likely because of myofiber
atrophy. Yet the implication of a true angiogenic response
cannot be ruled out.
• Combining training and ambient hypoxia can result in

a higher muscle angiogenic response than training alone.
Yet whether it could also result in an earlier response
remains unknown.
• The existing literature obviously shows non-negligible

discrepancy imputable sometimes to a lack of proper
controls in early studies and to uncontrolled confounding
factors such as activity level and training status, cold
exposure, restriction in calory intake, animal growth.

SKELETAL MUSCLE CAPILLARIZATION
IN HIGH-ALTITUDE NATIVE
POPULATIONS

As mentioned previously, a classical idea is that prolonged
exposure of lowlanders to high altitude could result in increased
skeletal muscle CD often attributed to myofiber atrophy. Could
this represent a phenotypic transition towards highlanders’
muscles (Gilbert-Kawai et al., 2014)?

Interestingly, CD measured in highlanders’ muscles do not
seem to differ much from lowlanders. Kayser et al. (1991) have
compared the CD from Tibetan Sherpas’ muscles with average
CD values from sedentary lowlanders or active climbers before
and after a high altitude expedition (Kayser et al., 1991). The
average CD was significantly higher (+20%) in Sherpas’ muscles
than in sedentary lowlanders’ muscles. However, the training
status of the subjects was not taken into consideration. In fact,
there was no difference between Sherpas and active climbers
before expedition, and a trend for a lower CD (-13%) was
even observed in Sherpas’ muscles when compared with post-
expedition lowlander climbers’ muscles (Kayser et al., 1991). It
is also important to note that the CD values measured in Sherpas’
muscles in this study (Kayser et al., 1991) were compared with

CD obtained from different studies (Hoppeler et al., 1990a,b; Oelz
et al., 1986). In another study, Kayser et al. (1996) have compared
muscles from second-generation Tibetans living at low altitude
with Nepalese controls: No difference was observed for muscle
CD despite smaller fibers in Tibetans (Kayser et al., 1996).

In an interesting study, Lundby (2004) have compared muscle
CD from Aymara subjects, who live permanently around 3,800-
4,100 m altitude in Bolivia, with CD values from lowlanders’
muscles before and an 8-weeks sojourn at 4,100 m (Lundby,
2004). Aymara muscle CD was 12% (trend) and 15% (significant)
lower than lowlanders’ CD, respectively, measured before and
after the altitude sojourn. This apparent lower CD is intriguing
given that high-altitude natives had 25-30% smaller myofibers.
The C/F ratio was in fact significantly 40% lower in Aymara’s
muscles compared to lowlanders.

Altogether, these results suggest that skeletal muscles from
high-altitude residents, although presenting smaller fibers, do not
have a higher CD than lowlanders’ muscles. The observation of a
much lower C/F ratio in high-altitude natives reminds the few
studies reporting a tendency for a decreased C/F in lowlanders
following a prolonged exposure to hypoxia (Green et al., 1989;
Hoppeler et al., 1990a,b; MacDougall et al., 1991; Lundby, 2004).
It is then tempting to conclude this section by questioning
whether a long-term angio-adaptation of the skeletal muscle
to hypoxia could in fact result in some capillary regression.
Angio-adaptation ensures an optimal match between the muscle
capillarization and the metabolic needs of myofibers. If prolonged
hypoxia results in an increased CD and smaller myofibers with
decreased mitochondria volume density (Horscroft and Murray,
2014; Favier et al., 2015; Murray and Horscroft, 2016; Horscroft
et al., 2017), some existing capillaries might at some point
become unnecessary.

MOLECULAR ASPECT OF SKELETAL
MUSCLE ANGIO-ADAPTIVE
RESPONSES TO HYPOXIA

The skeletal muscle capillary network possesses a remarkable
plasticity and whether capillaries regress, stabilize or grow in
response to a stimulus is largely determined by an intricate
balance of pro- and anti-angiogenic molecules (Hoppeler, 1999;
Breen et al., 2008; Olfert and Birot, 2011; Egginton and Birot,
2014; Olfert et al., 2015). Among the plethora of angio-adaptive
molecules described in the literature, the use of transgenic
animal models identified two of them as key regulators of
skeletal muscle angio-adaptation: The pro-angiogenic Vascular
Endothelial Growth Factor-A (VEGF-A) (Tang et al., 2004; Olfert
et al., 2009, 2010; Baum et al., 2017); and the anti-angiogenic
thrombospondin-1 (THBS-1) (Malek and Olfert, 2009; Slopack
et al., 2014). Different methodological approaches have been
used, some targeting VEGF-A in the whole muscle tissue, some
targeting it specifically in myofibers (Tang et al., 2004; Breen
et al., 2008; Malek and Olfert, 2009; Olfert et al., 2010; Baum
et al., 2017). VEGF-A deletion results in: (1) decreased basal
level of muscle capillarization, (2) blunted exercise-induced
angiogenic response, (3) severely reduced exercise capacity.
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Targeting the anti-angiogenic THBS-1 has somehow opposite
consequences: Better vascularized muscles and greater exercise
capacity (Breen et al., 2008; Malek and Olfert, 2009; Olfert et al.,
2009, 2015). In the context of the present review on skeletal
muscle angio-adaptive responses to hypoxia, it is therefore
important to recapitulate the response of VEGF-A and THBS-1
to exercise and ambient altitude (Figure 3).

Most of studies in exercise and altitude physiology have
essentially focused on measuring VEGF-A mRNA and protein
expression levels. However, how hypoxia can influence VEGF-
A expression and activity is in fact very complex (Semenza,
2001; Breen et al., 2008). The VEGFA gene can be considered

as a hypoxia-sensitive gene since it possesses several Hypoxia
Responsive Elements (HRE) recognized by the transcription
factor HIF-1. Under hypoxic conditions, the stabilization of
HIF-1α and HIF-1 enhanced transcriptional activity lead to
increased VEGF-A mRNA levels (Hoppeler et al., 2003). VEGF-
A mRNA can then be stabilized via interaction between its 3’
untranslated region and the Human antigen R (HuR protein)
(Amadio et al., 2008; Morfoisse et al., 2015; Osera et al., 2015).
Interestingly, Tang et al. (2002) have described such interaction
between HuR and VEGF-A mRNA in rat ischemic gastrocnemius
muscles (Tang et al., 2002). VEGF-A mRNA translation into
proteins can also be affected by hypoxia. Indeed, whereas the

FIGURE 3 | Skeletal muscle angio-adaptation is a complex and dynamic process in which much earlier molecular and cellular events lead to eventual changes
observed at the tissular level through modifications in the skeletal muscle’s capillarization. In response to a given stimulus, whether it be the growth, regression, or
stabilization of skeletal muscle capillaries, the process is dictated by an intricate balance of pro- and anti-angiogenic factors. Among the plethora of angio-adaptive
factors two have been identified as central in the regulation of skeletal muscle capillarization: the pro-angiogenic VEGF-A; and the anti-angiogenic THBS1. Majority of
current literature concerning hypoxic muscle angio-adaptation has focused on the regulation of VEGF-A and as such there are current gaps in knowledge
concerning the hypoxic regulation of THBS1. Additionally, there is a lack of consensus regarding the impact of ambient hypoxia eliciting changes at the tissular level
concerning CD and C/F.
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classical mechanism of mRNA cap-dependent translation can
be inhibited under hypoxia, some proteins such as VEGF-A
can still be translated by using an alternative translational
mechanism where cap-independent translation is initiated via
internal ribosome entry sites (IRESs) (Huez et al., 1998; Miller
et al., 1998; Stein et al., 1998). The endoplasmic reticulum
chaperone Oxygen Regulated Protein-150 (ORP-150) can finally
facilitate VEGF-A protein secretion, and an increase in ORP-150
has been reported in rat plantaris muscles following an acute bout
of running exercise (Ozawa et al., 2001a,b; Birot et al., 2003).
Finally, hypoxia can also stimulate the expression of VEGF-A
receptors (Gerber et al., 1997).

A stimulatory effect of exercise on VEGF-A expression has
been well described in human and rodent studies. Both mRNA
and protein levels are transiently increased after one bout of
exercise (Breen et al., 1996, 2008; Gustafsson and Kraus, 2001;
Hoppeler and Vogt, 2001; Gustafsson et al., 2002, 2005; Birot
et al., 2003; Ameln et al., 2005; Croley et al., 2005; Gavin
et al., 2006, 2007; Roudier et al., 2012; Aiken et al., 2016).
A study from Breen et al. (1996) has shown that increases in
mRNA in rat skeletal muscle were higher and lasted longer when
exercise was performed at a higher intensity (Breen et al., 1996).
An attenuation of VEGF-A mRNA responsiveness to exercise
stimulus has be observed after short-term (few days) training
(Gavin and Wagner, 2001; Olfert et al., 2001; Vogt et al., 2001;
Kraus et al., 2004).

The effect of acute or chronic exposure to ambient hypoxia
itself on VEGF-A expression are less conclusive. Most of the
studies that have assessed VEGF-A expression in the muscle
tissue have measured mRNA levels only, whereas the protein
was essentially quantified in the plasma or serum by ELISA
(Asano et al., 1998; Gunga et al., 1999, 2003; Schobersberger
et al., 2000; Hanaoka et al., 2003; Oltmanns et al., 2006; Bahtiyar
et al., 2007; Dorward et al., 2007; Ding et al., 2012; Morici et al.,
2013; Brinkmann et al., 2017; Boos et al., 2018; Kasai et al., 2019;
Kasperska and Zembron-Lacny, 2020). Results from the literature
remain largely inconsistent, reporting some increase in mRNA or
protein (Breen et al., 1996; Gavin et al., 2006), some attenuation
(Olfert et al., 2001; Oltmanns et al., 2006; Morici et al., 2013; Boos
et al., 2018), or no change (Gunga et al., 2003; Lundby, 2004;
Bahtiyar et al., 2007). Additionally, circulating VEGF-A levels
measured by ELISA do not necessarily reflect skeletal muscle
VEGF-A production.

Finally, some studies have analyzed VEGF-A responsiveness
when combining exercise and ambient hypoxia (Breen et al.,
1996; Asano et al., 1998; Olfert et al., 2001; Vogt et al., 2001;
Gunga et al., 2003; Zoll et al., 2006; Nagahisa et al., 2016;
Brocherie et al., 2018; Kasperska and Zembron-Lacny, 2020).
Breen et al. (1996) have shown that VEGF-A mRNA expression
in rat skeletal muscle was higher and last longer when exercise
was performed in ambient hypoxia compared to a normoxic
environment (Breen et al., 1996). Brocherie et al. (2018) have
compared the effect of different modalities of exercise training
combined with hypoxia exposure (Brocherie et al., 2018). VEGF-
A mRNA levels were only increased in human skeletal muscle
in their model of Live High-Train Low and High (LHTLH)
that combined passive exposure to ambient hypoxia and exercise

training session at maximal intensity under hypoxia, and no
change in VEGF-A was observed in the other two models (Live
High-Train Low, LHTL, and Live Low-Train Low, LLTL).This
study is in line with previous results reported by Vogt et al.
(2001) who analyzed VEGF-A mRNA expression in response
to a training program realized either at high or low intensity
and either in normoxia or hypoxia (6 weeks at an equivalent of
3,850 m) (Vogt et al., 2001). Whereas training at high intensity
in normoxia and training at low intensity in hypoxia only led
to a trend for an increase in VEGF-A mRNA (respectively, +13
and +17%), only the combination of training at high intensity
in hypoxia resulted in significant increase (+72%). These studies
support the idea that combining exercise and ambient hypoxia
could exacerbate the angio-adaptive response of the skeletal
muscle tissue. If the duration, nature and intensity of the training
program are key parameters, all these studies also point out the
importance of the duration and intensity of hypoxia exposure.
This has recently led to the notion of hypoxic dose (Lundby
et al., 2009, 2012; D’Hulst and Deldicque, 2017; Millet et al., 2017;
Girard et al., 2020).

Thrombospondin-1 has been identified as a potent anti-
angiogenic factor in the skeletal muscle tissue (Malek and
Olfert, 2009; Hellsten and Hoier, 2014). Similar to VEGF-A,
one bout of exercise stimulates the expression of THBS1mRNA
and protein in skeletal muscle (Olfert et al., 2006; Malek and
Olfert, 2009; Slopack et al., 2014) whereas short-term training is
accompanied by a progressive loss of responsiveness of THBS1
to exercise stimulus (Olfert et al., 2006; Slopack et al., 2014;
Hoier et al., 2020; Figure 3). This responsiveness, however,
appears to be restored with long-term training (Olfert et al.,
2006; Hoier et al., 2012; Slopack et al., 2014). The decreased
responsiveness of THBS1 during training could in fact contribute
to shifting the skeletal muscle angio-adaptive balance towards
its pro-angiogenic side, reflected at the tissue level by a pro-
angiogenic microenvironment prone to capillary formation. This
has led to the hypothesis that exercise-induced angiogenesis
might in fact be more controlled by a decrease in anti-angiogenic
factors rather than an increase in pro-angiogenic ones (Olfert
and Birot, 2011; Hellsten and Hoier, 2014; Olfert et al., 2015;
Olfert, 2016). This could apply to capillary regression, as during
detraining or muscle hypokinesia, with an increase expression
of anti-angiogenic factors shifting the angio-adaptive balance the
opposite way (Roudier et al., 2009, 2010; Kishlyansky et al., 2010;
Olfert and Birot, 2011; Olenich et al., 2014).

Long-term training does not seem to alter the basal expression
level of THBS1 in rodent and human healthy skeletal muscles
(Olfert et al., 2006; Hoier et al., 2012; Gliemann et al., 2015)
although Yoshioka et al. (2003) have reported higher THBS1 gene
expression in skeletal muscles from endurance athletes compared
to sedentary subjects (Yoshioka et al., 2003). Interestingly, Gouzi
et al. (2013) have shown that muscle THBS1 protein levels could
be reduced in response to prolonged training in patients with
chronic obstructive pulmonary disease (Gouzi et al., 2013). This
reinforces the idea of using exercise training as a therapeutic
avenue for clinical conditions with skeletal muscle microvascular
alterations. THBS1 expression was indeed found to be increased
in rodent skeletal muscles in the context of diabetes, pre-diabetes
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and hindlimb ischemia (Kivelä et al., 2006, 2008; Roudier et al.,
2013; Dunford et al., 2017; Aiken et al., 2019).

The effect of hypoxia alone on THBS1 expression has
provided mixed results essentially from in vitro experiments.
Phelan et al. (1998) have described an increased expression
of THBS1 mRNA and protein in endothelial cells exposed to
severe hypoxia (1%O2) (Phelan et al., 1998). Conversely, Yadav
et al. (2014) have observed a decrease in THBS1 expression in
differentiated murine C2C12 myotubes in response to hypoxia
(Yadav et al., 2014). Finally, THBS1 expression was found to be
increased both in rodent and human ischemic skeletal muscles
(Roudier et al., 2013).

To our knowledge, there is very limited data regarding THBS1
expression in skeletal muscle when combining exercise stimulus
and ambient hypoxia. Olfert et al. (2006) have analyzed THBS1
mRNA expression in skeletal muscles from rats kept sedentary
or enrolled into a 8-weeks endurance running program (Olfert
et al., 2006). At the end of the training program, animals were
performing one bout of intense running exercise. Data suggests
that endurance training did not alter the basal expression level
of THBS1. However, chronic hypoxia exposure resulted in lower
basal expression level (–44%) as well as THBS-1 expression in
response to one bout of exercise (–48%).

As a conclusion to this section, it is important to keep in
mind that VEGF-A and THBS1 are only two members of the
large family of angio-adaptive molecules susceptible to influence
the skeletal muscle angio-adaptive responses to exercise and
ambient hypoxia. The expression levels of some other angio-
adaptive molecules have been measured in skeletal muscle tissue
in the context of exposure to ambient hypoxia, such as basic
Fibroblast Growth Factor (bFGF), Transforming Growth Factor-
β (TGF-β), VEGF receptors, leptin (Breen et al., 1996; Olfert et al.,
2001; Patitucci et al., 2009; Morici et al., 2013). However, these
measurements remain very anectodical, and more research in
this area is needed.

Here, we have also essentially reviewed VEGF-A and THBS1
expression levels, which do not reflect the functionality of
these molecules, their interaction between each other’s and
their receptors.

As illustrated in Figure 3, the angio-adaptive response
to a given stimulus is a complex and dynamic process that
involves molecular, cellular, and tissular responses. There
is for example a lack of knowledge regarding cross-talks
between muscle cells. For instance, how angio-adaptive
signals originating from a contractile myofiber will stimulate
neighboring endothelial cells to proliferate and migrate to form
new capillaries.

Ideally, evaluating the muscle angio-adaptive response to
hypoxia should be integrative. For example, an absence of
significant change in capillarization does not rule out any angio-
adaptive responses at a cellular or molecular level. Finally, the
interpretation of results from the literature is very complex
with a certain discrepancy between studies. Such divergence
can obviously have several origins: Animal versus human
studies; healthy versus pathological conditions; training status;
exercise protocols; hypoxia level and duration; confounding
environmental stressors (cold, air pollution); time of sample

collection; methodology (northern blotting, qPCR, western
blotting, ELISA, histochemistry).

THE SKELETAL MUSCLE AS AN
ENDOCRINE ORGAN AND THE ROLE OF
ANGIO-ADAPTIVE MYOKINES

As previously mentioned, many studies studying angiogenic
responses to hypoxia and exercise have quantified circulating
VEGF-A protein levels by ELISA. Several studies have aimed to
link changes in circulating VEGF-A levels with the susceptibility
to develop acute or chronic mountain sickness (Tissot van
Patot et al., 2005; Dorward et al., 2007; Nilles et al., 2009;
Schommer et al., 2011; Espinoza et al., 2014). Regarding THBS1,
this anti-angiogenic molecule seems to be involved in the
pathophysiology of hypoxia-induced pulmonary hypertension
and right ventricular hypertrophy (Ochoa et al., 2010; Bauer et al.,
2012; Rogers et al., 2017). Kaiser et al. (2016) have reported
elevated serum THBS1 levels and strong correlations of serum
THBS1 to mean pulmonary artery pressure and pulmonary
vascular resistance in patients suffering from pulmonary
hypertension (Kaiser et al., 2016).

Interestingly, many circulating angio-adaptive molecules,
either pro- or anti-angiogenic, could therefore represent
valuable biomarkers to evaluate for example the response of
athletes to a specific training program in hypoxia or the
impact of a therapeutic exercise intervention in a group of
patients. More research in identifying the patho-physiological
relevance of circulating angio-adaptive biomarkers would be
exciting and essential.

The quantification of circulating angio-adaptive molecules
also points out the role of the skeletal muscle as an
endocrine organ secreting myokines to act on distant organs
such as bones, brain, fat, and liver (Fabel et al., 2003;
Schnyder and Handschin, 2015; Delezie and Handschin, 2018;
Kim et al., 2019; Gomarasca et al., 2020). Fabel et al.
(2003) have demonstrated that peripherally produced VEGF-
A seems necessary for running-induced improvements in
hippocampal neurogenesis (Fabel et al., 2003). Rich et al. (2017)
confirmed that VEGF-A produced by skeletal myofibers plays
an important role in hippocampal neurogenesis (Rich et al.,
2017). Interestingly, it was also suggested that VEGF-A meditated
neurogenesis could provide a neuroprotective effect and could
be essential for attenuating decrements to cognitive function
experienced with ambient hypoxia during high altitude exposure
(Koester-Hegmann et al., 2019).

MOLECULAR ASPECT OF SKELETAL
MUSCLE ANGIO-ADAPTIVE
RESPONSES TO HYPOXIA: KEY POINTS

• Skeletal muscle angio-adaptation is a complex and dynamic
process combining molecular and cellular responses that
will ultimately alter muscle capillarization.

Frontiers in Physiology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 735557

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-735557 August 30, 2021 Time: 12:36 # 12

Lemieux and Birot Skeletal Muscle Angio-Adaptation to Hypoxia

FIGURE 4 | Characterization of the impact of hypobaric and normobaric hypoxia on skeletal muscle angio-adaptive responses. Original research studies cited in the
review and analyzing capillary density (CD), capillary-to-fiber ratio (C/F), and expression levels of angio-adaptive molecules in skeletal muscle tissue in response to
ambient hypoxia exposure were characterized based on the nature of their hypoxic environment: Hypobaric or normobaric. Studies reporting significant changes in
capillarization (CD or C/F), in molecular expression, or in both (“Overall”) are highlighted in color. Studies involving a physical activity component are identified by an
asterisk. The mouse and human silhouette symbols distinguish studies conducted in animal models or human subjects.
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FIGURE 5 | Gap of knowledge and future research directions for a better understanding of the molecular, cellular and tissular angio-adaptive responses of the
skeletal muscle tissue to hypoxia, particularly in the context of ambient hypoxia and exercise-induced local hypoxia. Refer to the different text sections for details.

• Several angio-adaptive molecules have been described in
the skeletal muscle tissue in the context of exercise-induced
angio-adaptation. Yet, their characterization in the context
of exposure to ambient hypoxia remains largely unknown.
• There is a current lack of consensus in the literature largely

due to confounding experimental variables regarding
the expression of muscle VEGF-A and circulating
VEGF-A in response to ambient hypoxia alone and to
training in hypoxia.
• Anti-angiogenic molecules, such as THBS1, could in

fact impact skeletal muscle capillarization to a greater
extent than VEGF-A. Their contribution in skeletal muscle
angio-adaptive responses to exercise and hypoxia is
however, understudied.
• The patho-physiological relevance of circulating

angio-adaptive molecules as biomarkers remains
poorly documented.
• The role of the skeletal muscle tissue as an endocrine

organ secreting angio-adaptive myokines to act on distant
organs in the context of exercise and hypoxia is an exciting
research avenue.

SKELETAL MUSCLE ANGIO-ADAPTIVE
RESPONSES TO HYPOXIA: DO
NORMOBARIC AND HYPOBARIC
CONDITIONS DIFFER?

The research studies discussed in our review were conducted
in three types of environments: Field experiments with real
altitude exposure versus hypoxic chambers simulating altitude.
Chambers where the barometric pressure and partial oxygen
pressure are decreased represent a hypobaric environment,
closer to the physics of real altitude, whereas normobaric

chambers generate a hypoxic environment by decreasing the
fraction of oxygen in the inspired air. Whether normobaric and
hypobaric hypoxia are equivalent and then interchangeable has
been an intense source of scientific debate, particularly with
regards to their impact on exercise performance and various
physiological parameters. Systematic reviews and “points-
counterpoints” discussions have however, not enable researchers
to reach any consensus (Girard et al., 2012; Millet et al.,
2012a,b, 2013; Mounier and Brugniaux, 2012a,b; Faiss et al.,
2013; Debevec and Millet, 2014; Richard et al., 2014; Coppel
et al., 2015; DiPasquale et al., 2016; Richalet, 2020a,b).
Discrepancy between studies can be attributable to many
cofounding factors: Different degrees of hypoxia, themselves
determined either by barometric pressure, inspired PO2,
oxygen fraction; seasonal and geographical differences in
barometric pressure; air temperature and humidity; additional
environmental stressors such as cold exposure; duration of
exposure; presence or not of exercise interventions, and if so
different exercise protocols; characteristics of subjects; animal
versus human studies.

To the best of our knowledge, whether normobaric and
hypobaric hypoxia could differently affect the angio-adaptive
responses of the skeletal muscle has never been investigated. We
have therefore revisited the original research studies cited in our
review that analyzed CD, C/F, or the expression levels of angio-
adaptive molecules (mRNA or protein levels, tissue or circulating
levels) in response to ambient hypoxia exposure. This represents
49 original studies (Figure 4). We separated them accordingly
to the hypoxic environment used: Field studies (hypobaric),
hypobaric chambers, combined field and hypobaric chambers
(both hypobaric environments), and normobaric chambers.
Studies involving physical activity (comparing active versus less
active subjects, including one bout of exercise or prolonged
training) were considered only if they possessed all required
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control groups enabling the evaluation of the impact of
ambient hypoxia per se. We also distinguished studies
conducted in animal models or human subjects. Finally,
we determined in each category the percentage of studies
reporting significant changes (increase or decrease) in
capillarization (CD and/or C/F) and expression of angio-
adaptive molecules.

Unfortunately, the information presented in Figure 4 does not
really help in answering the question on whether normobaric
and hypobaric hypoxia could differently affect the angio-adaptive
responses of the skeletal muscle. Indeed, when considering
only the studies reporting significant changes in capillarization,
a distinction could be made between those conducted in
normobaric chambers (70% presenting significant changes)
versus studies run in a hypobaric environment (33% for field
studies, 56% for hypobaric chambers, and 44% for combined
hypobaric environments). However, no such distinction could
be made when considering only the studies reporting significant
changes in angio-adaptive molecules (67% for field studies, 70%
for combined hypobaric environments, and 77% for studies
conducted in normobaric chambers). Finally, when looking at
“overall” changes (capillarization and angio-adaptive molecules),
it seems that a larger proportion of studies conducted in
hypoxic chambers, whether normobaric or hypobaric, report
significant changes (respectively, 74% and 67%) compared to
field studies (53%). As mentioned earlier, a possible explanation
could be that field studies often present cofounding factors.
Another interesting observation from Figure 4 is that these
conditionings in hypoxic chambers were mainly performed in
animal models whereas field studies were essentially involving
human subjects (respectively, 33% and 48% of human studies
involving hypobaric and normobaric chambers versus 88% for
field studies). Similar durations of exposure to hypoxia will
obviously not represent the same proportion of a lifespan
between rodents and humans.

Based on this analysis, we do not believe that any
strong consensus can be established regarding the impact
of hypobaric versus normobaric hypoxia on skeletal muscle
angio-adaptive responses.

CONCLUSION

Hypoxia, defined as a reduction of oxygen availability can occur
in the skeletal muscle tissue of an individual exposed to ambient
hypoxia as well as during physical exercise if the oxygen supply
to contracting myofibers cannot match their increased metabolic
needs. The superimposition of these two stressors, ambient
hypoxia exposure and exercise-induced local hypoxia, can lead
to an exacerbation of the hypoxic stress experienced by the
skeletal muscle. The capillary-to-myofiber interface serves as the
site for the exchange of oxygen, nutrients, metabolic heat, and
waste between the blood and myofibers. As such, the capillary
microvasculature is tightly related to the functional capacity of
the skeletal muscle. The capillary microvasculature is a highly
adaptive tissue with remarkably plasticity that can grow or
regress to various physiological, pathological, and environmental
stressors, a process named angio-adaptation. Skeletal muscle
angio-adaptation involves complex and dynamic molecular and
cellular responses. Given the relevance of skeletal muscle angio-
adaptation in response to hypoxia to mountaineers, athletes, and
clinical populations, this review aimed to delineate the existing
literature and identify current gaps in the knowledge of this field
of environmental and exercise physiology (Figure 5).
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