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Protein transcription, translation, and folding occur continuously in every living cell
and are essential for physiological functions. About one-third of all proteins of the
cellular proteome interacts with the endoplasmic reticulum (ER). The ER is a large,
dynamic cellular organelle that orchestrates synthesis, folding, and structural maturation
of proteins, regulation of lipid metabolism and additionally functions as a calcium store.
Recent evidence suggests that both acute and chronic hypercapnia (elevated levels of
CO2) impair ER function by different mechanisms, leading to adaptive and maladaptive
regulation of protein folding and maturation. In order to cope with ER stress, cells
activate unfolded protein response (UPR) pathways. Initially, during the adaptive phase
of ER stress, the UPR mainly functions to restore ER protein-folding homeostasis
by decreasing protein synthesis and translation and by activation of ER-associated
degradation (ERAD) and autophagy. However, if the initial UPR attempts for alleviating
ER stress fail, a maladaptive response is triggered. In this review, we discuss the distinct
mechanisms by which elevated CO2 levels affect these molecular pathways in the
setting of acute and chronic pulmonary diseases associated with hypercapnia.
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INTRODUCTION

Carbon dioxide (CO2) is a metabolic product of cellular oxidative respiration, and is primarily
eliminated from the blood and tissues by the lungs under physiological conditions. An elevation in
CO2 partial pressure in arterial blood over 45 mmHg is termed hypercapnia. Increased CO2 levels
are often observed in conditions where an impairment of the alveolar-capillary barrier function
or a decline in alveolar ventilation occurs (Vadasz et al., 2012b; Herold et al., 2013). Various acute
and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), chronic obstructive
pulmonary disease (COPD), asthma and cystic fibrosis are frequently accompanied by hypercapnia
(Vadasz et al., 2012b; Radermacher et al., 2017). Furthermore, elevated CO2 levels and intermittent
hypoxia combined with hypercapnia play a role in the pathogenesis of obstructive sleep apnea,
atherosclerosis and obesity (Kikuchi et al., 2017; Imamura et al., 2019; Xue et al., 2021).

It is increasingly evident, that various non-excitable cells, such as alveolar epithelial cells,
fibroblasts and immune cells are sensitive to the changes in CO2 concentrations independently
of intra- and extracellular pH, reactive oxygen species (ROS) and involvement of the carbonic
anhydrases (Putnam et al., 2004; Shigemura et al., 2017; Cummins et al., 2019). In contrast to
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earlier reports, which suggested that hypercapnia might be
tolerated or even beneficial in the setting of critically ill
patients (Fuller et al., 2017; Roberts et al., 2018); more recent
studies have shown that elevated CO2 levels are associated
with higher complication rates, increased risk of exacerbations,
more severe disease states, worse outcomes and an increased
risk of mortality both for acute and chronic lung diseases
(Yang et al., 2015; Nin et al., 2017; Husain-Syed et al.,
2020; Shigemura et al., 2020). In addition, translational studies
established that high CO2 levels impair alveolar fluid clearance,
innate immunity and cellular host defense, decrease cytokine
production, downregulate phagocytosis and macrophage activity.
Hypercapnia also stimulates nitric oxide (NO) production,
therefore negatively impacting on pulmonary metabolism,
aggravates epithelial cell repair, alters cellular lipid metabolism,
decreases muscle anabolism, increases smooth muscle airway
contractility and muscle catabolism, thus contributing to disease
states and impaired recovery (Lang et al., 2000; Vadasz et al.,
2008; Gates et al., 2013; Jaitovich et al., 2015; Kikuchi et al.,
2017; Shigemura et al., 2018; Korponay et al., 2019). In addition,
recent studies suggest that elevated CO2 levels increase mortality
in animal models of acute lung injury secondary to viral and
bacterial insults (Gates et al., 2013; Casalino-Matsuda et al., 2020).

Protein transcription, translation, folding, and maturation
continuously occur in each living cell and are essential for normal
physiological function. In the cell, approximately one-third of
the proteome and most of the secretory and membrane proteins
are processed through the endoplasmic reticulum (ER) (Brodsky
and Skach, 2011). In addition, the ER regulates lipid metabolism
and serves as an intracellular calcium store (Hetz et al., 2015;
Schwarz and Blower, 2016). The ER coordinates numerous co-
and post-translational protein modifications, including N-linked
glycosylation, formation of disulfide-bonds, sequence cleavage,
chaperone-assisted protein folding, recognition and targeting
of the ER-localized proteins for degradation (Ellgaard and
Helenius, 2003; Araki and Nagata, 2011; Ellgaard et al., 2018).
Numerous ER-resident chaperons, such as calnexin, calreticulin
and binding immunoglobulin protein (BiP) orchestrate co-
translational folding/refolding of nascent proteins. In addition,
these chaperons play a central role in the removal of terminally
misfolded proteins via ER-associated degradation (ERAD) and
are key players of unfolded protein response (UPR) during ER
stress (Hebert and Molinari, 2007; Halperin et al., 2014). Up to
date, three main UPR pathways, named by ER-localized proteins
have been characterized: inositol-requiring enzyme 1 (IRE1),
protein kinase RNA-activated (PKR)-like ER kinase (PERK),
and activating transcription factor-6 (ATF6). An increase of
misfolded/unfolded proteins in the ER leads to dissociation of
BiP from ER stress sensors, autophosphorylation of the sensors
and subsequent activation of UPR (Wang and Kaufman, 2016;
Almanza et al., 2019).

Of note, ER stress plays a pivotal role in the pathomechanism
of various respiratory diseases, including but not limited to
COPD (and in particular cigarette smoke exposure), viral and
bacterial pneumonia, asthma, interstitial lung diseases and cystic
fibrosis (Korfei et al., 2008; Lawson et al., 2011; Kenche et al.,
2013; Kim et al., 2013; van ’t Wout et al., 2015; Lee et al., 2016;

Marciniak, 2017; Tang et al., 2017; Schmoldt et al., 2019), many
of which are accompanied by hypercapnia (Vadasz et al., 2012b;
Shigemura et al., 2020). Notably, these disease states also often
lead to hypoxia. Indeed, low oxygen levels have also been shown
to negatively impact ER homeostasis, thus inducing ER stress
(Chipurupalli et al., 2019; Bradley et al., 2021). Although the
effects of hypoxia on the ER lie beyond the scope of the current
manuscript, it is increasingly evident that hypoxia negatively
affects ER function in alveolar epithelial cells and macrophages in
the lung. These effects involve the downregulation of metabolic
processes and disruption of the ER chaperone activity, which
result in activation of key elements of the UPR, such as PERK,
eIF2a, and IRE1α (Burman et al., 2018; Delbrel et al., 2018, 2019;
Diaz-Bulnes et al., 2019; Bradley et al., 2021). Another cellular
organelle that is tightly related to the ER is the peroxisome
(Dimitrov et al., 2013). Of note, recent publications suggest
that hypercapnia affects peroxisome signaling by modulation of
the activity and expression of peroxisome proliferator-activated
receptors (Huang et al., 2016; Kikuchi et al., 2017). At the
molecular level, elevated CO2 has been shown to activate
kinases and proteins that are known to regulate ER function
and/or participate in UPR, such as c-Jun N-terminal kinase
(JNK), extracellular signal-regulated kinase (ERK1/2), AMP-
activated protein kinase (AMPK), B-cell lymphoma 2 (Bcl-2),
and caspase-7 (Vadasz et al., 2008, 2012a; Welch et al., 2010;
Casalino-Matsuda et al., 2015; Dada et al., 2015; Shigemura
et al., 2018). Furthermore, recent reports suggest that CO2 can
impact post-translational protein biochemistry by carbamate
formation and subsequent protein carbamylation (Meigh et al.,
2013; Linthwaite et al., 2018). In this review, we will focus on
the molecular mechanisms by which hypercapnia impairs protein
folding in the ER. Unfolding/misfolding of proteins in the ER
by elevated CO2 levels result in enhanced protein retention or
degradation, thereby impairing subsequent protein trafficking,
and thus overall cellular and tissue function.

HYPERCAPNIA AND ENDOPLASMIC
RETICULUM HOMEOSTASIS

It is well documented that protein maturation in the ER
requires a specific milieu, including high Ca2+ levels, sufficient
amounts of ATP, and an appropriate oxidizing environment
(Jager et al., 2012; Almanza et al., 2019). In particular, in the
past two decades, a number of studies revealed that disruption
of the ER folding environment leads to accumulation of
misfolded/unfolded proteins, induces ER stress and subsequent
activation of the UPR (Araki and Nagata, 2011; Wang and
Kaufman, 2016).

Elevated CO2 Levels, Cellular ATP and
Endoplasmic Reticulum Redox Balance
Protein translation and subsequent post-translational
modification of ER-resident proteins are among the highest
energy consuming cellular processes (Wieser and Krumschnabel,
2001). These ER processes, including folding, translocation,
quality control and UPR require energy in form of ATP.
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The source of ATP depends on the cellular metabolic state.
ATP is generated either by oxidative phosphorylation or by
glycolysis (Depaoli et al., 2019). When ATP is derived from active
mitochondrial respiration (oxidative phosphorylation), the ATP
molecules are possibly transferred directly into the ER through
mitochondria-associated ER membrane (MAM) sites (Depaoli
et al., 2019; Fan and Simmen, 2019). However, when glycolysis is
the major source of cellular energy, ATP enters the ER directly
from the cytosol (Depaoli et al., 2019). Of note, most of the
ER-folding chaperons of the HSP70 and HSP90 protein families
are ATP-dependent, and thus require energy for proper function
(Sala et al., 2017). A decline in the ER ATP levels has been shown
to impair disulfide bond formation, negatively impacts protein
glycosylation and provokes inappropriate calcium signaling
(Bravo et al., 2013).

Several studies have demonstrated that hypercapnia
aggravates cellular ATP production. For example, in a recent
publication it was shown that epithelial and mesenchymal
cells exposed to elevated CO2 levels exhibit mitochondrial
dysfunction and decreased ATP production (Vohwinkel
et al., 2011). The reduction in ATP levels is induced by
CO2-dependent upregulation of miR-183, which in turn
downregulates expression of isocitrate dehydrogenase 2 (IDH2),
a key enzyme involved in the tricarboxylic acid (TCA) cycle.
This inhibition of the TCA cycle impairs mitochondrial
and thus metabolic function and leads to downregulation of
cellular proliferation. Importantly, these deleterious effects of
hypercapnia can be rescued by application of α-ketoglutaric
acid (α-KG), an intermediate metabolite in the TCA cycle, or
by overexpression of IDH2, further highlighting the central
role of the impeded TCA cycle in the hypercapnia-induced
metabolic dysfunction (Vohwinkel et al., 2011). In line with
these findings, exposure of primary human airway epithelial
and lung endothelial cells to hypercapnia has been shown
to attenuate mitochondrial membrane potential, decrease
ATP production, and induce mitochondrial dysfunction, thus
decreasing reparative potential of the cell (Fergie et al., 2019).

Apart from ATP, protein folding and formation of disulfide
bonds require a specific oxidizing environment of the ER
(Araki and Nagata, 2011). The coordinated interaction between
glutathione disulfide, hydrogen sulfide, hydrogen peroxide and
NO maintains an optimal redox balance in the ER and mediates
sulfenylation, sulfhydration and nitrosylation of the folded
proteins (Banhegyi et al., 2012; Ellgaard et al., 2018). In addition,
oxidative modifications in the ER are reduced by ER-resident
oxidoreductases and protein disulfide isomerases, such as ER
oxidoreductin 1 (Ero1), protein disulfide-isomerase (PDI), and
fumarate reductase 2 (OSM1) (Tu et al., 2000; Araki and
Nagata, 2011; Kim et al., 2018). Thus, perturbations of the
ER redox balance [by e.g., dithiothreitol (DTT)] cause protein
misfolding, activate ER stress and initiate UPR pathways, leading
to cellular dysfunction or even cell death (Tatu et al., 1993;
Bergmann and Molinari, 2018). Recent evidence suggests that
elevated CO2 levels alter the oxidizing environment of the
ER. Recently, we were able to show that elevated CO2 levels
induce ER oxidation in hypercapnia-exposed alveolar epithelial
cells (Kryvenko et al., 2020). One of the well-characterized

types of oxidative protein modification is carbonylation of
protein targets. This biochemical reaction is characterized by
an irreversible non-enzymatic attachment of carbonyl groups to
proteins, which disrupts normal protein folding in the ER by
either modifying nascent proteins or by impairing the structure
of ER chaperons (England and Cotter, 2004; Dalle-Donne et al.,
2006). Interestingly, increased oxidation in the ER leads to
ER retention and carbonylation of the Na,K-ATPase β-subunit
(Kryvenko et al., 2020, 2021a), a protein that plays a central
role in alveolar epithelial junctional function and clearance of
alveolar edema, and function of which is impaired in the setting of
acute lung injury and hypercapnia (Figure 1; Vadasz et al., 2007,
2008; Kryvenko and Vadasz, 2021). The influence of elevated CO2
levels on oxidative processes was also reported in another recent
publication in which exposure of human bronchial epithelial cells
to hypercapnia led to upregulation of genes involved in cellular
responses to oxidative stress pathways (Casalino-Matsuda et al.,
2018). Whether hypercapnia affects ER-resident oxidoreductases
and protein disulfide isomerases (such as Ero1, PDI, and OSM1)
is currently unknown and needs further investigation. Moreover,
the ER, redox reactions and iron metabolism are tightly linked
together (Banhegyi et al., 2012; Andreini et al., 2018; Hedison and
Scrutton, 2019). Therefore, the role of the iron-proteome in CO2
sensing and hypercapnia-induced ER oxidation status changes
needs further attention.

Hypercapnia and Endoplasmic
Reticulum Calcium Homeostasis
The ER also represents a major calcium storage organelle, which
regulates intracellular Ca2+ concentrations and oscillations
(Krebs et al., 2015). Importantly, Ca2+ signaling is centrally
involved in several intracellular pathways regulating protein
synthesis, cell proliferation, metabolism and apoptosis (Bagur
and Hajnoczky, 2017). The protein maturation process in the ER
greatly relies on Ca2+-dependent chaperons, such as calnexin
and calreticulin, two key players in the protein folding cycle
(Araki and Nagata, 2011). Physiological Ca2+ concentrations
are much higher in the ER than in the cytoplasm, which is
achieved by sequestering of free Ca2+ and the coordinated action
of the tissue-specific ATP-dependent Ca2+ pumps (SERCA2A
and SERCA2B), ER membrane-localized inositol trisphosphate
(InsP3R), and ryanodine (RyR) receptors (Schwarz and Blower,
2016; Almanza et al., 2019). Under physiological conditions,
a sustained decrease of luminal ER Ca2+ levels upon Ca2+

release from the ER is prevented by store-operated calcium entry.
This process is driven by oligomerization of stromal interaction
molecule protein 1 and 2 (STIM1/STIM2) with the plasma-
membrane localized calcium release-activated calcium channel
protein 1 (ORAI1) and subsequent Ca2+ influx into the cell,
followed by a SERCA-driven influx into the ER (Schwarz and
Blower, 2016; Santulli et al., 2017). Thus, a depletion of the
ER Ca2+ pool or inactivation of SERCA is associated with ER
dysfunction and accumulation of unfolded/misfolded proteins
(Sano and Reed, 2013).

Previous studies have reported that hypercapnia promotes
elevation of intracellular Ca2+ levels in various cell types, thus

Frontiers in Physiology | www.frontiersin.org 3 November 2021 | Volume 12 | Article 735580

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-735580 November 15, 2021 Time: 13:59 # 4

Kryvenko and Vadász Hypercapnia and ER Dysfunction

FIGURE 1 | Effects of hypercapnia on mitochondrial and ER function driving lung injury. Increased CO2 levels cause mitochondrial dysfunction, reduce intracellular
ATP levels thus altering ER function and promoting misfolding of the Na,K-ATPase protein leading to decreased plasma membrane abundance of the transporter.
Hypercapnia-induced dysfunction of the mitochondria and ER may reduce cell reparative potential thus contributing to lung injury. IDH2, isocitrate dehydrogenase 2.
Created with BioRender.com.

causing different effects ranging from a decrease of the plasma
membrane abundance of specific ion transporters to increased
airway contractility (Vadasz et al., 2008; Cook et al., 2012;
Turner et al., 2016; Shigemura et al., 2018). Interestingly, both
short- and long-term hypercapnia modify intracellular Ca2+

levels, suggesting that several sources of the intracellular Ca2+

oscillations may exist. Previous reports have shown, that removal
of Ca2+ from the extracellular medium, treatment with L- and
T-type Ca2+ channel inhibitors or blocking SERCA activity
by thapsigargin are not sufficient to prevent the elevation of
intracellular Ca2+ concentrations upon hypercapnia, suggesting
calcium mobilization from other stores (Nishio et al., 2001;
Bouyer et al., 2003). In line with these findings, it was recently
shown in alveolar epithelial cells and murine precision cut
lung slices that the hypercapnia-induced increase in intracellular
Ca2+ can be prevented by inhibition of InsP3R, indicating that
elevated CO2 levels may enhance Ca2+ release from the ER
(Kryvenko et al., 2021b). These results are also consistent with
reports showing that ER-localized InsP3R receptors mediate
Ca2+ release upon hypercapnia (Cook et al., 2012; Turner
et al., 2016). Moreover, increased production of cAMP upon
hypercapnia (Lecuona et al., 2013) may additionally stimulate
protein kinase A and enhance subsequent release of calcium ions
from the ER through InsP3R (Schmidt et al., 2008; Hofer, 2012).

In a recent publication, a large-scale transcriptomic analysis
of lung, muscle and respiratory cells exposed to hypercapnia
revealed upregulation of canonical and non-canonical Wnt
signaling pathways, including Fzd9, Wnt7a, Wnt4, and Wnt8b
(Shigemura et al., 2019). The non-canonical Wnt/Ca2+ signaling
cascade is tightly connected to the ER and plays an important
role in the regulation of calcium release through InsP3R
receptors and is linked to activities of calmodulin kinases
activity and protein kinase C, which were previously found
to be activated upon hypercapnia (Komiya and Habas, 2008;
Vadasz et al., 2008). Interestingly, it has also been found
that the Na,K-ATPase, a prominent target of hypercapnia, is
involved in Ca2+ signaling as well by a direct interaction
between the catalytic α-subunit of the Na,K-ATPase and InsP3R,
thus modulating Ca2+ oscillations (Liu et al., 2008; Aperia
et al., 2020). Thus, increasing evidence suggests that the ER
is the primary source of increased intracellular Ca2+ upon
hypercapnia and that enhanced release of Ca2+ from the ER
may deplete the ER Ca2+ stores, which may impair the function
of calcium-dependent chaperones, leading to compromised
protein folding. These affects might be further aggravated by
a marked downregulation of ATP-dependent transporters upon
hypercapnia, including SERCA, thus impairing store-operated
calcium entry mechanisms (Figure 2).
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FIGURE 2 | Proposed model of hypercapnia-induced intracellular Ca2+disturbances. Elevated CO2 levels may increase intracellular calcium concentrations by
activation of plasma membrane-localized Ca2+ channels, by direct or indirect stimulation of ER-resident InsP3R and by modulating SERCA activity. ER, endoplasmic
reticulum; InsP3R, ER membrane-localized inositol trisphosphate receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase, cAMP, cyclic adenosine
monophosphate. Created with BioRender.com.

In addition, previous studies have reported that ER calcium
and redox status are interconnected. Activity of RyR and
SERCA2b are modified depending on the oxidative status
of these molecules (Araki and Nagata, 2011). On the other
hand, activation of InsP3R receptors and subsequent release
of Ca2+ leads to a hyperoxidizing ER environment and
apoptosis via CCAAT/enhancer-binding protein-homologous
protein (CHOP) (Li et al., 2009). Thus, it may well be that a
decrease in ATP production and increased ER protein oxidation
upon elevated CO2 levels also contribute to alterations in ER
Ca2+ homeostasis upon hypercapnia.

HYPERCAPNIA, ENDOPLASMIC
RETICULUM STRESS AND ADAPTIVE
VS. MALADAPTIVE UNFOLDED PROTEIN
RESPONSE

A consequence of protein misfolding/unfolding in the ER, is ER
stress and subsequent activation of IRE1α-, PERK-, and ATF6-
mediated UPR pathways. The UPR response may be adaptive or
maladaptive, depending on the markedness and duration of the
stimulus (Wang and Kaufman, 2016). The adaptive mechanisms
“aim” to restore the protein folding homeostasis in the ER

by downregulating protein synthesis, activating ERAD and
modulating function of specific ER chaperones. If the initial UPR
response does not allow coping with ER stress, the maladaptive
arm of UPR will be activated that may lead to cellular death,
mostly via apoptosis (Wang and Kaufman, 2016).

A numbers of studies have shown that physiological ER
stressors selectively activate UPR branches, thereby triggering
non-classical stress responses within the ER, which do not lead
to cellular death and have rather adaptive character (Raina
et al., 2014; Bergmann et al., 2018). In line with this notion,
we now know that exposure of alveolar epithelial cells to
hypercapnia transiently activates IRE1α and induces ERAD of the
ER-resident β-subunit of the Na,K-ATPase, thereby decreasing
plasma membrane abundance of the transporter (Kryvenko et al.,
2021b). Furthermore, enhanced protein degradation in the ER
by ERAD is associated with increased ubiquitination of the
target protein, which has been shown to occur upon hypercapnia
(Gwozdzinska et al., 2017). Of note, a recent study identified
the IRE1α interacting partner, TNF receptor-associated factor 2
(TRAF2), as a novel E3-ligase involved in the polyubiquitination
of the Na,K-ATPase β-subunit (Gabrielli et al., 2021). However,
whether TRAF2 is additionally required for ERAD of the Na,K-
ATPase will need to be addressed in future studies. Interestingly,
treatment of cells with CO2 levels of up to 120 mmHg for a
duration of 5 days is not associated with increased apoptosis
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FIGURE 3 | Schematic depiction of molecular mechanisms driving hypercapnia-induced ER dysfunction and subsequent adaptive and maladaptive cellular
responses. Elevated CO2 levels reduce cellular ATP production, impair the oxidizing environment and alter calcium levels in the ER. These alterations in ER
homeostasis cause ER stress and initiate adaptive and maladaptive cellular responses. ER, endoplasmic reticulum; IDH2, isocitrate dehydrogenase 2; InsP3R, ER
membrane-localized inositol trisphosphate receptor; JNK, c-Jun N-terminal kinase; ERK1, extracellular signal-regulated kinase; AMPK, AMP-activated protein
kinase; Bcl2, B-cell lymphoma 2 protein; Bcl-xL, B-cell lymphoma-extra large protein; HSP70, heat shock protein 70. Created with BioRender.com.

or cellular death in alveolar epithelial or mesenchymal cells
(Vohwinkel et al., 2011), suggesting that at least in these settings
of hypercapnia a rather adaptive type of UPR is activated.

It is well documented that elevated CO2 levels initiate specific
signaling cascades in cells, including activation of ERK1/2, JNK,
and AMPK-α1 that drive retrieval of the Na,K-ATPase and
epithelial sodium channel (ENaC) from the plasma membrane,
thereby causing alveolar epithelial barrier dysfunction and
altering alveolar fluid balance (Vadasz et al., 2008; Welch et al.,
2010; Gwozdzinska et al., 2017). Moreover, exposure of skeletal
muscles to increased CO2 concentrations leads to stimulation
of AMPK-α2 and is associated with a decrease in protein
synthesis and increased muscles catabolism (Jaitovich et al.,
2015; Ceco et al., 2017; Korponay et al., 2019). In general,
AMPK activation is a response to metabolic stress by sensing
AMP:ATP and ADP:ATP ratios, aiming to reestablish energy
balance by reducing anabolic processes that require ATP and
by promoting catabolic mechanisms that generate ATP (Garcia
and Shaw, 2017). In contrast, in the setting of short-term
hypercapnia, AMPK activation is independent of the metabolic
status of the cell and is rather secondary to intracellular Ca2+

signaling (Vadasz et al., 2008). Notably, knockdown of AMPK
in bronchial epithelial cells leads to a significant increase in

CHOP levels resulting in ER stress and apoptosis (Liu et al.,
2018). Moreover, AMPK activation downregulates BiP levels
induced by tunicamycin or thapsigargin and has been found
to regulate ER and mitochondrial morphology upon stress
conditions, thus preventing mitochondrial fragmentation and
apoptosis (Wikstrom et al., 2013; Kim et al., 2015).

Extracellular signal-regulated kinase, a member of the
mitogen-activated protein kinase (MAPK) family, has been
shown to play an essential role in UPR by interacting with
IRE1α and by promoting transcription of pro-survival anti-
apoptotic proteins, such as myeloid leukemia cell differentiation
protein-1 (Mcl-1), Bcl-2 and B-cell lymphoma-extra large protein
(Bcl-xL) (Darling and Cook, 2014). Furthermore, activation of
ERK1/2 has been shown to be cytoprotective upon ER stress,
by downregulating cellular apoptosis upon thapsigargin- and
tunicamycin-induced UPR (Arai et al., 2004; Hu et al., 2004).

In addition, several other mechanisms may contribute to the
adaptive or maladaptive signals upon hypercapnia. For example,
hypercapnia has been found to inhibit autophagy in human
macrophages by increasing expression of Bcl-2 and Bcl-xL,
thus blocking Beclin-1 apoptotic complex formation (Casalino-
Matsuda et al., 2015). Of note, Bcl-2 is involved in the regulation
of ER calcium homeostasis und upregulation of the molecule
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may play a protective role upon ER stress by lowering steady-
state levels of ER Ca2+ via InsP3R activation (Sano and Reed,
2013). However, the anti-apoptotic effects of Bcl-2 are inhibited
by JNK (Sano and Reed, 2013) that is markedly upregulated in the
setting of acute and chronic hypercapnia (Vadasz et al., 2012a;
Dada et al., 2015; Gwozdzinska et al., 2017). In fact, the role
of activated JNK, in contrast to AMPK and ERK1/2, is usually
associated with an enhanced pro-apoptotic ER stress response.
On the other hand, JNK is involved in the downstream cascade
of IRE1α activation, the UPR branch responsible for preventing
ER overload by ERAD (Maurel et al., 2014; Prischi et al., 2014;
Almanza et al., 2019). Recently, hypercapnia has been associated
with increased airway smooth muscle contractility in the setting
of asthma, which is mediated by activation of caspase-7, an
apoptosis-related cysteine peptidase (Shigemura et al., 2018).
Interestingly, caspase-7 has also been found to be involved in the
ER-stress mediated cell death upon thapsigargin treatment and
caspase-7 ablation was able to reprogram the UPR and reduced
JNK-induced apoptosis (Dahmer, 2005; Choudhury et al., 2013).

Thus, while activation of AMPK, ERK1/2, JNK, and caspase-7
drive clearly deleterious (maladaptive) signals leading to cellular
dysfunction upon hypercapnia, activation of these signaling
molecules may, at least in part, limit further injury by
reducing the elevated CO2-induced ER stress, as part of an
adaptive mechanism.

CONCLUSION

Protein maturation and folding in the ER require a specific
milieu, which depends on Ca2+, ATP and an oxidative

environment. Recent studies focusing on the pathophysiological
effects of hypercapnia established that elevated CO2 levels alter
the ER folding machinery. The molecular mechanisms driving
ER dysfunction upon high CO2 concentrations include reduced
cellular ATP levels, a Ca2+ disbalance in the ER, as well as
altered redox homeostasis of the organelle (Figure 3). These
events lead to ER stress, UPR, and ERAD of target proteins,
potentially resulting in tissue and organ malfunction. To what
extent these signals are adaptive or maladaptive depend on
the extent and duration of hypercapnia and require further
experimental assessment.
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