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Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among

other features, regulation of its expression in a wide variety of disease conditions in

humans, as apparently unrelated as neurodegeneration or breast cancer, have called

for attention on this gene. Also, its presence in different tissues, from blood to brain,

and different subcellular locations, from HDL lipoparticles to the interior of lysosomes

or the surface of extracellular vesicles, poses an interesting challenge in deciphering its

physiological function: Is ApoD a moonlighting protein, serving different roles in different

cellular compartments, tissues, or organisms? Or does it have a unique biochemical

mechanism of action that accounts for such apparently diverse roles in different

physiological situations? To answer these questions, we have performed a systematic

review of all primary publications where ApoD properties have been investigated in

chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined

with an antioxidant activity performed at the rim of the pocket are properties sufficient to

explain ApoD association with different lipid-based structures, where its physiological

function is better described as lipid-management than by long-range lipid-transport.

Controlling the redox state of these lipid structures in particular subcellular locations

or extracellular structures, ApoD is able to modulate an enormous array of apparently

diverse processes in the organism, both in health and disease. The new picture emerging

from these data should help to put the physiological role of ApoD in new contexts and

to inspire well-focused future research.

Keywords: protein physiology, lipid peroxidation, membrane management, oxidative stress, lipoprotein particles,

extracellular vesicles, lysosome, ApoD

INTRODUCTION

ApoD, identified and named almost 50 years ago, is a protein belonging to the Lipocalin family.
Experimental research on ApoD has been accumulating, encouraged by numerous findings
of ApoD relationship to many human diseases, from cancer to cardiovascular, metabolic or
neurodegenerative conditions. This affluence of scientific reports has described many aspects of
ApoD functional features, but a fundamental question remains to be responded: does ApoD
moonlight, performing different biochemical functions in different biological contexts? or does it
display a distinctive biochemical role that is being used in several physiological systems?

Along this half-a-century of ApoD research many reviews focused on this protein have been
published. All of them are narrative in nature and many concentrate on specific details of ApoD

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.738991
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.738991&domain=pdf&date_stamp=2021-10-07
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:opabinia@ibgm.uva.es
https://doi.org/10.3389/fphys.2021.738991
https://www.frontiersin.org/articles/10.3389/fphys.2021.738991/full


Sanchez and Ganfornina ApoD Protein Physiology

such as its relationship to disease, often underlining partial and
not critically assessed views on many aspects of ApoD biology.

Aiming at answering the central questions posed above, we
have performed a systematic review of all primary research
published until January 2021 where ApoD properties have
been investigated in the chordate phylum. Reports were tagged
and classified according to their contributions to “molecular
properties,” “gene data,” “regulation of expression,” “disease-
related,” “cellular trafficking,” “tissue and organ function,” and
“protein physiology.” The level and quality of experimental
evidence were critically evaluated to try to identify cause-effect
relationships. The picture emerging from this approach should
help to understand the physiological role of ApoD and to inspire
well-focused future research.

METHODS

To assess the current knowledge on the physiology of ApoD,
we performed a literature review of primary publications in a
systematic manner, searching the National Library of Medicine
database with the PubMed engine (published until January 31,
2021). Using the search query “Apolipoprotein D” ORApo-DOR
ApoD, we recovered 851 entries from which 39 narrative reviews
were excluded. Following a Title/Keywords screen, we selected
787 entries for further assessment. Following exclusion criteria
we finally selected 417 articles reporting research on the Lipocalin
ApoD in chordates as the final review sources, and stored
them in a Zotero (v5.0.88) collection. The complete collection
is available in the Supplementary Tables 1–8. According to the
abstract information, articles were tagged with the following
terms: Disease-related (DR, n = 216), Regulation of Expression
(RE, n = 186), Gene Data (GD, n = 37), Molecular Properties
(MP, n= 59), Cellular Trafficking (CT, n= 33), Tissue and Organ
Function (TOF, n = 36), and Protein Physiology (PP, n = 35).
Figure 1 summarizes the review process workflow and outcome.

Following full article reading, we classified each tagged report
with subheading terms to guide the organization of the review.
We then performed an evaluation of the conclusions statements
of each report based on technical and argumentative consistency,
according to existing state-of-the-art standards and required
experimental controls. In cases of uncertainty, experts in each
field were contacted and asked for their objective judgement.

The following databases and in silico prediction platforms
and tools were used in this work: ProtParam (https://web.expasy.
org/protparam/); DeepLoc-1.0 (http://www.cbs.dtu.dk/services/
DeepLoc/); Gene Ontology database (http://geneontology.org/);

Abbreviations: AA: arachidonic acid; BCF: breast cyst fluid; CSF: cerebrospinal
fluid; E-3M2H: E-3-methyl-2-hexenoic acid; ECs: endothelial cells; EM: electron
microscopy; EVs: extracellular vesicles; GuHCl: guanidine hydrochloride;
HDX-MS: amide hydrogen-deuterium exchange mass spectrometry; LPC:
lysophosphatidylcholine; LPS: bacterial lipopolysaccharide; MCs: blood vessel
mural cells; MSCs: bone marrow stem cells; OS: oxidative stress; RER: rough
endoplasmic reticulum; ROS: reactive oxygen species; SAXS: small-angle X-ray
scattering; STR: short-tandem repeats; TG: triglycerides; UTRs: gene untranslated
regions.

Human Protein Atlas (https://www.proteinatlas.org); Mouse
gene expression (http://www.informatics.jax.org/expression.
shtml); miRNA database (mirdb.org). The ApoD multiple
sequence alignment was generated with ClustalX2 (http://
www.clustal.org), and the 3D structure of ApoD was visualized
with ViewerLite 4.2 (https://chemweb.ir/accelrys-viewerlite/).
A model of HApoD with sugars attached was built with
GlyProt (http://glycosciences.de/modeling/glyprot/php/main.
php).

RESULTS AND DISCUSSION

ApoD is an early-diverging member of the Lipocalin family,
with its phylogenetic origins traced back to the origin of
chordates (Ganfornina et al., 2000; Diez-Hermano et al., 2021).
Furthermore, ApoD is the chordate Lipocalin most similar to
those in other phyla. ApoD primary structure is well-conserved
in chordates, as deduced from a multiple sequence alignment
of 22 chordate species (Figure 2A; Table 1), with an average
67% identity (range: 55–90%) in mature protein sequence.
An intriguing aspect of this alignment is a favored residue
conservation of the region encompassing the first three β-strands
of the protein primary structure (Figure 2A).

Molecular Properties
ApoD is a monodomain globular glycoprotein with two
intramolecular disulfide bonds, which are molecular properties
suitable for working in extracellular non-reducing milieus. ApoD
shows an N-terminal signal peptide in all chordates that lets
the nascent protein to enter the endoplasmic reticulum. The
protein can therefore follow a canonical secretion pathway, and
is glycosylated along this path.

Protein Parameters
Since early characterization studies of ApoD, its apparent
electrophoretic mobility, density of ApoD-positive fractions
and behavior in size exclusion chromatography, suggested the
existence of post-translational modifications (glycosylation), a
potential for oligomerization, and an association with lipids.
The predicted acidic isoelectric point (Table 1) implicates that
ApoD polypeptide would have its lowest solubility in aqueous-
salt solutions at the pH of acidic organelles in the cell, while at
neutral pH the ApoD polypeptide would show a net negative
charge. ApoD displays four conserved cysteine residues, while an
additional cysteine (Cys116) is present only in humans (absent
even in other primates) and allows for inter-molecular disulfide
bond formation (Figures 2A, 3B,E; Table 1).

References contributing to this section are listed in
Reference Collection 1, Supplementary Table 2.

Protein Structure
The ApoD 3D crystal structure has been solved for the human
protein after modification of several residues that rendered the
protein prone to aggregation. The unique human Cys116 is
close to one of the hydrophobic loops, and was also mutated
to facilitate crystallization. The structure reveals a typical
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Lipocalin fold (Skerra, 2000) composed of an eight-stranded β-
barrel structure with an adjacent C-terminal α-helix. It has a
closed end, and an open end with access to a pocket able to
bind mostly hydrophobic ligands. Two intra-molecular disulfide
bonds stabilize the structure. Three out of four loops at the barrel
open-end are hydrophobic, making these regions candidate for
interaction with hydrophobic surfaces, and contain residues
relevant for ApoD antioxidant properties (see section Protein
Physiology). Two N-glycosylation sites (Figures 2A, 3F) are
located on the side and bottom of the calyx, away from the
ligand-binding pocket opening. Figures 3A,B show a surface
representation of the ApoD monomer structure with charged or
hydrophobic surface highlighted in color. Other relevant residues
are shown in Figures 3C–E.

The presence of a ligand inside the pocket did not modify
the general crystal structure of ApoD. When explored by
amide hydrogen-deuterium exchange mass spectrometry (HDX-
MS) or small-angle X-ray scattering (SAXS) in solution,
interesting conformational changes elicited by ligand binding
were detected, resulting in further ordering of the already stable
Lipocalin fold. ApoD structure is also stable upon protein
oxidation with H2O2. Dynamic information extrapolated from
the crystal structure has allowed further modeling of ApoD
binding to small ligands, lipoprotein particles or membranes.

These studies help to understand a methionine-dependent
lipid antioxidant mechanism (see below) and to study the
influence of glycosylation on these functional properties. In
addition, the ApoD monomer crystal structure, combined with
modeled glycosylation conformations, was used to generate
coherent models for the conformations of ApoD oligomers
(Figures 3G,H) later confirmed experimentally (see below).

References contributing to this section are listed in
Reference Collection 2, Supplementary Table 2.

Protein Glycosylation
As mentioned above, sugars were soon revealed to be linked
to ApoD, with a relevant carbohydrate contribution (∼15–
22%) to its apparent molecular weight. Two asparagine sites
were experimentally demonstrated to be glycosylated, and in
silico studies of human ApoD revealed no interference of
sugars with binding pocket access. Figure 3F depicts a model
of the N-linked oligosaccharides. The Asn45 glycosylation
site is conserved in birds and mammals, but the second
glycosylation site shows variations in position (Figure 2A). In
ApoD of human plasma, Asn45 contains primarily trisialo-
triantennary oligosaccharides, and Asn78 contains fucosylated
disialo-biantennary oligosaccharides. The presence of negatively

FIGURE 1 | ApoD literature search and inclusion criteria. (A) Yearly timeline of articles recovered by PubMed using the search query designed for our review. (B)

PRISMA flow diagram for record inclusion in our review.
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charged sialic acid in native ApoD sugar moiety contributes to its
net negative charge in neutral pH environments.

Interesting variations of ApoD carbohydratemoiety have been
reported between species (e.g., humans vs. other primates or
rodents), between various tissues in a single species (brain tissue,
cerebrospinal fluid, inner ear perilymph or plasma), within a
tissue, or between health and disease conditions. Patterns of
glycosylation have also been demonstrated to be sex-dependent
(e.g., BCF in females, or axillary secretion in males). For example,
less glycosylated forms of ApoD are present in mouse/human
brain tissue compared to plasma, with differences in both
terminal sialic acid and core N-linked oligosaccharides. A clear
increase in α2-3 sialoglycosylation of plasma ApoD distinguishes,
with high sensitivity, children with Autism Spectrum Disorder

from healthy controls. Within a single tissue (cerebrospinal fluid;
CSF) there is also variegation in the degree of ApoD sialylation.
These variations generate size and charge heterogeneities with
potential functional consequences worth exploring.

References contributing to this section are listed in
Reference Collection 3, Supplementary Table 2.

Protein Oligomerization
Covalent and non-covalent homodimers and tetramers of ApoD
have been detected in various experimental and biological
systems. All studies of ApoD oligomerization have been focused
so far on the human protein. Crystallization of bacterial
recombinant human ApoD revealed that the protein tends to
aggregate due to hydrophobic surface patches. This property

FIGURE 2 | ApoD protein sequence and gene features. (A) Multiple sequence analysis (MSA) of the mature amino acid sequence of selected vertebrate species

recovered from GenBank (Apla, Anas platyrhynchos_EOB05196.1; Caur, Cathartes aura_KFP53002.1; Ggal, Gallus gallus_NP001011692.1; Pcri, Pelecanus

crispus_KFQ60274.1; Pcrs, Podiceps cristatus_KFZ69168.1; Prub, Phoenicopterus ruber_KFQ85568.1; Bmut, Bos mutus_ELR54927.1; Cela, Cervus

elaphus_ABB77207.1; Chir, Capra hircus_XP005675150.1; Oari, Ovis aries_XP004003075.1; Sscr, Sus scrofa_XP001926098.2; Fcat, Felis catus_XP006936237.1;

Umar, Ursus marinus_XP008706566.1; Oorc, Orcinus orca_XP004278821.1; Mbra, Myotis brandtii_EPQ12038.1; Pale, Pteropus Alecto_XP006906222.1; Ocun,

Oryctolagus cuniculus_ NP001075727.1; Hsap, Hoo sapiens_ NP001638.1; Ptro, Pan troglodites_XP516965.1; Fdam, Fukomys damarensis_KFO33128.1; Mmus,

Mus musculus_CAA57974.1; Rnor, Rattus norvegicus_NP036909.1). Asterisks represent identical residues in all sequences, and dots/double dots point to similar

residues. α-helices and β-strands are shown on top of the MSA, based on the solved tertiary structure of human ApoD. Colored residues are: four conserved

cysteines involved in intramolecular disulfide bonds (pink), the human-specific unpaired cysteine (purple), conserved tryptophan residue in the ligand binding pocket

(green), two glycosylated Asn residues (yellow), the antioxidant Met residue (blue), and residues in the hydrophobic surface patches at the rim of the binding pocket

(orange). (B) Schematic representation of the chromosomal location of ApoD gene in human, mouse and chicken genomes. (C) Schematic representation of a

consensus gene architecture for chordate ApoD, with four coding sequence (CDS)-containing exons and several 5′-UTR exons.
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TABLE 1 | ApoD protein parameters.

Acc. number Class/order Common

name

Species name # Residues

mature protein

Theor. Mw Theor. pI # Disulfide

bonds

# Cys N-linked

sugars

Met-93 Mature protein sequence

EOB05196.1 Aves/Anseriformes Mallard Anas

platyrhynchos

166 19,412 5.35 2 4 2 Yes QMFHMGPCPDPPVQENFDISKYLGKWYEIEKLPSNFEKGSCIQANYSLKENG

KFKVINKELLSSGKVNEVEGEIMHTDVKEPAKLSVRFNWFMPSAPYWVISTDY

ENYSLVYSCTNILWIFHIDYAWIMSRTPDMHPETVEHLKSVLQSYKIDTEKMMP

TDQLNCP

KFP53002.1 Aves/Cathartiformes Turkey

vulture

Cathartes aura 169 19,750 5.23 2 4 2 Yes QMFHMGPCPDPPVQEDFNINKYLGKWYEIEKLPSSFEKGSCIQANYSLKENG

KFKVINKELLSNGKVNEVEGEIMHMDVKEPAKLGVRFNWFMPSAPYWVISTD

YENYSLVYSCTNILWLFHIDYAWILSRAPEMHPETVEHLKSILQSYKIDTEKMM

PTDQLNCPAEM

NP001011692.1 Aves/Galliformes Chicken Gallus gallus 169 19,780 5.51 2 4 2 Yes QMFHMGPCPDPPVQQDFDINKYLGKWYEIEKLPSNFEKGSCVQANYSLKEN

GKFKVINKEMLSSGKINAIEGEIMHTDVKEPAKLGVRFNWFMPSAPYWVISTDY

ENYSLVYSCTNILWLFHFDYAWIMSRSPDMHPDTVEHLKSMLRTYKIDTDKM

MPTDQLNCPAEM

KFQ60274.1 Aves/Pelecaniformes Dalmatian

pelican

Pelecanus

crispus

169 19,778 5.23 2 4 2 Yes QMFHMGPCPDPPVQEDFDINKYLGKWYEIEKLPSSFEKGSCIQANYSLKENG

KFKVINKELLSNGKVNEVEGEIMHMDVKEPAKLGVRFNWFMPSAPYWVISTD

YENYSLVYSCTNILWLFHVDYAWIKSRAPEMHPETVEHLKSILQSYKIDTEKMM

PTDQLNCPPEM

KFZ69168.1 Aves/

Podicipediformes

Great

crested

grebe

Podiceps

cristatus

169 19,719 5.09 2 4 2 Yes QMFHMGPCPDPPVQEDFDINKYLGKWYEIEKLPSSFEKGSCIQANYSLKENG

KFKVINKELLSNGKVNEVEGEIMHMDVKEPAKLGVRFNWFMPSAPYWVISTD

YENYSLVYSCTNILWLFHIDYAWIISRAPEMHPETVEHLKGVLQSYKIDTDKMM

PTDQLNCPPEM

KFQ85568.1 Aves/

Phoenicopteriformes

American

flamingo

Phoenicopterus

ruber

169 19,731 5.08 2 4 2 Yes QMFHMGPCPDPPVQEDFDINKYLGKWYEIEKLPSSFEKGSCIQANYSLKENG

KFKVINKELLSNGKVNEVEGEIMHMDVKEPAKLAVRFNWFMPSAPYWVISTDY

ENYSLVYSCTNILWLFHIDYAWIISRAPDMHPETVEHLKSILQSYKIDTDKMVPT

DQLNCPPEM

ELR54927.1 Mammalia/

Artiodactyla

Wild yak Bos mutus 169 19,466 5.07 2 4 2 Yes QAFHLGKCPHPPVQENFDVNKYLGKWYEIEKIPVSFEKGSCIQANYSLKENGN

VKVINKELRADGTVNQIEGEATPENITEPAKLAVKFFWFMPSAPYWVLATDYEN

YALVYSCTTIIWLFHMDHVWILGRNPYLPPETVTYLKDILTSNNIEVEKMTITDQV

NCPESM

ABB77207.1 Mammalia/

Artiodactyla

Red deer Cervus elaphus 169 19,564 4.96 2 4 2 Yes QAFHLGKCPNPPVQENFDVNKYLGRWYEIEKIPVSFEKGSCIQANYSLKENGN

VKVINKELRADGTVNQIEGEATQENITEPAKLGVKFFWFMPSAPYWVLATDYE

NYALVYSCTTIIWLFHMDHVWILGRNPYLPPETVTYLKDILTSNNIEVEKMTITD

QVNCPEYM

XP005675150.1 Mammalia/

Artiodactyla

Goat Capra hircus 169 19,488 4.96 2 4 2 Yes QAFHLGKCPNPPVQENFDVNKYLGRWYEIEKIPVSFEKGSCIQANYSLKENGN

VKVINKELRADGTVNQIEGEATQENITEPAKLGVKFFWFMPSAPYWVLATDYE

NYALVYSCTTIIWLFHMDHVWILGRNPYLPPETVTYLKDILTSNNIEVEKMTITD

QVNCPESM

XP004003075.1 Mammalia/

Artiodactyla

Sheep Ovis aries 169 19,488 4.96 2 4 2 Yes QAFHLGKCPNPPVQENFDVNKYLGRWYEIEKIPVSFEKGSCIQANYSLKENGN

VKVINKELRADGTVNQIEGEATQENITEPAKLGVKFFWFMPSAPYWVLATDYE

NYALVYSCTTIIWLFHMDHVWILGRNPYLPPETVTYLKDILTSNNIEVEKMTITD

QVNCPESM

XP001926098.2 Mammalia/

Artiodactyla

Swine Sus scrofa 170 19,592 4.83 2 4 2 Yes QAFHLGKCPNPPVQENFDVNKYLGRWYEIEKIPVSFEKGSCIQANYSLKENGN

IKVINKELRADGTVNQIEGEATPDNITEPAKLGVKFFWLMPSAPYWVLATDYEN

YALVYSCTTIIWLFHLDHVWILGRNPYLPPETVTYLKDILTSNDIDIEKMTITDQV

NCPEYLQ

XP006936237.1 Mammalia/Carnivora Domestic cat Felis catus 169 19,474 4.82 2 4 2 Yes QAFHLGKCPTPPVQENFDVHKYLGRWYEIEKIPVSFEKGSCIQANYSLMENGN

IKVINQELRPDGTMNQIEGEATQANLTEPAKLGVKFFWLMPSAPYWVLATDYE

NYALVYSCTTIVWLFHMDHVWILGRNPYLPPETVTYLKDILTSNEIDIEKMTITD

QVNCPEPL

XP008706566.1 Mammalia/Carnivora Polar bear Ursus maritimus 169 19,371 4.71 2 4 2 Yes QAFHLGKCPTPPVQENFDVNKYLGRWYEIEKIPVSFEKGSCIQANYSLMENGN

IKVINQELRSDGTVNQIEGEATQGNLTEPAKLGVKFFWLMPSAPYWVLATDYE

NYALVYSCTTIVWLFHMDHVWILGRNPYLPPETVTYLKDILTSNDIDIEKMTITD

QVNCPESL

(Continued)
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TABLE 1 | Continued

Acc. number Class/order Common

name

Species name # Residues

mature protein

Theor. Mw Theor. pI # Disulfide

bonds

# Cys N-linked

sugars

Met-93 Mature protein sequence

XP004278821.1 Mammalia/Cetacea Killer whale Orcinus orca 169 19,500 4.74 2 4 2 Yes QAFHLGKCPNPPVQENFDVNKYLGRWYEIEKIPVSFEKGSCIQANYSLMENG

NIKVINKELRADGTVNQIEGEATQENITEPAKLAVKFFWFMPSAPYWVLATDYE

NYALVYSCTTIIWLFHMDHVWILGRNPYLPPETVTYLKDILTSNDIDIEKIAVTDQ

VNCPEFL

EPQ12038.1 Mammalia/Chiroptera Brandt’s bat Myotis brandtii 169 19,380 4.9 2 4 2 Yes QAFHLGKCPTPPVQENFDVNKYLGRWYEIEKIPVSFEKGSCIQANYSLMENGN

IKVINQELRSDGTVNQIEGEASQSNFTEPAKLGVKFFWLMPSAPYWVLATDYE

NYALVYSCTTIVWLFHVDHVWILGRNPYLPPETVTHLKDILTSNNIDIEKMTITD

QGNCPEFL

XP006906222.1 Mammalia/Chiroptera Black flying

fox

Pteropus alecto 169 19,359 5.35 2 4 2 Yes QAFHLGKCPTPPVQENFDVNKYLGKWYEIEKIPVSFEKGSCIQANYSLMENGN

IKVLNQELRSDGTINQIEGEASQANLTEAAKLGVKFFWLMPSAPYWVLATDYK

NYALVYSCTTILWLFHVDHVWILGRNPYLPQETVTYLKDILTSNNIDIEKMTVTD

QANCPKFL

NP001075727.1 Mammalia/

Lagomorpha

Rabbit Oryctolagus

cuniculus

168 19,433 5.15 2 4 2 Yes QAFHLGRCPTPPVQENFDVHKYLGRWYEIEKIPVSFEKGNCIQANYSLMENG

NIKVLNQELRPDGTVNQIEGQATQSNLTEPAKLGVKFFQLMPTAPYWVLATDY

ENYALVYSCTTIIWLFHMDHVWILGRNRYLPPETVTYLKDILTANNIDIEKMTVT

DQVNCPEF

NP001638.1 Mammalia/Primates Human Homo sapiens 169 19,303 5.2 2 5 2 Yes QAFHLGKCPNPPVQENFDVNKYLGRWYEIEKIPTTFENGRCIQANYSLMENG

KIKVLNQELRADGTVNQIEGEATPVNLTEPAKLEVKFSWFMPSAPYWILATDYE

NYALVYSCTCIIQLFHVDFAWILARNPNLPPETVDSLKNILTSNNIDVKKMTVTD

QVNCPKLS

XP516965.1 Mammalia/Primates Chimpanzee Pan troglodytes 169 19,301 5.43 2 4 2 Yes QAFHLGKCPKPPVQENFDVNKYLGRWYEIEKIPTTFENGRCIQANYSLMENG

KIKVLNQELRADGTVNQIEGEATPVNLTEPAKLEVKFSWFMPSAPYWILATDYE

NYALVYSCTSIIQLFHVDFAWILARNPNLPPETVDSLKNILTSNNIDVKKMTVTD

QVNCPKLS

KFO33128.1 Mammalia/Rodentia Damaraland

mole-rat

Fukomys

damarensis

170 19,458 5.16 2 4 2 Yes QAFHLGKCPTPPVQENFEVNKYLGRWYEIEKIPASFEKGNCNQANYSLKGNG

HIKVLKQELRPDGTVNQIEGEASSQSNITESAKLEVKFFQLMPSAPYWVLATDY

DNYALVYSCTNIIWLFHVDFVWILGRNHYLPSETVNYLKDILTSNSIDVEKMAVT

DQVNCPDFL

CAA57974.1 Mammalia/Rodentia House

mouse

Mus musculus 169 19,478 4.71 2 4 2 Yes QNFHLGKCPSPPVQENFDVKKYLGRWYEIEKIPASFEKGNCIQANYSLMENG

NIEVLNKELSPDGTMNQVKGEAKQSNVSEPAKLEVQFFPLMPPAPYWILATDY

ENYALVYSCTTFFWLFHVDFFWILGRNPYLPPETITYLKDILTSNGIDIEKMTTTD

QANCPDFL

NP036909.1 Mammalia/Rodentia Rat Rattus

norvegicus

169 19,584 5.04 2 4 2 Yes QSFHLGKCPSPPVQENFDVKKYLGRWYEIEKIPVSFEKGNCIQANYSLMENG

NIKVLNKELRPDGTLNQVEGEAKQSNMSEPAKLEVQFFSLMPPAPYWILATDY

ESYALVYSCTTFFWFFHVDYVWILGRNPYLPPETITYLKYILTSNDIDIAKITTKDQ

ANCPDFL

Min 166 19,301 4.71

Max 170 19,780 5.51

Average 169 19,519 5.07

In silico prediction (see section Methods) of molecular weight, pI and N-linked oligosaccharides, or experimentally tested (disulfide bonds and antioxidant Met-93 of human ApoD). ApoD from birds and mammals analyzed.
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could promote self-association or association with lipid-based
structures in vivo (Figures 3J,K).

Homodimers due to intermolecular disulfide bonds,
evidenced by comparing electrophoretic mobility under
reducing/non-reducing conditions, have been detected in urine
and tear fluids. Experiments with sulfhydryl-trapping reagents
during handling indicate that new disulfide bonds were not
introduced along the experimental procedure. However, other
forms of oligomerization are possible and compatible with these
results, resulting from non-covalent stable binding between
ApoD monomers. Figures 3G,H summarize the different forms
of ApoD self-interaction.

Exposure of human ApoD to oxidized lipids promote
dimerization and further oligomerization, in a way dependent
on the oxidation state of particular methionine residues (Met93,
see below), as demonstrated with recombinant ApoD, mutated
at specific Met residues, and produced in a human cell
line. Oxidation-dependent ApoD dimerization is resistant to
guanidine hydrochloride (GuHCl) but not to urea, indicating
that it is based on non-covalent intermolecular bonds. This
property has allowed to detect ApoD dimers in specific brain
regions of Alzheimer’s disease patients (e.g., hippocampus, but
not cerebellum) that also correlate with disease progression. In
contrast, GuHCl extracts from healthy control brains show only
monomeric forms of ApoD.

A tetrameric stable form of native ApoD in BCF, but not
in plasma or CSF, has been demonstrated and characterized by
multi-angle laser light scattering, analytical ultracentrifugation,
HDX-MS and SAXS. Experimental data using progesterone
as a ligand and the native ∼100 kDa ApoD tetramer from
BCF, supports a particular tetramer conformation among those
predicted by molecular modeling, where the binding pocket
opening is accessible and the sugar moieties do not interfere
in the inter-subunit interface (Figure 3H). Monomers interact
with each other through the C-terminal α-helix and three β-
sheets in close proximity, while glycosylated surfaces and Met93
are exposed in the tetramer. Oligomerization does not preclude
ligand binding, and is not significantly altered upon binding
of various ligands (biliverdin, palmitic acid, progesterone and
sphingomyelin) or by in vitro protein oxidation with H2O2. The
putative contribution of intermolecular disulfide bonds in the
tetramer (involving human Cys116) has not been explored.

References contributing to this section are listed in
Reference Collection 4, Supplementary Table 2.

Small Ligand Binding
The ability to bind progesterone was a defining feature of the
most abundant protein in BCF, therefore named progesterone-
binding cyst protein (PBCP) or gross cystic disease fluid protein
24 (GCDFP-24). Later on, this protein was demonstrated to
be identical to ApoD purified from plasma HDL particles.
Ligand-protein interaction at the ApoD binding pocket induces
conformational changes leading to a more ordered structure,
but does not result in major structural changes or altered
oligomerization. These dynamic changes, though subtle, might
have implications for ApoD interactions with other proteins

or lipoprotein particles. Ligand binding reports are grouped in
Reference Collections 5, 6, Supplementary Table 2.

Progesterone accommodation in the pocket involves
a tryptophan residue heavily conserved in the Lipocalin
family (Trp127 in human ApoD; Figures 2A, 3C), whose
fluorescence (Ex. λ = 295 nm) changes upon binding. This
element in the pocket makes Trp-fluorescence titration a valid
method to test a variety of ligands for ApoD (Table 2). All
in vitro ligand-binding experiments have been performed
with the human protein, using either recombinant ApoD
(expressed by bacteria or eukaryotic cells) or native protein
purified from BCF or plasma HDL. Arachidonic acid (AA)
shows the highest affinity, while various AA derivatives (e.g.,
prostaglandins, 12-HETE or 5,15-diHETE) show no binding by
Trp-fluorescence titration.

Cholesterol, a reasonable candidate because of its high
presence in plasma lipoprotein particles, has been repeatedly
tested, and reported to have no binding, or a very low affinity
one (Table 2). A series of works (Reference Collection 6,
Supplementary Table 2) demonstrate that ApoD has no
cholesterol-transfer activity, a hypothesis originated by ApoD
co-purification with lecithin-cholesterol acyltransferase (LCAT),
whose activity is in fact modulated by ApoD (see section Protein
Physiology) by a mechanism discarding ApoD as a cholesterol
provider for LCAT.

Only one ligand has been identified bound to ApoD
and extracted from the protein after purification from a
natural source. E-3-methyl-2-hexenoic acid (E-3M2H),
a male axillary precursor of odorants, was identified by
gas chromatography-mass spectrometry (GC/MS) after
temperature/pH switch and chloroform extraction from
purified ApoD.

Interestingly, various ligands (e.g., bilirubin or E-3M2H)
whose interaction with ApoD has been demonstrated by a
different technique, do not alter Trp-fluorescence, raising the
possibility of other sites of interaction. Molecular dynamics
simulations infer flexible binding of oxidized derivatives of AA
(5s-, 12s-, and 15s-HpETE) around the conserved Met93 at
one of the hydrophobic patches at the entrance of the pocket.
This particular form of lipoperoxide binding to ApoD is not
expected to produce changes in fluorescence of Trp-127, located
at the bottom of the binding pocket. A proof of interaction is
experimentally supported by site-directedmutagenesis combined
with HPLC-detection of reduced lipids (HETEs) after exposure
to ApoD. This interaction underlies the antioxidant activity of
ApoD (see below). Figure 3I summarizes in cartoon form this
new view of small ligand-binding sites of ApoD, not restricted to
the Lipocalin pocket.

Protein-Protein Interactions
Interactions of ApoD to higher-order lipid structures, like
lipoprotein particles or cellular membranes, are particularly
relevant since they determine the range of sites and biological
contexts where ApoD function can be performed. They might
depend on protein-protein or protein-lipid contacts.

As mentioned above, co-purification of ApoD with LCAT
might indicate the potential for a protein-protein interaction
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in nascent HDL particles, but a clear demonstration of ApoD-
LCAT complex is not available. In contrast, a clear protein-
protein interaction does account for human ApoD presence in
HDL particles. An intermolecular disulfide link between ApoD
Cys116 and ApoA-II Cys6 has been demonstrated by peptide
digestion followed by sequencing and mass spectrometry (MS).
This interaction, however, is an exclusive property of human
ApoD due to its unique unpaired cysteine.

A putative disulfide-linked ApoD-ApoB100 complex was
also proposed, but evidence is based on predictions from
electrophoretic mobility in reducing/non-reducing conditions
and immunoblot detection with anti-ApoD antibodies only, or
with antibodies raised against LDL particles. An almost full
characterization of 23 out of 25 cysteine residues in ApoB-100 by
MS-analysis and peptide sequencing found no bonds with ApoD
(Yang et al., 1990), strongly arguing against a disulfide-mediated
interaction. Alternative mechanisms of ApoD interactions with
plasma lipoprotein particles are therefore open to consideration.

Other potential interactions of ApoD have been explored
with classic two-hybrid systems, where protein-protein contact
takes place in the cell nuclei or cytoplasm, both requiring ectopic
expression of ApoD in non-native biological compartments
unsuitable for disulfide linked proteins (see sections Protein
Structure and Cellular Trafficking). Alternatively, co-
immunoprecipitation in vitro with or without crosslinking
agents has been a method of choice. Using these approaches,
ApoD has been proposed to interact with the extracellular
glycoprotein Osteopontin (OPN), the intracellular domain of
the Leptin Receptor (OB-Rb), the transmembrane glycoprotein
Basigin (BSG), and the Scavenger receptor class B type 1 (SRB1).

The weak interaction reported between ApoD and the
intracellular domain of OB-Rb, combined with its presumed
topology within the cell, should discard this finding as a
biologically relevant interaction for ApoD unless it is replicated.
For membrane proteins such as BSG and SRB1, proposed
as putative membrane receptors for ApoD, co-localization by

FIGURE 3 | Molecular features of ApoD. (A,B) Graycolored space-filled views of the human ApoD tertiary structure (modelled from PDB ID:2HZQ) showing charged

residues in A (positive, red; negative, blue) and hydrophobic residues in B (orange). Side view of the β-barrel (left image; curved arrows point to the pocket entrance)

and top view (right image) looking into the hydrophobic pocket (asterisk). (C–E) Human ApoD (PDB ID:2HZQ) side and top views with highlighted relevant residues.

Colored residues in (C) are the antioxidant Met93 (blue); the human-specific unpaired Cys116 (purple); the conserved ligand binding pocket Trp127 (green); and the

two glycosylated Asn45/Asn78 (yellow). Pink-colored residues in D are the four cysteines forming two intramolecular disulfide bonds. Orange-colored residues in E are

those forming three hydrophobic loops around the pocket entrance. (F) Space-filled view of human ApoD with reported oligosaccharides linked to Asn45 and Asn78,

as modelled by GlyProt (see Methods). (G) Cartoon representations of human ApoD dimers formed by hydrophobic patches (orange) or by intermolecular Cys116

disulfide bonds (pink). Variations of the particular configuration shown are possible. Dashed lines delineate the ligand pocket. (H) Representation of the best supported

tetrameric structure of human ApoD found in BCF. Asterisks mark the ligand pocket accessible in all subunits (two facing back). Oligosaccharides shown in red. (I)

Cartoon illustration of a side view of human ApoD with AA (red) and HpETE (blue) positioned into the hydrophobic pocket (marked by a dashed line) and interacting

with the Met93-containing hydrophobic patch respectively. (J,K) Cartoon illustration of human ApoD interacting with higher-order lipid structures via the hydrophobic

patches at rim of the pocket; (J) HDL particle; (K) Unilamellar vesicle (liposome).
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TABLE 2 | ApoD ligand binding in vitro assays.

Ligand Apparent Kd (µM) Apparent Kd (µM) Apparent Kd (µM) Apparent Kd (µM) Apparent Kd (µM)

References Morais Cabral et al., 1995 Vogt and Skerra, 2001 Breustedt et al., 2006 Ruiz et al., 2013 García-Mateo et al., 2014

All-trans-retinoic acid 2.8 4.0 ± 2.6

Retinol 0.08 ± 0.04 0.2 ± 0.1

Arachidonic acid 0.006 ± 0.004 3.2 ± 0.2

2-Arachidonyl-glycerol n.d.

12-HETE n.d.

5,15-diHETE n.d.

Prostaglandins (D2, E1, F2a) n.d.

Lysophosphatidylcholine 1.13 ± 0.05

Linoleic acid n.d.

Oleic acid n.d.

Palmitic acid n.d. 3.3 ± 0.6

Palmitoyl sphingomyelin 1.3 ± 0.5

Cholesterol n.d. n.d.

Pregnenolone n.d.

Progesterone 0.4 ± 0.1 1.7 ± 0.02

Dihydrotestosterone n.d.

β-Estradiol n.d.

E-3M2H n.d.

Anandamide 1.6 ± 1.3

Bilirubin 2.6 ± 0.5 n.d.

Ligands tested by tryptophan fluorescence-based assays in vitro. Apparent Kd (µM) average ± SD are shown. “n.d.” = no binding detected.

confocal imaging is often used as additional evidence. However,
protein-complexes are below the resolution of standard co-
labeling techniques, and methods relying on distance-dependent
energy transfer, super-resolution or immunoelectron microscopy
would be desirable as further evidence in relevant in vivo
conditions. Other candidate ApoD receptors (LDLR and CXCR-
4) are predicted from physiological contexts, where downstream
consequences of ApoD exposure are modified by antagonists
of these receptors. However, a direct interaction with these
receptors has not been explored.

References contributing to this section are listed in
Reference Collection 7, Supplementary Table 2.

Binding to Lipid-Rich Structures
The presence of ApoD in plasma lipoprotein particles lies at the
base of its discovery in humans. ApoD was initially visualized as
a “thin-line” polypeptide in immune-double diffusion analyses
of plasma HDL particles, and was then identified as a low-
abundance component of HDL3 particles (defined as small-dense
HDLs, d = 1.12–1.27 g/ml). Analysis of HDLs separated by
electrophoretic mobility in non-denaturing PAGE followed by
in-gel trypsinization, identified ApoD within the HDL-α2 type,
in a 1:100 ratio with respect to ApoA-I. The presence of ApoD
in HDLs has been confirmed also in human CSF and in baboon
and mouse plasma. Additionally, plasma ApoB-100 positive LDL
particles contain ApoD as well, but at lower concentrations
(∼8 ng ApoD/µg LDL vs. ∼69 ng ApoD/µg HDL3). The
generalized interaction with different lipoparticles in several
species suggests that ApoD-lipoparticle interactions must rely

on a mechanism independent of ApoD-ApoA-II disulfide bond,
a human HDL rarity. The fact that ApoD-LDL interaction is
prevented by detergents, and do not take place with recombinant
ApoD where hydrophobic surface residues have been mutated
(to favor crystallization), suggests a hydrophobicity-dependent
ApoD-lipoparticle binding mechanism (Figure 3J).

Also, direct binding of ApoD to unilamellar phospholipid
vesicles (liposomes) further demonstrates its ability to bind to
lipidic structures without requiring a protein-protein interaction.
These unilamellar vesicles represent a simplified version of the
outer phospholipid layer of HDLs, LDLs or a membrane bilayer
(Figure 3K). In addition, ApoD has recently been identified in
extracellular vesicles, characterized by the presence of CD81,
CD63, and flotillin-1, and a density of d = 1.17–1.23 g/ml. The
hydrophobic patches of ApoD at the entrance of the binding
pocket are the likely site of interaction with liposomes or
biological membranes, as indicated by experiments combining
ApoD capacity to reduce oxidized liposomes with mutagenesis
of Met residues that in fact contribute to the hydrophobicity of
those patches.

The knowledge accrued on ApoD protein structure,
its glycosylation and oligomerization properties, as well
as its interactions with small ligands and other lipidic
structures are relevant for its physiological roles in lipid
management, and should help to get a global picture of
how these molecular properties are put to work in various
physiological contexts.

References contributing to this section are listed in
Reference Collection 8, Supplementary Table 2.
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Gene Data and Genomic Properties
Chromosomal Position and Gene Structure
The gene coding for ApoD locates in an autosomic chromosome
that shows ample synteny in chordates (Sanchez et al., 2006),
reflecting a strong evolutionary conservation of this genomic
region (Figure 2B). The ApoD gene shows a standard metazoan
exon-intron architecture, with a coding sequence interspersed in
four exons that is conserved in chordates (Sánchez et al., 2003).
Moreover, the gene upstream and downstream untranslated
regions (UTRs) are also composed of several exons, mainly in
the 5′-UTR, a property well-preserved in mammals (Mejias et al.,
2019) (Figure 2C).

References contributing to this section are listed in
Reference Collection 9, Supplementary Table 3.

Transcriptional Control of Gene Expression
The promoter region and elements controlling the expression
of ApoD have being studied in detail for the human gene.
The human promoter shows a canonic TATA-box upstream
of the transcription start site. Several promoter elements and
nuclear factors have been predicted to potentially regulate ApoD
transcription in a number of organisms.

Experimental proof of a regulatory potential of human
ApoD has been gathered for SRE1, AP-1, APR-3, NFκB,
PARP1, HnRNP-U, and APEX-1 in cultured cells subjected to
inflammation (LPS) and metabolic stress (serum deprivation).
Also, the transactivator TAp73 mediates ApoD expression upon
cell differentiation. The mouse ApoD promoter region has been
recently assessed experimentally, and an alternative promoter
region has been related to OS-induced ApoD expression.

DNA methylation, inferred from the CpG content of the gene
promoter region, is also an important regulatory mechanism for
ApoD transcription, with an inverse relationship between level
of DNA methylation and ApoD gene transcription. This gene
regulation mechanism has been shown in different physiological
or pathological contexts: in esophageal, colorectal and astrocytic
cancers, in the expression profile defining Th17 lymphocytes, and
for the androgen receptor-response in male sexual development.

References contributing to this section are listed in
Reference Collection 10, Supplementary Table 3.

Post-transcriptional and Translational Control of

Gene Expression
The mRNA 3′-UTR is known to influence its stability and
translation efficiency. ApoD 3′-UTRs show a high degree of
conservation inmammals, and display shorter lengths and higher
G+C content than those observed in average mammalian gene
UTRs. These differences have been proposed to underlie a tight
regulatory control of ApoD translation. In this context, a number
of miRNAs have been predicted to control ApoD translation,
possibly by binding to the 3′-UTR. Some of these miRNAs,
like miR-229b-3p, miR-423-3p, and miR-490-3p, have been
experimentally tested and implicated in the post-transcriptional
downregulation of ApoD expression in rat male reproductive
system upon metabolic dysfunction.

The 5′-UTR of ApoD also presents relevant properties for
the regulation of ApoD expression. It is rich in short-tandem

repeats (STR), specifically in primates. Long stretches of STRs
are predicted to affect transcription and translation, which
might have contributed to the neurodevelopmental changes
that underlie primate evolution. Furthermore, mammalian
ApoD genes show several alternative 5′-UTRs forms, possibly
arising from alternative splicing. The alternative 5′-UTRs of
the mouse ApoD gene have been experimentally tested and
shown to underlie differential protein expression in several
mouse tissues, with a particular 5′-UTR variant being strongly
induced upon OS. Moreover, in silico analyses of these 5′-UTR
variants in mouse and human ApoD show upstream initiation
codons, upstream open reading frames, and predicted secondary
structures that suggest a tight control on ApoD gene expression.

References contributing to this section are listed in
Reference Collection 11, Supplementary Table 3.

Gene Polymorphisms
In terms of genetic variation for the ApoD gene, over 4,600
variants have been found in the GRCH38.p12 (annotation
Release 109) assembly of the human genome, while 187 are
reported in the short variants (dbSNP) and structural variants
(dbVar) databases. Six variants that involve missense, intron
insertions and 3′-UTR insertions, are predicted to involve
molecular consequences. Some of these variants have been
linked with variable support to human cancer, metabolic or
neurological diseases (see Supplementary Table 18, and section
ApoD-Disease Relationships), but a final proof of their clinical
significance is currently missing.

References contributing to this section are listed in
Reference Collection 12, Supplementary Table 3.

Regulation of Expression
A total of 186 primary publications (Figure 4A) were labeled
with the regulation of expression (RE) tag for this systematic
review (details recorded in Supplementary Tables 9–17).
We combined our analysis with current data compiled in
human and mouse expression atlases (see Methods section;
Supplementary Figures 1, 2).

ApoD in Body Fluids
Since its discovery in plasma HDL particles, ApoD protein
and/or mRNA have been found in almost every organ, tissue
or fluid. In addition to plasma, ApoD protein is present CSF,
perilymph, urine, and secretions from exocrine glands (sweat,
tears and mammary secretions) (Supplementary Table 9). The
cellular origin of ApoD protein in each of these body fluids is
not fully elucidated. With the exception of Th17 lymphocytes,
blood cells in general do not express ApoD mRNA, and
liver and intestine (major sites of HDL biogenesis) are among
the ApoD low-expressing tissues both in humans and mice
(Supplementary Figures 1, 2). Plasma ApoD protein (∼128
mg/l) is approximately 25 times the concentration of CSF ApoD
(∼5 mg/l) in healthy adult men, and they are uncorrelated,
suggesting that a separate pool of ApoD protein is managed in
these barrier-separated compartments.
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FIGURE 4 | Publications on ApoD expression and disease relationships. (A) Distribution of publications describing ApoD mRNA expression or protein presence in

vivo, distributed by physiological systems and in cell cultures (primary cells or cell lines). (B) Publications with information on ApoD relationship to disease (expression

changes triggered by disease or treatments, or association of ApoD gene variants with disease).

Avian egg fluids are also rich in ApoD, with the interesting
property that egg white ApoD positively correlates with
egg freshness.

References contributing to this section are listed in
Reference Collection 13, Supplementary Table 4.

Tissue and Cellular Expression Patterns and

Response to Stimuli
The analysis of tissue expression pattern leads to a general
conclusion: in spite of its wide distribution, ApoD is never
ubiquitously expressed, never in all cell types in a tissue, or
at all times in a given cell type. ApoD is expressed in most
tissues with a salt-and-pepper spatiotemporal pattern, suggesting
a fine control that depends on particular physiological cell states.
Furthermore, all tissues bear ApoD-expressing cells and cells
able to endocytose ApoD protein from the extracellular milieu
(see section Cellular Trafficking). These expression features,
along with ApoD being a very stable protein, result in a
high protein abundance when measured in high-throughput
analyses, and in a lack of exact fit between mRNA and protein

expression in a given tissue or cell (Supplementary Figure 1;
Reference Collections 14–16; Supplementary Table 4). While
tissues as the female breast present high levels of ApoD mRNA
and protein, organs like the liver show high abundance of
ApoD protein, but barely detectable ApoD mRNA both in
human and mice. At the other end of the spectrum, blood
cells and immune system-related organs are among those
with low levels or no expression of ApoD, either mRNA
or protein.

Organs and tissues involved in both male and
female reproductive physiology express ApoD
(Supplementary Table 10). The high expression of ApoD
in breast has been located to the glandular epithelium
(Supplementary Figure 1), and breast cysts accumulate high
amounts of ApoD protein, making BCF a useful experimental
source of native ApoD protein. ApoD mRNA is detected at all
stages of the spermatogenesis process in testis and in ovarian
theca cells. Along the female cycle, stromal and epithelial
cells of the endometrium express ApoD mRNA and protein
during the secretory phase. ApoD is also expressed during
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FIGURE 5 | Factors and pathways regulating the expression of ApoD. (A) Diverse stimuli regulate ApoD expression in a variety of cells and physiological conditions.

(B) Summary of upstream regulatory pathways regulating ApoD expression where elements of the signaling cascade have been identified.

corpus luteum maturation in the ovary. Gestation alters ApoD
abundance in plasma as well (Supplementary Table 9), with
a decrease during a healthy pregnancy followed by a fast
recovery if the mother breastfeeds her baby. ApoD expression
in breast secretions and skin is also altered upon establishment
of menopause.

These temporal patterns of expression are due to hormone
regulation, as demonstrated by both in vivo and in vitro studies
(Supplementary Tables 10, 16, 17; Reference Collection 17).
Upregulation of ApoD by androgens is well documented
in different preparations like breast explants, male genital
fibroblasts or primary epithelial cells from male axillary apocrine
glands. This regulation is mediated by nuclear androgen receptor
(AR), andApoD is being used as anAR activity assay (Figure 5B).
Estrogens and progesterone, alone or in combination, also
change ApoD expression in several experimental settings, with
more variation in the final outcome depending on cell type
(e.g., breast cancer cell lines up-regulate ApoD upon exposure
to 17β-estradiol, while prostate cancer cell lines down-regulate
it, Supplementary Table 17). Sex hormone-regulation of ApoD
is also present in birds, in the context of oviposition cycles or

egg fertilization, thus representing relevant biological stimuli
for ApoD spatiotemporal regulation throughout evolution
(Figure 5, Supplementary Table 10).

Expression in the nervous system (Supplementary Table 11)
has been amply explored for ApoD, with primary publications
doubling those devoted to other tissues or systems (Figure 4).
All evidences support a prominent and consistent ApoD
expression in the nervous system, where myelinating glial
cells (oligodendrocytes and Schwann cells) constitute the main
sites of expression in control conditions, followed by a more
disseminated expression in astrocytes. ApoD protein abundance
in the nervous system is accounted for by the fact that
ApoD associates to myelin itself, a structure representing a
large proportion of the vertebrate nervous system volume. As
mentioned above, only subsets of cells express ApoD at a given
time or location for each cell type (Reference Collection 16,
Supplementary Table 4).

In addition to glial cells, ApoD has been found in
meninges and the vascular system of the nervous system
(Supplementary Table 11), particularly in pial and perivascular
cells (mural cells or pericytes) associated to the capillary beds.
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During mouse embryogenesis, ApoD has been detected in both
pericytes and endothelial cells, andmRNA expression in the latter
is under the control of Wnt/β-catenin signaling during the time
interval of blood-brain-barrier formation (Figure 5B). ApoD-
positive pericytes and other perivascular cells are also reported
in the adult nervous system. RNAseq analyses of acutely isolated
cortical cells show endothelial cells as second to myelinating
oligodendrocytes in ApoD enrichment.

Although neuronal expression has been subject to debate
(Supplementary Table 11), unambiguous detection of ApoD
mRNA in neurons has been reported only in the developing
brain. In contrast, detection of ApoD protein in some neurons
has been reported at various ages in healthy control situations,
while this finding is more abundant upon aging or disease.
Neuronal uptake of ApoD upon disease has a certain degree of
specificity. It is frequently found in the brain of Alzheimer’s,
but not in Parkinson’s disease patients. Animal models of brain
traumatic injury, stroke and Niemann-Pick type A disease do
show neurons that have internalized ApoD protein, while they
are not found in the Niemann-Pick type C mouse model.
Transfer of ApoD from astroglial cells to neurons has been
demonstrated in cell culture preparations, and shown to be
mediated by extracellular vesicles (Supplementary Table 17; see
section Cellular Trafficking).

A well-established fact with strong support from different
studies is that ApoD expression increases throughout brain
aging (Reference Collection 18, Supplementary Tables 4, 11),
a pattern conserved in several species analyzed with just one
exception: a study documenting a decrease in ApoD mRNA
in the aging avian hippocampus. A higher ApoD expression
in cortex and brainstem in comparison with hippocampus
or cerebellum are well-supported regional differences within
the brain (Supplementary Table 11). In the highly-expressing
prefrontal cortex, the increase of ApoD mRNA and protein
throughout life positively correlates with proteins involved in
antioxidant defense.

The expression data obtained from healthy individuals is
coherent with an ApoD gene response to diverse experimental
stress or injury paradigms (Reference Collections 19–20,
Supplementary Table 4) that include oxidative stress (OS),
peripheral nerve or traumatic brain injury, kainate excitotoxicity,
damage by middle cerebral artery occlusion or by viral infection
and experimental inflammation. All of the above results in
increased ApoD expression in vivo. This ApoD stress response
is mostly, but not exclusively, documented in the nervous
system (e.g., OS-triggered upregulation is also observed in
the cardiovascular system). These patterns of response can be
extended to the many disease situations reviewed in section
ApoD-Disease Relationships. In addition to the abundant
correlative data from human diseases, experiments in animal
models of disease analyzed in vivo, primary cell cultures
and cell lines support a major conclusion: ApoD is a key
player in the endogenous response to a variety of potentially
harmful stimuli. The damage and stress responsive p73/p63
and JNK pathways have been demonstrated to up-regulate
ApoD (Supplementary Tables 16, 17 and Figure 5), while
the particular signaling cascades regulating ApoD upon other

stress or inflammation inducers (e.g., H2O2, UV light or LPS)
remains to be elucidated. Not all stressful conditions trigger
ApoD expression (Supplementary Table 17), underscoring the
specificity of pathways regulating ApoD (Figure 5). Moreover,
a fine regulation of ApoD upon OS seems necessary, since
it involves various non-exclusive mechanisms like DNA
demethylation, the use of alternative promoters or 5′-UTR
specific mRNA variants (see section Gene Data and Genomic
Properties).

Nutritional and metabolic states also regulate ApoD
expression (Reference Collection 21, Supplementary Table 4),
and ApoD upregulation under caloric restriction or ADCY5
loss-of-function seems to be part of a common signature leading
to lifespan extension. Curiously, these results derived from
in vivo studies agree with ApoD upregulation upon serum
starvation in cell culture systems (Reference Collection 22,
Supplementary Table 4). New studies on how metabolic
switches can modulate ApoD in different contexts, and
searching for the specific signaling pathways that trigger ApoD
expression are therefore valuable. A particular lipid-managing
pathway is known to control ApoD expression: ApoD is
a target gene for LXR in liver, skeletal muscle, adipocytes
and endothelial cells, thus becoming part of the response to
oxysterol stimulation.

Pathways involved in development and cell
differentiation are also known to regulate ApoD expression
(Reference Collection 23; Supplementary Tables 4, 16, 17).
In addition to its regulation by the Wnt/β-catenin pathway
mentioned above, ApoD is downstream of Sox9 during
chondrogenic differentiation, and of PACAP/Erk signaling
during adipocyte differentiation. Also, particular cell-cell
interactions regulate ApoD expression in one of the cellular
partners, like endothelial-mural cell interactions relevant
during the angiogenesis process. In this scenario, ApoD is
downregulated in mural cells by contact-dependent (Notch-3)
and contact-independent mechanisms.

Finally, confluency and senescence in cell cultures
also trigger ApoD expression (Reference Collection 22,
Supplementary Table 4). These culture conditions parallel
steady-state situations of cells in their physiological tissue
environment and the in vivo upregulation by aging, respectively.
Both conditions concur with a halt in cell division, as it is also
the case for serum starvation conditions. The good prognosis
of some types of cancers where ApoD increases, also relates its
expression to low cell-division rate (see section ApoD-Disease
Relationships). Retinoic acid induction of ApoD expression,
mediated specifically by RARα in breast cancer cells, correlates
with the anti-proliferative action of this signaling pathway.
However, the potential role of ApoD in regulating cell division
(see section Protein Physiology) must be dependent on the
physiological/pathological context. For example, in the model of
pericyte-endothelium interactions mentioned above, mural cells
decrease ApoD expression upon interaction with endothelial
cells, when they would stop dividing to generate mature
capillary structures.

Figure 5 summarizes stimuli regulating ApoD expression and
the particular upstream signaling pathways known to date.
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ApoD-Disease Relationships
The reports in this section either study the expression of ApoD
in response to disease and therapies, or evaluate association
of ApoD gene variants with disease. Information was accrued
from a total of 216 primary publications (Figure 4B; details in
Supplementary Table 18).

That ApoD is part to the endogenous response to a wide
range of diseases, with diverse primary causes, is uncontentious.
Data support the existence of common factors underlying
diverse disease situations that cause ApoD expression changes,
and OS is the strongest candidate. The ApoD upregulation
upon experimental stress or injury reviewed above is coherent
with prominent examples concurring in the nervous system
(Reference Collection 27, Supplementary Table 5), where 85%
of 66 reports on degenerative/psychiatric diseases or naturally
occurring injury identify an over-expression of ApoD. Exceptions
are the down-regulation observed in neurotransmission-centered
diseases, like depression and a DOPA-decarboxylase deficiency.

Cancer is the other major disease where changes in ApoD
expression have been analyzed (82 reports). A clear negative
correlation between ApoD expression and malignancy has
been found in nervous system tumors, fibrosarcomas, breast,
colorectal, hepatic, renal and cervical cancers. The general
association of a good prognosis with high ApoD expression
strongly suggests a protective anti-tumoral function for this
Lipocalin. While studies of prostate cancer have not evidenced
unambiguously such a pattern, some studies show regional
ApoD expression differences (high in juxta-tumoral tissue)
that are still compatible with a defensive tissue response to
neoplastic transformation. ApoD tumor-suppressing activity has
been experimentally tested and an inverse relationship between
ApoD promoter methylation, ApoD expression and outcome
is supported by various reports (Supplementary Table 18).
Whether a common mechanism of ApoD function can promote
survival of damaged postmitotic cells in neurodegenerative
diseases, and also prevents proliferation of cancerous cells
deserves further analysis.

Cardiovascular and metabolic diseases (particularly diabetes)
as well as infection or injury, are also accompanied by ApoD
upregulation. Again, OS might be a common link to ApoD
response to these diseases, for instance in atherosclerotic plaques
depending on disease progression, or upon oxidative degradation
of glycated proteins in diabetes.

In contrast to the many diseases where ApoD expression
changes have been reported, few genetic variations of ApoD have
been widely or robustly linked to disease risk or prognosis (see
section Gene Polymorphisms and Supplementary Table 18).
Among the few cases reported, it is striking that most of them
occur in non-coding sequences (introns or UTRs) revealing that
pathogenic variations in ApoD protein sequence must be too
deleterious to survive in extant populations.

Cellular Trafficking
The consistent finding of ApoD in body fluids and the signal
sequence present in the translated polypeptide indicate that
ApoD is exocytosed from cells expressing the protein. A
consistent set of experimental work supports the association

FIGURE 6 | Schematic representation of ApoD subcellular traffic. A model of

an ApoD-expressing cell is represented. Canonical exocytosis through the

RER-Golgi pathway generates the mature, glycosylated (red dots) protein. The

tetrameric form identified in the breast cyst fluid is represented as the format

detected in extracellular fluids. Once at the plasma membrane, ApoD can be

endocytosed (by non-expressing cells as well) and targeted to lysosomes and

autophagolysosomes. When endolysosomes develop into multivesicular

bodies, ApoD would be carried on the outer surface of exosomes. Finally,

ApoD can be transferred to HDL during their biogenesis, or during their

lipid-efflux activity (upon HDL-receptor interaction).

of ApoD to the rough endoplasmic reticulum (ER), the signal
peptide removal in the protein sorting process, the N-linked
oligosaccharide modification carried out in RER-Golgi, and
a secretion of the mature glycoprotein to the extracellular
environment in several tissues and cultured cells. All these data
make ApoD a typical soluble extracellular protein undergoing a
canonical secretory pathway, a consensus attained by subcellular
localization prediction algorithms and data present in gene
ontology databases (see Methods). Additionally, subcellular
traffic of ApoD can also lead to its exportation out of the cell in
different formats that include ApoD tetramers, HDL-associated
ApoD and extracellular vesicle-associated ApoD (Figure 6).

However, several reports have interpreted their findings about
ApoD biological roles on the basis of protein partitioning in
cytoplasm and/or nuclear compartments. Aside of technical
issues questioning those results, some reports use overexpression
of fusion-tagged proteins, which are known to undergo unnatural
compartmentalization or degradation. Also, strategies based
on in vitro interaction assays that were designed for proteins
naturally occurring in the cytoplasmic or nuclear compartments
(like the classic two-hybrid assays) preclude the finding of
functionally relevant interactions for ApoD. An alleged cytosolic
ApoD would likely be non-glycosylated and improperly folded in
the absence of its intramolecular disulfide bonds.

Intracellular Traffic
A number of studies have shown the presence of ApoD
in RER and vesicular compartments of different eukaryotic
cells. Immunoelectron microscopy (EM) of nervous system
cell types has unambiguously identified ApoD in the outer
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nuclear membrane-RER membrane complex and in lysosomes.
Lysosomes isolated from placental cells, monitored with
biochemical techniques, contain ApoD. Likewise, clathrin-coated
vesicles isolated from hen’s ovaries also contain ApoD.

Recently, the subcellular location of ApoD has been studied
in detail in basal conditions and under experimental stimuli,
either by immunogold-EM microscopy, or by fluorescence
immunocytochemistry combined with established cell
compartment markers and monitored by well-documented
standardized confocal microscopy. These studies have detected
the presence of ApoD in RER, the Golgi apparatus, endosomes,
lysosomes, autophagosomes, multivesicular bodies, as well as
in the outer side of plasma membrane, clathrin-coated vesicles
and caveolae. The protein does not localize to mitochondria
or peroxisomes, and has not been immunolocalized inside cell
nuclei. Lysosomal ApoD localization has been demonstrated
in astrocytes, oligodendrocytes, Schwann cells, fibroblasts,
and neurons.

Although those experiments were performed at a fixed time
point, serial-time experiments demonstrated that the presence
of ApoD in the endosome-lysosome compartment is stable
and dynamically enriched upon OS exposure. Long-lasting
lysosomal location of ApoD depends on its glycosylation and
hydrophobicity, as mutated bacterial recombinant ApoD is
maintained in lysosomes only transiently. Targeting of ApoD to
the lysosomal compartment occurs not only in ApoD-expressing
cells, but also in non-expressing neurons upon exposure to
exogenous ApoD or when co-cultured with astrocytes. The fact
that ApoD is a stable component of subsets of lysosomes at a
given time, connectsmany of the apparently diverse physiological
roles of ApoD (see section Protein Physiology).

References contributing to this section are listed in
Reference Collection 33, Supplementary Table 6.

Exocytosis
It is undoubtedly established, as discussed above, that ApoD
is being secreted to the extracellular environment following
a canonical secretory pathway (Figure 6). However, whether
this pathway leads to actual secretion of ApoD in monomeric
form has not been established. In addition, extracellular
vesicles (EVs) constitute an alternative exocytotic path for
ApoD (see section Binding to Lipid-Rich Structures). Proteomic
analyses have identified ApoD in EVs from human plasma
and CSF. Experimental characterization of EVs produced by
a human astroglial cell line and by mouse primary astrocytes,
identified the ApoD-positive vesicles as exosomes originated
from multivesicular bodies, according to their size (∼100 nm),
density (1.17–1.23 g/ml) and molecular markers. When exported
by glial cells in exosomes, ApoD must be located on the external
surface of these EVs (Figure 6).

A third mechanism by which ApoD becomes extracellular
is by traveling in HDL particles. ApoD-HDL association can
take place during HDL biogenesis, or ApoD can associate to
HDLswhile the lipoparticles bind to cell membranes and perform
their lipid efflux activity. However, these mechanistic details and
the particular subcellular origin of the HDL-associated ApoD
detected in body fluids need to be investigated. The plasma

membrane location of both ApoA-I dependent HDL biogenesis
(Denis et al., 2008) and ABCA1-dependent cholesterol efflux
activity (Phillips, 2018), makes it a likely location for the origin
of ApoD-positive HDL particles (Figure 6).

References contributing to this section are listed in
Reference Collection 34, Supplementary Table 6.

Endocytosis
The immunolocalization of ApoD in cells not expressing the
gene (see section Tissue and Cellular Expression Patterns and
Response to Stimuli), as well as the internalization of ApoD
by cells cultured in the presence of its native or recombinant
forms, are the experimental basis supporting the endocytosis
of this Lipocalin. It takes place both under control conditions
and in response to specific biological stimuli. ApoD endocytosis
appears as a general property of this protein, as it has been
reported in birds and mammals. Particularly, in glia-neuron co-
cultures ApoD is found to be exclusively transported in EVs from
astrocytes to neurons, where it gets internalized. The current
view of several extracellular formats of ApoD (HDL, EVs or
tetramers in solution) makes it worth to study whether different
membrane interactionmechanisms or endocytosis paths are used
for ApoD internalization.

ApoD association to the extracellular side of the plasma
membrane is coherent with both, its traffic from RER to
plasma membrane by the canonical exocytotic path and with
its cell contact before internalization. ApoD-plasma membrane
interaction has been experimentally demonstrated and is
currently considered an established localization for ApoD in
human cells (https://www.proteinatlas.org/ENSG00000189058-
APOD/cell). Whether ApoD-membrane association is mediated
by protein-protein or protein-lipid interactions requires further
research (see sections Protein-Protein Interactions and Binding
to Lipid-Rich Structures). Figure 6 summarizes ApoD intra and
extracellular traffic as currently known.

References contributing to this section are listed in
Reference Collection 35, Supplementary Table 6.

Tissue and Organ Function
The reports tagged in this section were selected because
they study the function of ApoD by experimentally altering
ApoD natural expression levels, or by subjecting cells or
tissues to defined concentrations of the protein in a controlled
experimental situation. A critical review of these reports aims
at uncovering common and distinct roles for ApoD in different
physiological organ and cellular systems.

ApoD Functions in Cardiovascular System
The process of angiogenesis has been a focus of interest to study
the role of ApoD, given its reported expression by blood vessel
mural cells (MCs: smooth muscle cells and pericytes). Both in
embryonic development and during the remodeling process of
wound healing, ApoD increased expression is causally linked to
undifferentiated mural cells migration, though is not consistently
related to cell proliferation (as it is often found in cancer
cells; see section ApoD-Disease Relationships). A crosstalk
between endothelial cells (ECs) and MCs governs the switch of
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the angiogenic cellular process from a proliferative/migratory
state to a differentiation state, characterized by quiescence and
adhesion. This switch is essential for vessel morphogenesis.
Blood vessel angiogenesis involves reactive oxygen species (ROS),
EC-derived PDGF-BB, JAGGED1 and NO, as well as MC-
expressed NOTCH3. These secreted and cell contact-mediated
signaling downregulates ApoD in MCs, a process linked to blood
vessel maturation. Experimental manipulation of ApoD levels
demonstrates that ApoD regulates the adhesion of MCs to the
extracellular matrix, and low levels of ApoD promote Zyxin- and
Vinculin-positive focal adhesion contacts. Concordant effects
have been reported in retinal choroid vessels: ApoD-KO mice
show neovascularization with increased permeability.

Myocardial cells show slight expression of ApoD under
normal circumstances, but the tissue surrounding an
injured/infarcted area promptly upregulates ApoD. The study of
this process in ApoD-KO mice indicates that ApoD is associated
to protection from cell death in the injured tissue. This ApoD
protective role on cardiomyocytes is dependent on a proper
protein fold and strongly correlates with its antioxidant activity
(see sections Binding to Lipid-Rich Structures and Protein
Physiology). In this experimental paradigm, the protective
activity is attained by increasing ApoD in plasma, though it is
unclear whether ApoD levels are also elevated in the infarcted
tissue. We thus propose that ApoD function in myocardial
tissue protection and remodeling might be based on: (1) A
modulation of cell viability in cardiomyocytes and vessel ECs,
possibly due to internalization of plasma-derived ApoD, and/or
(2) a regulation of cell differentiation related to the angiogenic
response described above, organized by ECs and MCs.

References contributing to this section are listed in
Reference Collection 36, Supplementary Table 7.

Roles of ApoD in Metabolism Regulation
The role of ApoD in metabolism has been analyzed in vivo
by using two different ApoD-KO mouse lines and a transgenic
mouse (hApoD-Tg) driving the expression of human ApoD
under the control of the human THY1 gene. This hApoD-Tg
mouse ectopically expresses hApoD mostly in neurons, but the
protein is present in plasma and other organs physiologically
relevant to metabolism. Also, adenovirus-driven liver production
of mouse ApoD has been used as a paradigm of acute
overexpression, leading to elevated protein levels in plasma.

Themetabolic consequences of altering ApoD levels have been
evaluated mostly in plasma and liver, although also in retina, and
measured in a variety of experimental settings: fasting or non-
fasting conditions, different feeding diets, and different sex or
age of animals. No clear pattern can be extracted for the role
of ApoD on carbohydrate metabolism, where reports describe
varied outcomes on glucose tolerance or insulin resistance
depending on experimental conditions. Some consistency is
observed in the effects on triglycerides (TG): Loss of ApoD
leads to decreased hepatic TG content and increased plasma
TG, while overexpression leads to elevated TG levels in liver
and unaltered or decreased triglyceridemia (depending on the
strategy used for ApoD overexpression). On the other hand,
variations in plasma cholesterol levels are also reported, with

various outcomes upon ApoD loss or overexpression. Also,
association of ApoD polymorphisms have been found with
both increased and decreased HDL-cholesterol species. The
finding of ApoD being able to mediate binding of HDL to
LDL, and of HDL particles to actively dividing carcinoma cells,
suggests that it can regulate lipid traffic indirectly by influencing
lipoparticle dynamics. Variations in local physiological contexts
of this traffic mechanism might contribute in very different
ways to the final systemic outputs measured in the experimental
settings studied in vivo. However, more work is needed to
derive definitive evidence for understanding the role of ApoD in
lipid and carbohydrate metabolism. So far, the relevant results
indicate that the functional relationship of ApoD with various
metabolic parameters is, at most, indirect and dependent on
other physiological conditions.

References contributing to this section are listed in
Reference Collection 37, Supplementary Table 7.

ApoD Functions in Skeletal System
Bone cells, from bone marrow stem cells (MSCs) to
osteoblasts, are reported to express ApoD in cell culture
systems (Supplementary Tables 16, 17), and two reports have
focused on testing the effects of experimental manipulations
of ApoD levels on bone formation and remodeling. Relevant
sex and hormone-related patterns have been found using
ApoD-KO or hApoD-Tg mice and cell culture systems. With
both approaches ApoD appears as an osteogenic factor.
Lack of ApoD in mice reduces bone volume and thickness.
These effects are observed in trabecular and cortical bone in
females, but only in cortical bone in males. Enhanced bone
turnover in female ApoD-KO mice is indicated by increased
osteoblast surface and osteoclast numbers. Primary MSCs
from ApoD-KO mice have lower survival and proliferation,
and increased osteoclastogenesis, but an uptake of exogenous
hApoD partially reverts their osteogenic potential. When
osteoporosis is modeled by glucocorticoid (dexamethasone)
treatment after osteogenic induction of MSCs, overexpression
of ApoD reverts the effects of dexamethasone, as measured
by PI3K/Akt pathway activity and downstream osteogenic
gene expression, thus promoting the osteogenic process.
Osteogenesis is accompanied by SOD and catalase upregulation,
and oxidative damage is associated with glucocorticoid-induced
osteoporosis, thus linking ApoD function in this context to its
antioxidant activity.

References contributing to this section are listed in
Reference Collection 38, Supplementary Table 7.

ApoD Functions in the Nervous System
As presented above, the current evidence supports a general
view in which non-neuronal cells become the source of
ApoD in response to different stimuli, and neurons count
on the Lipocalin for its cellular functions by internalizing
ApoD. Neurotransmission is one of those functions
modulated by ApoD. Analysis of downstream effects in
gene expression in the brain of ApoD-KO or hApoD-Tg
mice, reveal an enrichment of genes related to synaptic
transmission. Particularly, changes in glutamate, somatostatin,
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dopamine and acetylcholine neurotransmission have been
independently documented by receptor binding assays, HPLC
determination of neurotransmitters or their catabolites, or
receptor immunodetection. These effects might underlie the
behavioral phenotypes related to locomotor function, motor
and spatial learning, and retinal function observed in mice with
altered expression levels of ApoD.

ApoD addition to cultured neurons results in neuritogenesis
and synaptogenesis, which are crucial during neuronal
development and underlie neuronal plasticity of established
circuits. Neuritogenesis is promoted in immature neurons in
culture by the combined addition of ApoD and retinoic acid in
the absence of serum. Experiments combining ApoD addition
with receptor antagonists indicate that ApoD-dependent
neurite extension can be mediated by LDLR, and possibly
also by CXCR4 activation, pathways known to be involved in
neuronal differentiation.

Another general function of ApoD, extensively analyzed in
loss-of-function and transgenic mice, is its role in the glial
response to dyshomeostatic changes in the nervous system due
to oxidative, metabolic or traumatic stresses. Many studies have
reported an acute regulation of ApoD expression under these
insults, either experimental or triggered by disease (see sections
Regulation of Expression and ApoD-Disease Relationships),
supporting an overall neuroprotective role now widely accepted
as a functional label for this Lipocalin. Both astrocytes and
oligodendrocytes express and secrete ApoD in response to
stress. The protein exerts an autocrine and paracrine neural
tissue protection, which results in functional preservation of
OS-challenged dopaminergic systems, of neurons affected by
kainate excitotoxicity or suffering from Aβ-related degeneration.
Astrocytes, although not an abundant source of ApoD in
basal conditions, quickly respond to OS with a JNK-dependent
expression of ApoD, which is secreted to the extracellular milieu
as cargo on the surface of extracellular vesicles (Figure 6). The
protein is internalized by glial and neuronal cells, improving their
viability thanks to a control by ApoD of OS-dependent lipid
peroxide accumulation. Moreover, a surge of ApoD in a stressed
neural tissue behaves as an off-signal limiting the dimension and
duration of gliosis and inflammation. The inflammatory response
is linked to OS due to increased PLA2 expression and AA
production, among other factors. Quenching of AA is proposed
as part of this inflammation control by ApoD (see section Protein
Physiology).

A long-lasting homeostasis maintenance role for ApoD has
been also proposed in the process of physiological aging of the
nervous system, where this protein has been shown as the most
consistently overexpressed in primates and rodents. Also, life-
expanding strategies in model organisms, like caloric restriction,
promote ApoD expression not only in the nervous system but
also in cardiac and skeletal muscle (Supplementary Table 11).
The homeostatic role predicted by the expression pattern
is supported by the phenotypes exhibited by aged ApoD-
KO mice, which do not display altered lifespan but do
present signs of early neurodegeneration at 3 months of
age, with oxidative damage and proteostasis defects in cortex
and hippocampus. These alterations underlie cognitive defects

and a hyperkinetic phenotype evident in old (21 months)
ApoD-KO mice.

The predominant expression of ApoD in myelinating cells
under control conditions (oligodendrocytes in CNS and Schwann
cells in PNS; see section Regulation of Expression) has prompted
experimental studies, using cultured primary cells and ApoD-
KO and hApoD-Tg mice, that clearly support the implication
of ApoD in the myelination process during development, in
the lifelong maintenance of the myelin sheath, and in the
remyelination that occurs in response to environmental insults.
These processes have been analyzed in the mouse brain corpus
callosum as well as in the peripheral sciatic nerve. ApoD
is required for a proper and timely response to a crush
injury in PNS nerves, helping to recover locomotor function.
ApoD promotes myelin clearance and regulates angiogenesis
and macrophages recruitment to the wound site, processes
that are essential for subsequent axonal regeneration and
remyelination. ApoD contributes to optimize myelin clearance,
carried out by transdifferentiated Schwann cells and infiltrating
macrophages, through two complementary actions: control of
lipid-mediated inflammatory signaling and optimization of the
phagocytosis process itself. Data indicates that ApoD regulates
and control the tissue levels of AA and lysophosphatidylcholine
(both in vitro-demonstrated ApoD ligands, Table 2). They are
needed for an adequate cytokine inflammatory response and
recruitment of bone marrow-derived macrophages. Although
macrophages do not express ApoD, the levels of this Lipocalin
in the injured nerve environment influence their phagocytic
activity, since myelin-associated ApoD is phagocytosed as
well. Flow cytometry experiments with primary macrophages
demonstrated that ApoD affects the initiation and efficacy
of phagocytosis.

A dynamic spatiotemporal regulation of ApoD expression
is apparent in myelinating cells, with a prominent increase at
the height of postnatal myelination followed by continuous rise
throughout life. The absence of ApoD results in a defective
and irreversible compaction, mostly in the extracellular leaflet
of both CNS and PNS myelin. This altered myelin structure
results in a decreased conduction velocity, reported for the
sciatic nerve, and compromises motor learning tasks. As
downstream effects, both the mTORC1-dependent lipogenic
switch and the ERK-mediated growth pathways are altered
in the absence of ApoD. A lack of myelin compaction
is due to inadequate removal of myelin glycocalyx, mostly
affecting gangliosides GM1–2b, GD1b, and GT1b content and
distribution. This role of ApoD on glycocalyx physiology was
demonstrated to be linked to the adequate subcellular localization
of lysosomal and plasma membrane sialidase (Neu1 and Neu3)
and of the regulatory Fyn kinase. This mechanism requires
preservation of lysosomal membrane integrity (see section
Protein Physiology).

References contributing to this section are listed in
Reference Collection 39, Supplementary Table 7.

Protein Physiology
In this final section we aim at discussing the available knowledge,
derived from state-of-the-art research critically assessed in this
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review, to give a plausible answer to the central question
posed in the Introduction: In order to achieve its pleiotropic
roles, does ApoD moonlight between different biochemical
functions when expressed in different contexts, or instead ApoD
displays a distinctive biochemical role that works on varied
physiological situations?

The presence of ApoD in extracellular formats such as
lipoprotein particles and exosomes evidences its ability to
associate to higher-order lipid structures. According to our
systematic search no unambiguous evidence exists for the
secretion of protein monomers in native conditions. Non-
denaturing electrophoresis analysis of CSF revealed only high-
molecular weight ApoD oligomers, while in plasma it has been
repeatedly identified in lipoprotein particles preparations. In the
particular case of BCF, where an extremely high concentration of
ApoD is produced, the protein assembles in tetramers through
protein-protein interactions. Finally, ApoD secreted by cultured
astrocytes is internalized by neurons only if the conditioned
extracellular media has not been depleted of extracellular vesicles.
A protein region encompassing the first three β-strands, highly
conserved in chordates (Figure 2A), and several hydrophobic
patches located at the protein pocket entrance (Figure 3E) are
proposed to underlie ApoD self-association and ApoD-lipid
structure interactions, respectively.

These results shed doubts on a view of ApoD widely cited (a
functional tag in most databases for this Lipocalin) as a “lipid
transporter,” a task that a secreted globular monomer could
easily achieve.

Unquestionably though, it is the ability of ApoD to bind small
hydrophobic ligands of varied shapes inside its β-barrel pocket.
However, when free ligands (e.g., AA) have been mechanistically
related to ApoD function, binding data are compatible with a
buffering or quenching function, or a very local shuttling of
the ligand at the most, rather than to a generalized long-range
ligand transport between cells. A curious case is the expression
of ApoD in feather follicles of pheasants, only in skin areas
with specific plumage colors, suggestive of a pigment-retention
function. Similarly, the ligand bound to ApoD in sweat from
human axilla could be the source of slowly released volatile odor
molecules. These ligand-retention functions compare well with
that of crustacean ApoD homologs, also linked to their carapace
coloration (Wade et al., 2009).

In a different context, ligand shuttling has been repeatedly
proposed for ApoD in the cholesterol transfer to LCAT.
However, ApoD has been demonstrated not to bind cholesterol,
not to contribute to LCAT-cholesterol transfer and not to
show a direct interaction with LCAT. On the contrary,
experimental data suggests that ApoD exerts “stabilizing effects”
on LCAT activity. After reviewing the relevant information
on this issue, we propose a different view that can guide new
testable hypotheses: ApoD binds lysophosphatidylcholine
(LPC), a LCAT reaction product that exerts a negative
feedback on LCAT activity. By quenching LPC, ApoD
would maintain LCAT activity over a wide range of LPC
product concentration. This specific LPC quenching function
is compatible with the small amounts of ApoD recovered
from HDLs, since only a transitory presence of ApoD

might be needed when LCAT is adding cholesterol to the
lipoparticle. As for the HDL-LDL interaction (see section
Roles of ApoD in Metabolism Regulation), the putative
consequences of ApoD presence in HDLs on cholesterol
management in the organism would therefore be of an indirect
nature, and could explain the lack of correlation between
ApoD and cholesterol content in many physiological or
pathological situations.

A fundamental advance in defining ApoD molecular function
was its role in organismal protection against OS, achieved by a
control of themagnitude of lipid peroxidation, measured at tissue
or cellular levels. This role has received strong experimental
support from in vitro biochemical assays, cellular experimental
systems, and in vivo experiments with animal models where
ApoD expression was manipulated. Moreover, further validation
for this role comes from experimental approaches testing the
expression of human ApoD in evolutionary distant organisms.
Overexpression of human ApoD in Drosophila increases lifespan
in both normal and pro-oxidative experimental conditions. Also,
replacement in plants of the native chloroplast Lipocalin (LCNP)
by human ApoD, targeted to thylakoids, rescues drought and
OS sensitivity of the mutant. Lipid peroxidation control is
evidenced in both reports as the mechanism mediating the
organism response.

An ApoD antioxidant mechanism has been demonstrated
using oxidized AA-derivatives in solution or auto-oxidized
liposomes. ApoD is able to reduce free radical-generating lipid
hydroperoxides to inert lipid hydroxides. In this reaction, the
residue Met93 exposed on one of the surface hydrophobic
patches of the protein (Figure 3C) is converted to Met93-
sulfoxide. This residue is preserved in ApoD chordate orthologs
(Figure 2A) and contributes to the functional differentiation
of ApoD from its closest Lipocalin relative, RBP4, where that
position is occupied by charged (Lys or Arg) residues (Diez-
Hermano et al., 2021). To maintain ApoD antioxidant activity,
the action of a methionine sulfoxide reductase (MRS) would
be required. However, oxidized ApoD tends to self-associate.
Interesting data from Alzheimer’s disease brain samples reveal
that hippocampal (but not cerebellar) MRS levels decrease with
disease progression, while ApoD oligomerization increases. This
suggests that the ApoD redox cycling might be blocked if Met93
does not return to its native form and the protein self-associates.
This effect sets an upper limit to ApoD antioxidant activity, since
it would result in the consumption of ApoD-Met93.Whether this
depletion triggers a feedback regulatory loop promoting ApoD
gene expression under OS situations in different physiological
and pathological contexts would be an interesting aspect to
explore. In this context, we must keep in mind that ApoD
structure is stable under pro-oxidative situations, making it
suitable for the biological contexts where ApoD function is
beneficial (from neurodegenerative conditions to cancer). Also,
ApoD ligand binding ability is preserved at low pH and its
glycosylation prevents a rapid degradation, both good assets to
perform its ligand binding and antioxidant functions inside the
endolysosomal compartment.

The direct antioxidant activity of ApoD and its demonstrated
stable location in the lysosomal compartment put forward a new
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view of ApoD protein physiology that holds high explanatory
power in the understanding of a number of apparently varied
ApoD roles.

ApoD control of redox state can be performed directly on
both, cell membranes and lipoprotein particles. The unilamellar
vesicles where ApoD-reducing activity has been demonstrated
are a good experimental model for both types of lipid-based
structures. Lipid peroxide products are mainly derived from
cellular membranes, which are a major target for cell-generated
ROS. The ability of ApoD to keep low levels of membrane-
originated lipid peroxides, together with the positive correlation
of ApoD content in HDLs with their antioxidant capacity, and
the promotion of HDL-LDL interaction by exogenously-added
native ApoD, support the protective action of ApoD in both types
of lipidic structures (membranes and lipoparticles). Additional
evidence comes from the existence of ApoD insect homologs
stably anchored to cell membranes (Ganfornina et al., 1995; Ruiz
García, 2013), which suggests that membrane interaction is part
of an ancestral ApoD property.

In addition to the immediate effects on the redox state of
membranes and other lipid structures, ApoD can give rise to
indirect effects when performing its antioxidant function in
the lysosome. The lysosome is considered a “lipid-controlling”
cellular hub. ApoD maintenance of lysosomal membrane
redox balance and integrity results in the control of plasma
membrane composition. This is for example the case for
plasma membrane glycolipids, with important consequences for
membrane-membrane interactions like those required in the
process of myelin compaction. Lysosomal membrane stability
can, by extension, influence the lipid export/import balance
in cells, another way of ApoD indirectly conditioning the
organism lipidmetabolism. Altered ApoD expression in response
to mutations of the lysosomal cholesterol transporters (as in
Niemann-Pick type C disease) supports this notion. Plasma
membrane modulation is also coherent with the observed
correlation of ApoD content in HDLs and their ABCA1-
dependent cholesterol efflux capability in macrophages, or the
subtle changes in lipid content in lipoprotein particles of
subjects with ApoD polymorphisms. Through its influence on
membranes and lipoparticle dynamics, without a need of binding
cholesterol, ApoD canmodulate its flux within and between cells.

Additionally, the lysosome is a “cell death/survival controller”
by its fundamental recycling, detoxifying and proteostatic
functions. Lysosomal ApoD would condition whether a failure
in the lysosomal compartment takes place upon a wide array
of disease/injury situations, thus contributing to the final cell
fate. This ApoD-dependent cell fate decision can be extended to
developmental processes as well.

Finally, a role of ApoD in innate immunity has been frequently
reported, while no mechanistic link to the protein physiology was
proposed.We suggest that ApoD, with its lysosomal optimization
mechanism, can modulate the efficiency of phagocytic cells,
like it has been demonstrated in injury-recruited macrophages,
therefore influencing many of the maintenance and immune
responses of the organism.

This view makes us to propose that ApoD lipid-binding
properties are more related to management of lipid-based

structures composition (membranes or lipoparticles) and a
control of their redox state, than to lipid transport. Whether
similar membrane-stabilizing properties endow ApoD-positive
exosomes with resistance properties to be efficient cargo
transporters in disease or tissue damage situations, would be
worth studying.

A different aspect of ApoD physiology scarcely studied is
the role of its demonstrated N-linked glycosylation, which
has been proven to be tissue and species specific, and to be
essential for both, ApoD interaction with lipoparticles and for
its cellular localization in the endolysosomal compartment. This
is particularly important because of the association between
redox signaling and glycan profiles, which in turn could affect
several signaling pathways (Khoder-Agha and Kietzmann, 2021).
In relation to this, modulation of signaling pathways by ApoD
has been confirmed in endothelial cells and osteoblasts (PI3K-
Akt pathway) and nervous tissue (pERK). How ApoD controls
signaling cascades is open to discussion. Although several protein
candidates have been proposed as ApoD membrane receptor,
no clear demonstration is available for a receptor-mediated
signaling transduction. Alternatively, ApoD might not require a
protein receptor and trigger a unique signaling cascade. Instead,
it could be working as a quencher of lipid modulators (e.g.,
AA), or conditioning the membrane partitioning of signaling
complexes that are known to be dependent on membrane
lipids distribution.

In summary, the available information supports a
parsimonious hypothesis for the biological function of ApoD,
with a unique biochemical role related to the management
and redox state of lipid cellular and extracellular structures.
This proposition is compatible with the wealth of experimental
results showing that multiple stimuli in varied cellular contexts
trigger ApoD expression with a tight spatiotemporal regulatory
control. The protein can then become associated with the
challenged membranes or being exported to the extracellular
milieu to act in a paracrine fashion. Both direct and indirect
downstream effects, depending on the cell type affected,
would explain pleiotropy at the organismal level with a single
biochemical function.

The proposed unique molecular mechanism also explains
ApoD biological role in response to tissue/organ damage
and disease, where homeostatic maintenance is disturbed and
ApoD will contribute to restore the equilibrium through tissue
repair/reconstruction. Under this paradigm, we can also explain
ApoD roles in organismal developmental processes implying
building-deconstruction cycles. Figure 7 summarizes the new
view onApoD physiology. References contributing to this section
are listed in Reference collection 40, Supplementary Table 8.

Future Goals for ApoD Biology
In spite of the explanatory power of our proposed biological
role for ApoD, many questions keep been unresolved and many
others are likely to arise, which can spur and guide new research
programs. A few of them follow:

(1) To explore the functional relationship between the protein
antioxidant capacity and the pocket ligand binding. In this
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FIGURE 7 | ApoD physiology summary. (A) Schematic view of the lipid-managing biochemical function of ApoD. The lipid structure depicted can equally represent the

surface of a lipoprotein particle, extracellular vesicle or cellular membrane. ApoD antioxidant activity can be maintained by redox cycling, requiring a reductase activity,

or the cycle can terminate by oligomerization of oxidized ApoD. (B) Summary of global tissue function of ApoD, where it contributes to the turnover and maintenance

of tissues and organs. This equilibrium is reached after developmental processes in which ApoD is also involved, and switches to a different state upon disease, injury

or physiological aging.

respect, the hypothesis of ApoD working on oxidized lipid
“whiskers” (Greenberg et al., 2008; Del Caño-Espinel, 2014)
on cell membrane bilayers or lipoparticles is appealing and
worth contrasting.

(2) To test whether ApoD downstream effects on signaling
pathways rely on a canonical receptor-mediated
transduction, or alternatively they depend on the
modulation of the lipid context of signaling elements
(e.g., PI3K). Findings in Drosophila reveal that loss of
an ApoD homolog alters PI3K association to the plasma
membrane (Hull-Thompson et al., 2009).

(3) To test whether oligomeric vs. monomeric forms of
ApoD underlie its managing function on cell membranes
or lipoparticles.

(4) To characterize the extent of ApoD redox cycle, maintaining
antioxidant ApoD activity thanks to the intervention of
reductases, and the implications of a potential upper limit to
this mechanism due to ApoD oligomerization. This aspect
can be key to fully understand ApoD function in aging
and disease.

(5) To analyze the effects of differential glycosylation on ApoD
interactions and functions.

(6) Recent studies on a Drosophila homolog (Yin et al.,
2021) point to lipid droplets as another higher-order lipid
structure susceptible to be modulated by ApoD. Searching
for lipid droplet-managing functions of vertebrate ApoD is
therefore pertinent.

(1) At a more general tissue/organ level, several functions are
relevant to be studied in more depth, such as the ApoD role
on feather and skin physiology, neuronal synaptic function,
and metabolism.

(8) Finally, it is worth to analyze the potential exchange between
the nervous system and systemic pools of extracellular ApoD
in its different formats, not only to fully understand its roles
in the organism, but also for a potential therapeutic use of
ApoD in nervous system diseases.

ApoD SYSTEMATIC REVIEW. REFERENCE
COLLECTIONS

Reference Collection 1 (McConathy and Alaupovic, 1973, 1976,
1986; Camato et al., 1989; Kamboh et al., 1989; Holmquist, 1990;
Weinberg, 1994; Yang et al., 1994; Holzfeind et al., 1995; Terrisse
et al., 2001; Salvatore et al., 2007).
Reference Collection 2 (Eichinger et al., 2007; Oakley et al., 2012;
Kielkopf et al., 2018, 2019, 2021).
Reference Collection 3 (McConathy and Alaupovic, 1976, 1986;
Bojanovski et al., 1980; Yang et al., 1994; Schindler et al., 1995;
Zeng et al., 1996; Sun et al., 1998; Perdomo and Henry Dong,
2009; Li et al., 2016; Qin et al., 2017).
Reference Collection 4 (Blanco-Vaca and Pownall, 1993;
Holzfeind et al., 1995; Patel et al., 1997; Böttcher et al., 2000;
Nasreen et al., 2006; Bhatia et al., 2012, 2013; Kielkopf et al., 2018,
2019, 2021).
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et al., 1990; Peitsch and Boguski, 1990; Morais Cabral et al., 1995;
Zeng et al., 1996; Goessling and Zucker, 2000; Vogt and Skerra,
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2021).
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2009; Bhatia et al., 2012; Sreckovic et al., 2013; Braesch-Andersen
et al., 2014; Singh et al., 2016; Pascua-Maestro et al., 2018).
Reference Collection 9 (Drayna et al., 1986, 1987; Warden et al.,
1992; Provost et al., 1995; Séguin et al., 1995; Cofer and Ross,
1996; Yoshida et al., 1996; Diez-Hermano et al., 2020; Sałkowska
et al., 2020).
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1996; Do Carmo et al., 2002, 2007; Yamashita et al., 2002; van den
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Tapia et al., 2011; Ammerpohl et al., 2013; Bajo-Grañeras et al.,
2013; Namdar-Aligoodarzi et al., 2015; Diez-Hermano et al.,
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2006; Zhang et al., 2006; Chen et al., 2008; Shibata et al., 2013;
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et al., 1995; Holmquist et al., 1996; Sun et al., 1998; Suresh
et al., 1998; Harding et al., 2000; Koch et al., 2001; Yao and
Vieira, 2002; Baechle et al., 2006; Do Carmo et al., 2009a;
Perdomo and Henry Dong, 2009; Perdomo et al., 2010; Liu et al.,
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2014; Csosz et al., 2015; Waldner et al., 2018; Xu et al., 2018;
Kopylov et al., 2020).
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et al., 2014; García-Mateo et al., 2014, 2018; Hatzirodos et al.,
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Zheng et al., 2015; Li et al., 2016; Lim et al., 2016; Soria et al.,
2017; Desmarais et al., 2018; Flores et al., 2019; Jensen et al., 2019;
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2005; Ishii et al., 2005; Loerch et al., 2008; Rickhag et al., 2008;
Song et al., 2009; Bajo-Grañeras et al., 2013; Germeyer et al.,
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Schlotter et al., 2020).
Reference Collection 17 (Simard et al., 1990, 1991, 1992;
Sugimoto et al., 1994; Patel et al., 1995; Harding et al., 2000; Zhou
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