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Understanding links between thermal performance and environmental variation is 
necessary to predict organismal responses to climate change, and remains an ongoing 
challenge for ectotherms with complex life cycles. Distinct life stages can differ in thermal 
sensitivity, experience different environmental conditions as development unfolds, and, 
because stages are by nature interdependent, environmental effects can carry over from 
one stage to affect performance at others. Thermal performance may therefore respond 
to carryover effects of prior thermal environments, yet detailed insights into the nature, 
strength, and direction of those responses are still lacking. Here, in an aquatic ectotherm 
whose early planktonic stages (gametes, embryos, and larvae) govern adult abundances 
and dynamics, we explore the effects of prior thermal environments at fertilization and 
embryogenesis on thermal performance curves at the end of planktonic development. 
We factorially manipulate temperatures at fertilization and embryogenesis, then, for each 
combination of prior temperatures, measure thermal performance curves for survival of 
planktonic development (end of the larval stage) throughout the performance range. By 
combining generalized linear mixed modeling with parametric bootstrapping, we formally 
estimate and compare curve descriptors (thermal optima, limits, and breadth) among 
prior environments, and reveal carryover effects of temperature at embryogenesis, but 
not fertilization, on thermal optima at completion of development. Specifically, thermal 
optima shifted to track temperature during embryogenesis, while thermal limits and breadth 
remained unchanged. Our results argue that key aspects of thermal performance are 
shaped by prior thermal environment in early life, warranting further investigation of the 
possible mechanisms underpinning that response, and closer consideration of thermal 
carryover effects when predicting organismal responses to climate change.

Keywords: climate change, carryover effects, complex life cycles, developmental plasticity, fertilization, 
embryogenesis, larval development, thermal sensitivity

INTRODUCTION

For ectotherms, accounting for the vast majority of animals, population resilience to climate 
change rests on the capacity to maintain critical physiological functions that buffer performance, 
and ultimately fitness (survival and reproduction), against variation in environmental temperature 
(Deutsch et  al., 2008; Sinclair et  al., 2016). Changes in temperature need not be  detrimental 
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if they shift an organism’s performance closer to its thermal 
optimum, or shift the optimum itself (Angilletta et  al., 2010; 
Sørensen et  al., 2018). Within generations, such shifts can 
emerge due to phenotypic plasticity, with evidence suggesting 
that ectotherms can often remodel their physiology to compensate 
for chronic or recurring changes in temperature (Seebacher 
et  al., 2015; Sgrò et  al., 2016), or to directional selection 
screening differences in survival or reproduction at different 
temperatures (Donelson et  al., 2018). These mechanisms may 
often be  inseparable (indeed, effects of selection may often 
be  attributed to plasticity; Donelson et  al., 2018) and both 
can result in environmental effects carrying over from one 
life stage to affect fitness outcomes at others (Donelson et  al., 
2018; Moore and Martin, 2019). Consequently, there is 
considerable interest in how such carryover effects might impact 
population resilience to climate change (Dupont et  al., 2013; 
Seebacher et  al., 2015; Campbell et  al., 2020). Understanding 
their nature, direction, and strength, however, remains an 
ongoing challenge due to the complex life cycles of many 
ectotherms, and may benefit from new insights into thermal 
performance curves at understudied life stages that limit resilience 
(Sinclair et  al., 2016; Kingsolver and Buckley, 2020; 
Rebolledo et  al., 2020).

Temperature does not affect the same organism equally at 
all life stages (Angilletta, 2009). For ectotherms with complex 
life cycles, distinct developmental stages separated by days or 
even less can differ in thermal sensitivity due to multiple factors 
(e.g., evolved differences in thermal optima, along with rapid 
changes in complexity, size, or duration of exposure to thermal 
challenges), and thermal challenges can vary in intensity from 
one stage to the next (Kingsolver et  al., 2011; Freda et  al., 
2017; Ezeakacha and Yee, 2019; Rebolledo et  al., 2020). 
Nevertheless, most studies to date measure thermal performance 
and sensitivity at single life stages (Byrne et  al., 2020) and 
predominantly in adults (Truebano et  al., 2018; Pandori and 
Sorte, 2019). This is problematic in light of emerging evidence 
that reproductive stages and embryos tend to be more thermally 
sensitive and may better predict the vulnerability of ectotherms 
to climate warming (Dahlke et al., 2020; Rebolledo et al., 2020; 
Collin et al., 2021; Van Heerwaarden and Sgrò, 2021). Moreover, 
thermal performance at these critical stages is often incompletely 
characterized due to well-known challenges in gathering sufficient 
data, so that information about ontogenetic shifts in thermal 
limits and thermal optima, in particular, currently remains 
too limited to identify any general patterns (Kingsolver and 
Buckley, 2020).

Life stages are by nature interdependent, and there is growing 
evidence that prior thermal environments can have lasting 
effects on performance later in life (Arambourou et  al., 2017; 
Ezeakacha and Yee, 2019; Carter and Sheldon, 2020). Evidence 
also suggests that these carryover effects can be  more lasting 
and pervasive the earlier that they are induced in ontogeny, 
and especially when induced at embryogenesis (Watkins and 
Vraspir, 2006; Jonsson and Jonsson, 2014; Noble et  al., 2018). 
This outcome possibly relates to the particular thermal sensitivity 
of embryos (Sanger et  al., 2018; Rebolledo et  al., 2020; Collin 
et  al., 2021), and ample scope for thermal perturbation of cell 

division, differentiation, and regulatory pathways during this 
window of development to profoundly alter future form, function, 
and performance (Van Der Have, 2002; Hamdoun and Epel, 
2007; Begasse et  al., 2015). In general, however, the adaptive 
significance of carryover effects – at least those attributable 
to plasticity – remains contentious. Prior exposure to a given 
temperature is often assumed to optimize future performance 
at the same temperature (the so-called beneficial acclimation 
hypothesis), but this assumption has been subject to much 
debate (Huey et  al., 1999; Loeschcke and Hoffmann, 2002; 
Wilson and Franklin, 2002; Deere and Chown, 2006), and 
evidence remains equivocal (e.g., Sgrò et  al., 2016; Sørensen 
et  al., 2016; Brahim et  al., 2019; Van Heerwaarden and 
Kellermann, 2020). It might be  that carryover effects are more 
nuanced and alter other aspects of thermal performance, but 
again, few studies have explored effects of early thermal 
environments on performance curves (but see Seebacher and 
Grigaltchik, 2014) and, to our knowledge, effects induced at 
fertilization – the key life stage linking one generation to the 
next – have received little attention in this context 
(Walsh et  al., 2019; Chirgwin et  al., 2021).

Thermal performance curves explicitly relate changes in 
temperature to performance, whether measured in terms of 
physiological rates, growth or development rates, or fitness 
components such as survival, fecundity, or fertility (Sinclair 
et  al., 2016; Kingsolver and Buckley, 2020). Curve shape can 
vary with the measure considered, with curves for rates tending 
to be skewed and curves for survival tending toward symmetry 
(Van Der Have, 2002; Kingsolver et  al., 2011). Regardless, 
thermodynamic effects on physiology see performance rise with 
increasing temperature from its lower thermal limit (CTmin) to 
a peak (Pmax) at the thermal optimum (Topt), before loss of 
metabolic efficiency or disruption of proteins and membranes 
at higher temperatures see it fall again to its upper thermal 
limit (CTmax). Thermal breadth (Tbr, the range where performance 
is at least 50 or 80% of Pmax) is then derived from these curve 
descriptors. Performance curves are key tools for assessing 
and predicting the responses of ectotherms to ongoing climate 
change, since the impacts of higher temperatures hinge on 
where, on the curve, conditions lie at present. Ectotherms 
may thrive, for example, if presently living below their thermal 
optima, or risk extinction if already living at or near their 
upper thermal limits (Seebacher et al., 2015; Sinclair et al., 2016; 
Pinsky et  al., 2019).

Importantly, thermal performance curves are unlikely to 
be  fixed for any performance measure, and determining how 
curves may themselves shift in response to environmental cues 
is also vital for understanding population responses to climate 
change (Angilletta, 2009; Sinclair et al., 2016). Multiple hypotheses 
have sought to explain coordinated shifts in curve shape and 
position along the temperature axis based on tension between 
thermodynamic constraints and mechanisms of thermal 
adaptation (Huey and Kingsolver, 1989; Huey et al., 1999; Izem 
and Kingsolver, 2005; Deere and Chown, 2006; Angilletta et al., 
2010). Those hypotheses variously predict, for example, positive 
associations between peak performance and thermal optimum 
(“hotter-is-better” or “cooler-is-better”) or between thermal 
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optimum and thermal limits (“hotter-colder”), and negative 
associations between peak performance and thermal breadth 
(“generalist-specialist”). Other hypotheses (including those 
centering on the benefits of acclimation or plasticity above) 
address the complex and diverse ways in which prior thermal 
experience may modify curve shape and position. To date, 
however, most evidence comes from plants, whereas responses 
for animals remain understudied (Angilletta, 2009; but see 
Deere and Chown, 2006; Seebacher and Grigaltchik, 2014) 
and so idiosyncratic as to evade prediction and synthesis 
(Sinclair et  al., 2016). Hence, there is still a need to better 
understand how prior thermal experience affects thermal 
performance, particularly in early life for which knowledge is 
still scarce.

Here, we  estimate and compare how thermal environments 
at fertilization and embryogenesis shape thermal performance 
curves at completion of planktonic development in an aquatic 
ectotherm – the externally-fertilizing tubeworm, Galeolaria 
caespitosa. Like most aquatic ectotherms, Galeolaria has 
planktonic gametes, embryos, and larvae that are dispersed 
passively by currents, undergo the key processes of fertilization 
and development in direct contact with the external environment, 
and are major bottlenecks for population resilience to climate 
change (Byrne, 2011; Pinsky et  al., 2019; Walsh et  al., 2019; 
Dahlke et  al., 2020). These stages therefore present unique 
scope to assess how prior thermal experience alters performance 
at early life stages that govern adult abundances and dynamics. 
Using a split-cohort experimental design to standardize genetic 
backgrounds across stages, we factorially manipulate temperatures 
at fertilization (18 and 22°C) and embryogenesis (18, 20, and 
22°C), then, for each combination of prior temperatures, measure 
thermal performance curves for survival of planktonic 
development (end of the larval stage). By combining generalized 
linear mixed modelling with parametric bootstrapping, 
we  formally estimate and compare curve descriptors (thermal 
optima, limits, and breadth) among prior environments, and 
reveal new insights into the effects of those environments on 
thermal performance in early life.

MATERIALS AND METHODS

Study Species and Sampling
Galeolaria caespitosa (henceforth Galeolaria) is a calcareous 
tubeworm native to rocky shores of southeastern Australia, 
where it acts as an ecosystem engineer by forming dense 
colonies of tubes that provide habitat and reduce abiotic stress 
for associated communities (Wright and Gribben, 2017). Sessile 
adults breed year-round by releasing sperm and eggs into the 
sea for external fertilization (Chirgwin et  al., 2020). Embryos 
develop into functionally-independent larvae ~24 h later, then 
larvae develop for another ~2–3 weeks until rapid changes in 
size, morphology, and behavior signal onset of metamorphosis 
(readiness to settle and recruit into sessile populations; Marsden 
and Anderson, 1981). These early life stages are bottlenecks 
for persistence under thermal stress (Byrne, 2011; 
Walsh et  al., 2019), and exposure to stress at one stage can 

influence responses to the same level of stress later on (Chirgwin 
et  al., 2021). However, the sensitivity of thermal performance 
curves to prior thermal environments in early life is unknown 
for organisms with complex life cycles like Galeolaria.

We sampled adult Galeolaria between March and July 2019 
from a natural population at Brighton, Port Phillip Bay, Victoria, 
where water temperature ranges from 9°C in winter to 24°C 
in summer (Chirgwin et  al., 2018). The region is a marine 
hotspot that has warmed at more than four times the global 
average rate in recent decades, and temperature is expected 
to increase by ~2–5°C by the century’s end (Hobday and 
Lough, 2011; Hobday and Pecl, 2014). Adults were transferred 
in insulated aquaria to seawater tanks at Monash University, 
and acclimatized for 14 days at the mean annual temperature 
(17°C; Chirgwin et  al., 2017) to reduce any effects of 
environmental differences among collection dates before obtaining 
gametes for experiments (gametogenesis is continuous and 
gametes can ripen in less than this time).

Experimental Overview
To explore how prior thermal environment alters thermal 
performance in early life, we factorially manipulated temperatures 
at fertilization (18 and 22°C) and embryogenesis (18, 20, and 
22°C), then estimated thermal performance curves for survival 
of planktonic development (end of the larval stage). Survival 
to this point in the life cycle measures the proportion of initial 
offspring that ultimately become ready to settle and recruit 
to the adult population, and recruitment of new individuals 
is directly linked to population viability (Byrne, 2011). 
Temperatures at fertilization and embryogenesis were selected 
to bracket projected warming of 2–4°C by mid-to-late century 
(Hobday and Lough, 2011) and include the thermal optimum 
previously estimated for each stage (~21°C for fertilization 
and ~19°C for embryogenesis; Rebolledo et al., 2020). Thermal 
performance curves were based on 10 temperatures spanning 
the full performance range (10–28°C) and including the thermal 
optimum previously estimated for survival of larval development 
(~19°C; Rebolledo et  al., 2020).

Thermal environment was manipulated, and performance 
assayed, in replicate vials of filtered, pasteurized seawater (loosely 
capped to allow oxygen flow) suspended upright in water baths. 
Baths were maintained at designated temperatures (±0.1 C) 
using controlled immersion heaters (Grant Optima TX150) 
for those ≥13°C and a refrigerated circulator (Julabo FP50) 
for 10°C. Four replicates were completed for each combination 
of temperatures with the exception of 27°C, for which two 
replicates were completed. Within each replicate, 30 individuals 
were evaluated for successful completion of development, giving 
an experiment-wide total of nearly 7,000 individuals. Replicates 
were generated in an incomplete block design with temperatures 
assigned haphazardly to blocks and unreplicated within them. 
Each block consisted of gametes, embryos, and larvae from 
the same cohort of parents used in one replicate per combination 
of temperatures at fertilization and embryogenesis, assayed at 
2–5 temperatures at larval development (it was not logistically 
feasible to assay the full set of larval temperatures at once). 
Hence, all replicates per block were assayed concurrently using 
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different subsets of material from the same parents, under 
identical conditions aside from the manipulation of temperature 
(see details below). There were 10 blocks in total.

Gamete Collection and Manipulation of 
Temperature at Fertilization
Gametes were collected from 15 males and 15 females per 
block to minimize male-female compatibility effects at fertilization 
and development (Marshall and Evans, 2005; Chirgwin et  al., 
2017). To collect gametes, each mature adult was extracted 
from its tube and placed in a dish with ~1 ml of fresh filtered 
seawater at 17°C to spawn. Gametes were collected immediately 
after spawning, checked for quality based on appearance of 
eggs and motility of sperm, then pooled by sex and used 
within the hour before viability declines (Rebolledo et  al., 
2020). Pooled eggs were diluted to ~250 cells ml−1 before use. 
Pooled sperm were kept concentrated at ~107 cells ml−1 to 
minimize activity-related aging before use (Kupriyanova, 2006; 
Chirgwin et al., 2020). To initiate fertilizations, 45 ml of pooled 
eggs and 5 ml of pooled sperm were transferred separately to 
designated test temperatures (18 or 22°C), given 30 min to 
adjust, then combined at test temperatures. After 30  min of 
gamete contact (which maximizes fertilization success; Rebolledo 
et  al., 2020), samples were rinsed through 0.25 μm mesh with 
seawater to remove excess sperm, then re-suspended in 
fresh seawater.

Manipulation of Temperature at 
Embryogenesis
About 1–2 h after fertilization (depending on temperature at 
fertilization), samples of two-cell embryos were transferred to 
designated test temperatures (18, 20, or 22°C) so that temperatures 
at this stage were fully crossed with temperatures at fertilization. 
We  used two-cell embryos to ensure that all embryos were 
exposed to test temperatures at a similar point in development, 
and because this was the earliest point that they could 
be distinguished from unfertilized eggs under a stereomicroscope. 
Embryos were maintained in sufficient seawater to avoid oxygen-
limitation (Chirgwin et al., 2018) until completing development 
into actively swimming, feeding larvae ~24 h later.

Assays of Thermal Performance at 
Completion of Planktonic Development
Thirty larvae were randomly allocated to each of 10–20 vials 
per designated test temperature (10, 13, 16, 18, 20, 22, 24, 
26, 27, or 28°C, with fewer vials allocated to temperatures 
above 20°C), so that temperatures at this stage were fully 
crossed with temperatures at fertilization and embryogenesis. 
Larvae were maintained in sufficient seawater (10 ml) to avoid 
oxygen-limitation (Chirgwin et  al., 2018) and fed a mix of 
microalgae ad libitum (~1 × 104 cells ml−1 every 2nd day). After 
the 1st week (larvae do not complete development in this 
time; Rebolledo et al., 2020), one vial was sampled destructively 
each day to monitor completion of development (normal onset 
of metamorphosis into the sessile form; Marsden and 
Anderson, 1981). Monitoring continued for up to 3 weeks 

depending on temperature, and ended when a final vial was 
observed in which all larvae had either died or successfully 
completed development. Each of the ~7,000 individuals in 
those final vials was then scored as 1 (denoting survival at 
completion of planktonic development) or 0 (denoting mortality 
beforehand), capturing the proportion of offspring ready to 
recruit to the adult population. No data came from individuals 
observed during monitoring, which was done simply to reliably 
identify the end of development, irrespective of development time.

Modeling Thermal Performance Curves
We fitted thermal performance curves to binary survival data 
(with 1 denoting survival or 0 denoting mortality) using a binomial 
mixed-effects regression model fitted with Laplace approximation 
in the lme4 package (version 1.1-26; Bates et  al., 2015) for R 
4.0.5.1 Based on the shape of unconstrained smoothers fitted to 
raw data (Supplementary Figure S1), survival was modeled as 
a cubic function of temperature using orthogonal polynomials. 
Prior temperatures at fertilization and embryogenesis, and all 
possible interactions with linear, quadratic, and cubic trends 
relating survival to temperature, were modeled as additional fixed 
effects. Block and final vial sampled within blocks were modeled 
as random effects. Model diagnostics were checked using the 
DHARMa package (version 0.4.1; Hartig, 2021) and showed no 
violations of assumptions. The significance of fixed effects was 
tested using Wald X2 tests (Bolker et al., 2009) in the car package 
(version 3.0-10; Fox and Weisberg, 2019). For significant effects, 
estimates of linear, quadratic, and cubic trends in survival were 
extracted from the model, and contrasted between prior 
temperatures using Tukey-adjusted pairwise contrasts, in the 
emmeans package (version 1.6.0; Lenth et  al., 2021).

Estimates and CIs of Curve Descriptors
We extracted standard descriptors of thermal performance 
curves for temperatures at embryogenesis from the binomial 
mixed-effects regression model (curves did not differ among 
temperatures at fertilization, so descriptors were not extracted 
at this level). Thermal optimum (Topt) was calculated as the 
temperature of peak survival (Pmax). Thermal breadth (Tbr) was 
calculated as the temperature range at which survival was equal 
or above 50% of its peak (following Sinclair et  al., 2016). 
Breadth is also commonly calculated at equal or above 80% 
of peak performance, but we  chose 50% to capture more of 
the shapes of curves, and because results were qualitatively 
unchanged when 80% was used. Both calculations gave similar 
results to thermal tolerance (CTmax-CTmin), so only breadth is 
presented here. Critical thermal limits (CTmin and CTmax) were 
calculated as the lower and upper temperatures at which survival 
was 5% of its peak. This approach differs to classical measures 
based on acute limits, but was done because binary data may 
approach 0% via an asymptote and limit the biological meaning 
of CTmin and CTmax at complete mortality (Kellermann et  al., 
2019). Again, results were qualitatively unchanged when limits 
were calculated at complete mortality.

1 https://www.r-project.org/
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Last, to compare curve descriptors extracted from the regression 
model among prior temperatures at embryogenesis, we  used 
parametric bootstrapping, implemented in the boot package (version 
1.3-27; Canty and Ripley, 2021), to estimate the mean and 95% 
CI of each descriptor based on 1,000 bootstrap replicates of the 
regression model. We considered descriptors to differ significantly 
among prior temperatures if their 95% CIs did not overlap. 
Because this may be a conservative measure of differences between 
temperatures, we also calculated means and 95% CIs for pairwise 
comparisons of descriptors between temperatures (in this case, 
descriptors are significantly different if the 95% CI for their 
comparison excludes 0). Inferring significance this way gave similar 
results to inferring significance from overlapping intervals.

RESULTS

Modeling Thermal Performance Curves
The binomial mixed-effects regression model gave a good overall 
fit to the data, and detected a significant interaction between 
temperature at embryogenesis and thermal performance in 
terms of survival of planktonic development (Figure 1; Table 1). 
Linear, quadratic, and cubic trends in survival extracted from 
the model (Figures 2A–C), and compared between temperatures 
using Tukey-adjusted pairwise contrasts (Figures  2D–F), 
attributed this interaction to shifts in linear and cubic trends 
in survival. Linear trends (estimating the average slopes of 
curves in Figure  1) shifted from negative after embryogenesis 
at 18°C to positive after embryogenesis at 22°C (Figure  2A), 
and differed significantly between 18°C and both of the other 
temperatures (the contrast between 20 and 22°C was marginally 
non-significant at p = 0.12; Figure 2D). Cubic trends (estimating 
the degree to which slopes of curves in Figure  1 are steeper 
or shallower initially) shifted from positive after embryogenesis 

at 18°C to negative after embryogenesis at 22°C (Figure  2C), 
capturing differences in curvature to the left of peaks in 
Figure 1. Again, trends in survival differed significantly between 
18°C and both other temperatures (Figure  2F). Quadratic 
trends (estimating the concavity of curves in Figure  1) were 
consistently negative (Figure  2B) and did not differ between 
temperatures (Figure  2E). Temperature at embryogenesis did 
not affect curve height (peak survival), indicated by its 
non-significant main effect in Table  1.

Temperature at fertilization did not affect survival of planktonic 
development or thermal performance at this stage in any way 
(all effects involving it were non-significant; Table  1).

Estimates and CIs of Curve Descriptors
As suggested by linear and cubic trends relating survival to 
temperature above, estimates and CIs for curve descriptors 
(Figure 3) showed that thermal optima for survival of planktonic 
development shifted to track prior temperature at embryogenesis 
(Figure  3B). Specifically, the estimated thermal optimum after 
embryogenesis at 18°C increased by 1.4°C after embryogenesis 
at 20°C and by another 0.9°C after embryogenesis at 22°C, 
and CIs for estimates did not overlap between 18 and 22°C. 
Note that these results may be  somewhat conservative, given 
our cubic model tended to underestimate the thermal optimum 
at 22°C (Figure  1C; Supplementary Figure S1). Peak 
performance, thermal breadth, and thermal limits were unaffected 
by temperature at embryogenesis (Figures  3A,C–E).

DISCUSSION

Linking thermal performance to prior thermal experience is 
necessary to better understand and predict organismal responses 
to climate change. For ectotherms with complex life cycles this 

A B C

FIGURE 1 | Thermal performance curves showing the predicted probabilities of successfully surviving planktonic development after embryogenesis at (A) 18, 
(B) 20, and (C) 22°C. Points are observed success (mean and 95% CI) per temperature. Curves are predicted from a binomial mixed-effects regression of success 
on temperature, with shaded areas indicating 95% CIs of curve predictions. Temperature at embryogenesis was manipulated factorially with temperature at 
fertilization, but no effects of fertilization history on thermal performance were detected (see Table 1; Supplementary Figure S1).
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A

B

C

D

E

F

FIGURE 2 | Linear, quadratic, and cubic trends (A–C) of thermal performance curves in Figure 1 contrasted  (D–F) between prior temperatures at embryogenesis. 
Trends and contrasts differ significantly from 0 if their estimates have 95% credible intervals that exclude zero, marked by red dotted lines.

remains an ongoing challenge since life stages can differ in thermal 
sensitivity and experience different environmental conditions as 
development unfolds (Rebolledo et  al., 2020). Seeing that life 
stages are by nature interconnected, environmental effects can 
carry over from one stage to affect performance at others 
(Arambourou et  al., 2017; Lea et  al., 2017; Ezeakacha and Yee, 
2019). Thermal performance may therefore respond to carryover 
effects of prior thermal environments, yet detailed insights into 
the nature, strength, and direction of those responses are still 

lacking (Byrne et al., 2020). Here in Galeolaria, an aquatic ectotherm 
whose planktonic stages (gametes, embryos, and larvae) are 
considered most vulnerable to thermal stress (Pinsky et  al., 2019; 
Walsh et al., 2019; Dahlke et al., 2020), we factorially manipulated 
temperatures at fertilization and embryogenesis, then, for each 
combination of prior temperatures, measured and compared 
thermal performance curves for survival at the end of planktonic 
development. Curves were unresponsive to temperature at 
fertilization, but temperature at embryogenesis caused shifts in 

TABLE 1 | Effects of prior temperatures at fertilization and embryogenesis on thermal performance in terms of survival at completion of planktonic development 
(modeled as a cubic function of temperature in a binomial mixed-effects regression model).

Fixed effects X2 d.f. p

Temperature at fertilization 0.64 1 0.42
Temperature at embryogenesis 0.96 2 0.62
Temperature at fertilization × temperature at embryogenesis 1.30 2 0.53
Thermal performance at completion of planktonic development 460.35 3 <0.001
Temperature at fertilization × thermal performance 0.49 3 0.92
Temperature at embryogenesis × thermal performance 52.18 6 <0.001
Temperature at fertilization × temperature at embryogenesis × thermal performance 5.10 6 0.53

Significant effects are in bold. Linear, quadratic, and cubic trends in thermal performance are presented for prior temperatures at embryogenesis, and contrasted between 
temperatures, in Figure 2.
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larval thermal optima pointing to important carryover effects of 
thermal experience in this key window of development on survival.

Overall, the optimal temperature for completing 2–3 weeks of 
planktonic development tracked the temperature experienced in 
24 h of embryogenesis beforehand, and did so without compromising 
peak performance (the proportion of larvae surviving development). 
To the extent that temperatures at embryogenesis and larval 
development match in nature, this carryover effect on thermal 

performance may increase individual fitness under modest levels 
of warming within the ~2–5°C range projected for the end the 
century (Hobday and Lough, 2011; Hobday and Pecl, 2014). 
Consequently, population viability may also be  enhanced, since 
warming due to climate change is linked to changes in larval 
dispersal and recruitment that drive adult abundances and dynamics 
(Przeslawski et  al., 2008). Enhanced population viability could 
further impact community structure, since Galeolaria is an ecosystem 
engineer that provides habitat for associated species (Wright and 
Gribben, 2017). Nevertheless, the extent to which prior thermal 
environment can buffer thermal performance in early life, and 
therefore have broader ecological impacts, seems to have its 
limitations, given that a 4°C increase in temperature at embryogenesis 
shifted the subsequent thermal optimum by only 2.2°C, and left 
thermal limits and breadth unchanged. Previous studies on terrestrial 
ectotherms have likewise reported limited scope for upper thermal 
limits of adults to increase in response to developmental temperature 
(Terblanche and Chown, 2006; Mitchell et  al., 2011; Van 
Heerwaarden et al., 2016; Kellermann et al., 2017), although lower 
thermal limits tend to be  more flexible (Araújo et  al., 2013; 
Kingsolver and Buckley, 2020; Bennett et  al., 2021). What exactly 
constrains thermal limits, and whether other descriptors of thermal 
performance are less constrained by comparison, remains actively 
debated (Schulte, 2015). Our results for Galeolaria show that the 
thermal optimum for planktonic development, at least, can respond 
to temperature at embryogenesis independently of other descriptors 
of thermal performance, and despite apparent constraints on 
upper limits.

Embryogenesis is the most formative life stage (Noble et  al., 
2018) and it is emerging as a critical threshold of thermal sensitivity 
in ectotherms whose embryos have no alternative but to develop 
in direct contact with the external environment (Van Der Have, 
2002; Hamdoun and Epel, 2007; Begasse et  al., 2015; Dahlke 
et al., 2020; Rebolledo et al., 2020). Consequently, carryover effects 
of temperature at this stage can be  profound and persist across 
the life cycle (Watkins and Vraspir, 2006; Noble et  al., 2018). The 
cellular mechanisms underlying such effects are poorly understood, 
but much attention has focused on inducible stress-response proteins 
that are differentially expressed in early life (Sørensen et  al., 2003; 
Hammond and Hofmann, 2010; Burton and Metcalfe, 2014; 
Lockwood et  al., 2017). Parents can load such proteins into 
waterborne gametes before release (Hamdoun and Epel, 2007; 
Hammond and Hofmann, 2010), potentially buffering gametes 
against direct thermal stress (Rebolledo et al., 2020) and explaining 
the lack of carryover effects of temperature at fertilization on 
thermal performance here. Embryos seem to downregulate these 
proteins when cell division is most active and overexpression is 
detrimental (Sørensen et  al., 2003; Hamdoun and Epel, 2007), 
but shift to upregulation in response to thermal stress once cells 
start to differentiate and robust developmental pathways become 
vital (Leemans et  al., 2000; Brown et  al., 2004; Hamdoun and 
Epel, 2007; Hammond and Hofmann, 2010; Lockwood et  al., 
2017). Few studies, to our knowledge, have explicitly linked the 
induction of stress-response proteins at one life stage to carryover 
effects on thermal performance at others (Boon-Niermeyer et  al., 
1988; Hammond and Hofmann, 2010), but this is one mechanism 
by which prior exposure to stress may enhance performance under 

A

B

C

D

E

FIGURE 3 | Peak performance (A), thermal optimum (B), thermal breadth 
(C), and thermal limits (D,E) for successful survival of planktonic development 
after embryogenesis at 18, 20, or 22°C (thermal performance was unaffected 
by fertilization at different temperatures before embryogenesis). Darker points 
and intervals are mean estimates and 95% CIs for curve descriptors, based 
on 1,000 bootstrap replicates (lighter points). See bootstrapping details in 
Materials and Methods.
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future stress (Sørensen et  al., 2003) and a plausible reason why 
higher temperatures at embryogenesis might prime larvae to have 
higher thermal optima here.

Whatever the underlying mechanism, carryover effects in early 
life are widely attributed to developmental plasticity – that is, 
changes in gene expression triggered by environmental cues at 
development and often interpreted as epigenetic in origin (Beldade 
et  al., 2011; Beaman et  al., 2016; Bonamour et  al., 2019). 
Developmental plasticity can be adaptive if it enhances later fitness 
in the environment that triggered it, but can also be nonadaptive 
or maladaptive if, for example, cues are unpredictable, or organisms 
cannot sense and respond to cues fast enough for effective 
environmental matching (Beaman et  al., 2016; Bonamour et  al., 
2019). Despite ongoing interest in thermal developmental plasticity 
as a means for ectotherms to cope with climate change (Sgrò 
et  al., 2016; Donelson et  al., 2018; Noble et  al., 2018; Carter and 
Sheldon, 2020; Rodrigues and Beldade, 2020), evidence for adaptive 
plasticity in thermal performance triggered by temperature at 
embryogenesis rests primarily on physiological measures of 
performance (e.g., Scott and Johnston, 2012; Seebacher and 
Grigaltchik, 2014; Refsnider et  al., 2019), while measures with 
closer links to fitness (survival and reproduction) are less studied. 
Here in Galeolaria, enhanced survival at temperatures experienced 
at embryogenesis appears to be  broadly consistent with adaptive 
developmental plasticity, but also raises the prospect of viability 
selection as an alternative or added explanation.

In ectotherms with complex life cycles, episodes of selection 
in early life can potentially combine to shape genetic composition 
at later stages, allowing carryover effects to have fitness outcomes 
not purely driven by plasticity (Moore and Martin, 2019). This 
may be  especially likely for external fertilizers like Galeolaria, 
which produce numerous propagules with high intrinsic mortality 
at successive planktonic stages, in addition to direct exposure to 
environmental stressors (Foo and Byrne, 2016; Chirgwin et  al., 
2020; Crean and Immler, 2021). It is therefore possible that our 
manipulations of temperature at fertilization and embryogenesis 
screened each stage by differential survival at different temperatures, 
and that subsequent increases in thermal optima for survival reflect 
shifts in allele frequencies, not just expression, driven by directional 
selection. Galeolaria may have limited scope to respond evolutionarily, 
however, based on recent evidence that genetic variation for survival 
to independence (capacity to swim and feed, overlapping our 
performance measure here) is negligible after fertilization and 
embryogenesis at 24°C (Chirgwin et  al., 2021). Disentangling 
selection and developmental plasticity as candidate drivers of 
carryover effects is notoriously hard to do experimentally, and 
may ultimately require genomic approaches (Donelson et al., 2018; 
Fox et  al., 2019). In the meantime, we  cannot be  certain whether 
plasticity or selection, or both drivers in combination, underpin 
the carryover effects on thermal optima detected here.

Overall, our work reveals carryover effects of temperature at 
embryogenesis (but not fertilization) on thermal performance in 
early life that may buffer vulnerable planktonic stages of aquatic 
ectotherms against climate change, and offers new insights into 
the responses of thermal performance curves to thermal history. 
In particular, curve descriptors did not respond to temperature 
in the coordinated manner predicted by hypotheses based on 

thermodynamic constraints – that is, higher thermal optimum 
did not coincide with higher peak performance (as suggested by 
the “hotter-is-better” hypothesis; Huey and Kingsolver, 1989; 
Angilletta et  al., 2010; Sørensen et  al., 2018), or with horizontal 
shifts in thermal limits (as suggested by the “hotter-colder” hypothesis; 
Izem and Kingsolver, 2005; Angilletta, 2009). Of similar “rules” 
(or variants on them) invoked to explain how curves respond to 
prior thermal experience (Huey et  al., 1999; Deere and Chown, 
2006), our results seem most consistent with an interpretation of 
the beneficial acclimation hypothesis that assumes no covariation 
between thermal optimum and peak performance. This is termed 
temperature compensation (partial or complete maintenance of 
physiological rates in the face of changing temperature) and may 
be the combined outcome of thermal adaptation and thermodynamic 
constraints (Clarke, 2003). Such an interpretation is of course 
speculative at this point. Our results do, however, add to mounting 
evidence pointing to embryogenesis as the most critical of early 
life stages in aquatic ectotherms, not only for the emergence of 
thermal sensitivity (Dahlke et  al., 2020; Rebolledo et  al., 2020; 
Collin et al., 2021), but also of thermal carryover effects. Although, 
our results suggest that fertilization matters less in this regard, 
the possibility remains that the environment at gametogenesis is 
more influential than the environment at fertilization, emphasising 
the need to better understand transgenerational effects on thermal 
performance. Further research is therefore needed to elucidate 
how parental and developmental environments interact to shape 
thermal performance in organisms with complex life cycles, and 
thereby gain a clearer picture of organismal responses and 
vulnerability to current and future climatic conditions.
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