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Several studies have indicated a positive effect of exercise (especially resistance exercise)

on the mTOR signaling that control muscle protein synthesis and muscle remodeling.

However, the relationship between exercise, mTOR activation and leucine-sensing

requires further clarification. Two month old Sprague-Dawley rats were subjected to

aerobic exercise (treadmill running at 20 m/min, 6◦ incline for 60min) and resistance

exercise (incremental ladder climbing) for 4 weeks. The gastrocnemius muscles were

removed for determination of muscle fibers diameter, cross-sectional area (CSA), protein

concentration and proteins involved in muscle leucine-sensing and protein synthesis.

The results show that 4 weeks of resistance exercise increased the diameter and CSA

of gastrocnemius muscle fibers, protein concentration, the phosphorylation of mTOR

(Ser2448), 4E-BP1(Thr37/46), p70S6K (Thr389), and the expression of LeuRS, while

aerobic exercise just led to a significant increase in protein concentration and the

phosphorylation of 4E-BP1(Thr37/46). Moreover, no difference was found for Sestrin2

expression between groups. The current study shows resistance exercise, but not

aerobic exercise, may increase muscle protein synthesis and protein deposition, and

induces muscle hypertrophy through LeuRS/mTOR signaling pathway. However, further

studies are still warranted to clarify the exact effects of vary intensities and durations of

aerobic exercise training.

Keywords: resistance exercise, aerobic exercise, leucine-sensing, muscle protein synthesis, muscle hypertrophy

INTRODUCTION

Age-related Sarcopenia (ArS) is a phenomenon of skeletal muscle atrophy and functional decline
with advancing age (Bauer et al., 2019). ArS increases the risk of falls, disability and mortality in
the elderly, affects both physical and mental health and quality of life, and is a direct contributor
to rising healthcare costs in the elderly population (Xia et al., 2017a; Seol et al., 2020). Skeletal
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muscle anabolic resistance, the dampened muscle protein
synthesis response to protein ingestion and mechanical tension,
has currently been identified as a major cause of ArS, to
which blunted nutrition-sensing contributes (Zhao et al., 2021).
Moreover, age-related anabolic resistance was considered to be
exacerbated during musculoskeletal disuse and reduced physical
activity (Marshall et al., 2020).

The impaired intracellular induction or propagation of
mammalian target of rapamycin complex 1 (mTORC1) signaling
is a hallmark of anabolic resistance, and thought to be partially a
result of weakened anabolic nutrient sensing (Wilkinson et al.,
2018). Rag GTPase is the mediator of the mTORC1 pathway
in response to nutrient stimulation, specifically the proteogenic
amino acid leucine. Four Rag GTPases (A, B, C, and D)
are expressed in skeletal muscle. RagA-RagC and RagB-RagD,
respectively, from heterodimers to regulate mTORC1 activation
induced by different amino acids (Sancak et al., 2008; Lee et al.,
2018). In response to leucine stimulation, mTORC1 translocates
from the cytoplasm to the surface of lysosomes, interacting
with the active heterodimer formed by GTP-loaded RagB and
GDP-loaded RagD, and then activates its downstream molecular
events (Sancak et al., 2008, 2010). Although mTORC1 signaling
is highly sensitive to changes in leucine levels, mTOR itself is
not a leucine sensor and cannot detect leucine levels in skeletal
muscle cells. Thus, in the process of promoting skeletal muscle
protein synthesis and inducing adaptive hypertrophy mediated
by mTORC1 in response to anabolic stimulation, a leucine sensor
must be involved as a rate-limiting factor. But which proteins
are involved as leucine sensors in skeletal muscle, and how they
participate in regulation is not fully understood (Lushchak et al.,
2019).

To date, Leucyl-tRNA synthetase (LeuRS) and Sestrin2 have
been identified as the leucine sensors, both of which are able
to regulate mTORC1 signaling (Han et al., 2012; Peng et al.,
2014). Among them, LeuRS directly combines with GTP bound
RagD and stimulates the GTP hydrolysis of GTPase-activating
protein (GAP), and the inactive RagDGTP-RagBGDP heterodimer
is transformed to a pre-activated state (i.e., RagDGDP-RagBGDP).
Further, the Ragulator complexmediates the nucleotide exchange
of RagB as the guanine nucleotide exchange factors (GEF)
and forms the active heterodimer RagDGDP-RagBGTP which
induces the activation and lysosomal translocation of mTORC1.
In contrast to LeuRS, Sestrin2 negatively regulates mTORC1
activity by controlling GTP hydrolysis of RagB. Since the
Michaelis constant (Km value) of LeuRS for leucine in the
amino acids activation reaction and the dissociation constant
(Kd value) of leucine for Sestrin2 are similar, whether LeuRS
and Sestrin2 co-regulate mTORC1 collectively or separately
(Pang and Martinis, 2009; Wolfson et al., 2016) requires further
research (Lee et al., 2018). We recently proposed that exercise
may effectively enhance the sensitivity of skeletal muscle tissues
to amino acid stimulation (Zhao et al., 2021). Resistance exercise
has been widely recognized as a potent intervention to maintain
or increase skeletal muscle protein synthesis and hypertrophy.
Although not considered the most efficient intervention to
stimulate a high magnitude of muscle hypertrophy, aerobic
exercise can also attenuate the inhibition of muscle protein

synthesis and deposition (Xia et al., 2016). However, to date there
are no studies that have investigated the role of exercise on the
LeuRS/Sestrin2-mTOR axis, and it’s not clear which mode of
training is most efficacious in regulating mTORC1 signaling and
muscle hypertrophy mediated by LeuRS and/or Sestrin2 (Zhao
et al., 2021). Thus, the preliminary evidence exploring these
relationships are warranted, and the results will inspire more
translational research on the topic.

The objective of this study was to preliminarily investigate
whether exercise stimulates skeletal muscle mTORC1 signaling
via enhancing leucine-sensing (i.e., LeuRS/Sestrin2-mTOR axis),
and if an increase in mTORC1 signaling results in skeletal
muscle hypertrophy.

MATERIALS AND METHODS

Animals
Thirty-six Sprague-Dawley male rats (200–220 g) were obtained
from the Chengdu Dashuo Biological Technology Company
(Chengdu, China), and were housed in standard cages in
the Laboratory Animal Center of Chengdu Sport University
(Chengdu, China). Food (normal rat chow) and water were
available ad libitum on a conventional 12-h light and 12-h
dark cycle. After adaptive feeding for 1 week, the rats were
randomly assigned to three groups with twelve mice per group:
the sedentary control group (SC), aerobic exercise-trained group
(AE), and resistance exercise-trained group (RE). Animal welfare
and experimental procedures were conducted according to the
Guide for the Care and Use of Laboratory Animals, and the
research was approved by the Animal Ethics Committee of
Jinggangshan University and Chengdu Sport University. Details
with relation to the rats and chow diet used in the present
research have been shown in Table 1.

Exercise Training
Rats in the AE and RE groups received 4 weeks (5 days/weeks)
exercise training. In brief, the AE rats were subjected to a 3-
d accommodative training on a motor-driven treadmill at an
estimated 50% VO2max at 0◦ incline, 10 m/min for 5min on
the first day, 55% Vo2max at 15 m/min for 10min on the
second day, and 60% Vo2max 20 m/min for 10min on the
third day. Thereafter, they were forced to run at a speed of
20 m/min for 60min (6◦ incline), which corresponds to an
aerobic intensity of ∼65% VO2max (Bedford et al., 1979; Qin
et al., 2020). In our previous research (Cholewa et al., 2014), we
had suggested researchers use the ladder climb model to study
hypertrophy or molecular signaling and evaluate samples from
muscles with a higher proportion of type II fibers, such as the
gastrocnemius. Thus, the ladder climb model (1-m ladder with
2-cm grid steps and inclined at 85◦) adapted from Hornerberger
et al. was used in the present study (5 days/week) (Hornberger
and Farrar, 2004). In line with our previous report (Li et al.,
2019), rats were acclimatized to ladder climbing training for 3
days, and the maximal load carrying capacity of each rat was
determined. During this determination, rats were initially forced
to climb with overload corresponding to 75% bodyweight with
compressed air or tactile stimuli on tail, then an additional 30 g
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TABLE 1 | Details with relation to the rats and chow diet used in this research.

SC AE RE

Age on arrival (week) ∼9 ∼9 ∼9

Age on sacrifice (week) ∼14 ∼14 ∼14

Initial body weight (g) 225.8 ± 11.9 220.2 ± 8.2 223.3 ± 10.3

Body weight post-intervention (g) 396.2 ± 26.2 329.5 ± 24.1** 348.7 ± 13.3*

Gastrocnemius wet weight (g) 2.62 ± 0.12 2.65 ± 0.11 2.73 ± 0.11*

Water in chow diet (g/kg) 94 94 94

Crude protein in chow diet (g/kg) 190 190 190

Crude fat in chow diet (g/kg) 51 51 51

Crude fiber in chow diet (g/kg) 36 36 36

Ash in chow diet (g/kg) 62 62 62

Calcium in chow diet (g/kg) 11.3 11.3 11.3

Phosphorus in chow diet (g/kg) 8.6 8.6 8.6

*P < 0.05 vs. the SC group; **P < 0.01 vs. the SC group.

load was added until they failed to accomplish the climbing
exercise. The maximal workload was record and readjusted each
week according to the bodyweight of the rats. In the formal
training regimen, rats climbed with the progressively increased
workload corresponding to 50, 75, 90, and 100% maximal load
carrying capacity, and kept climbing with the 100% load until
they cannot accomplish the exercise in spite of tactile stimuli,
but, were allowed a 2min rest every time they reached the top
of the ladder.

Sample Collection
Forty-eight hours after the final training bout (overnight food
deprivation), all rats were euthanized with intra-peritoneal
injection of 80 mg/kg pentobarbital sodium. Gastrocnemius
muscles were separated and washed with PBS, and then were
dried by using filter paper. After that, muscles were immediately
frozen in liquid nitrogen and stored at −80◦C until analysis.
Specimens from the contralateral gastrocnemius were fixed for
morphological analysis.

Morphological Examination
Morphological examination was conducted according to our
previous study (Xia et al., 2016). In brief, the specimens were
fixed in 4% paraformaldehyde solution and embedded in paraffin.
Five µm cross-sections were cut from the middle region of the
muscles at an axial distance of 120µm and then subjected to
a standard hematoxylin and eosin staining. The cross-sectional
area (CSA) and diameter of muscle fibers in each specimen
were analyzed using an Olympus DP73 microscope equipped
with a Charge-coupled device camera (2,448 × 1,920 pixels) and
cellSens Entry image analysis software (Olympus, Tokyo, Japan).

Myofibrillar Protein Concentration
Myofibrillar fraction from gastrocnemius muscle was obtained
by the method described earlier by our group (Xia et al., 2017b).
In brief, the muscle samples were homogenized in a 5% ice-cold
buffer containing 0.25M sucrose, 2mM EDTA, and 10mM Tris-
HCl (pH 7.4). The homogenate was centrifuged at 600 g, then

the pellet containing myofibrillar protein was collected. Protein
concentration of myofibrillar extract was determined by the BCA
(Beyotime, Beijing, China) assay.

Western Blotting
Western blotting analysis was performed based on the protocol
described in our previous study (Xia et al., 2017b; Shang et al.,
2019). Briefly, proteins were extracted from muscle specimens
and suspended in RIPA buffer supplemented with a Halt protease
inhibitor cocktail (Thermo Scientific, Rockford, IL, USA), and
protein concentrations were determined. A total of 20 µg of
protein samples was loaded per lane, separated via 8 or 12% SDS-
PAGE gels and transferred to 0.45µm nitrocellulose membranes.
Membranes were blocked in 3% BSA-TBST at room temperature
followed by overnight incubation with primary antibodies at
4◦C: 4E-BP1 (1: 2000; 9452s, CST, Beverly, MA, USA), phospho-
4E-BP1 (Thr37/46) (1: 1000; 2855s, CST), p70S6K (Thr389) (1:
2000; 9202s, CST), phospho-p70S6K (Thr389) (1: 500; 9205s,
CST), mTOR (1: 1000; 2972s, CST), phospho-mTOR (Ser2448)
(1: 1000; 2281s, CST), LeuRS (1: 1000; 13868s, CST), Sestrin2
(1: 1000; Ab178518, Abcam, Cambridge, UK), and GAPDH (1:
20000; YM3029, Immunoway, Plano, TX, USA). After incubating
the membranes with HRP conjugated secondary antibodies
goat anti-mouse or anti-rabbit IgG (1: 10000, 7076 and 7074,
CST). The signals were analyzed by using Totallab (Non-linear
Dynamics, Newcastle, UK).

Statistical Analysis
We calculated the required sample size prior to experimentation.
When α, power and effect size were set at 0.05, 0.99, and
0.80, respectively, using G∗power software version 3.1.9.2
(Kiel University, Kiel, Germany), the sample size needed was
36. Normality of the data was checked out and subsequently
confirmed using the Shapiro-Wilk test, data that were not
normally distributed were transformed and retested. Following
transformations, data that failed to meet the assumptions
of normality were analyzed with non-parametric tests.
Homogeneity of variances was tested using Levene’s test for
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equality of variances, when Levene’s test was significant, the
Welch ANOVA and Games-Howell pairwise comparison test
were used. When the assumptions of normality and homogeneity
of variances were both met, the variables were analyzed by one-
way ANOVA, and multiple comparison between groups was
performed using the Bonferroni post-hoc test. All tests were
performed using Statistical Package for Social Sciences version
20.0 (SPSS, Inc., Chicago, IL, USA), and all figures were created
with Sigmaplot version 12.0 (Systat, San Jose, CA, USA). The
effect size were calculated with Cohen’s d by using the software
G∗Power. In accordance with Cohen, effect sizes were classified
as small (0.2), medium (0.5), or large (0.8). For all analyses, the P
value of 0.05 or less was considered statistically significant. Data
were expressed as means± standard deviation.

RESULTS

Body Weight and Gastrocnemius Wet
Weight
After 4 weeks intervention, the body weight of rats in AE (P <

0.01) and RE (P < 0.05) groups were significantly less than that
of SC group. In terms of the gastrocnemius wet weight, rats in RE
group were greater than the SC group (P < 0.05) (Table 1).

Morphological Changes of Muscle Fibers
The differences of CSA and diameter between groups were
statistically significant (CSA: F = 5.294, P < 0.05; diameter: F
= 12.423, P < 0.01). As for the multiple comparison between
groups, the CSA (P < 0.01) and diameter (P < 0.01) of RE group
were significantly greater than the gastrocnemius of SC group,
and the diameter were greater than the AE group (P < 0.05);
however, between AE and SC groups, no statistical significance
could be detected (Figure 1).

Total and Myofibrillar Protein
Concentration in Gastrocnemius Muscle
The difference of total (F = 34.106, P < 0.01) and myofibrillar
(F = 31.775, P < 0.01) protein between groups were statistically
significant. When compared with SC, the concentration of
gastrocnemius muscle protein in AE (total: P < 0.05; myo: P
< 0.01) and RE (total: P < 0.01; myo: P < 0.01) group were
significantly greater. The protein concentration in RE was also
greater than AE (total: P < 0.01; myo: P < 0.01) (Figure 2).

Protein Expression With Relation to
Leucine-Sensing
The results showed that the difference of LeuRS (F = 23.084, P
< 0.01) expression level and the phosphorylation state ratio of
4E-BP1 (Thr37/46) (F = 326.493, P < 0.01), p70S6K (Thr389)
(F = 88.649, P < 0.01), and mTOR (Ser2448) (F = 14.856, P <

0.01) between groups were statistically significant, while Sestrin2
(F = 2.163, P > 0.05) was not. When compared with SC, only the
significantly higher phosphorylation state ratio of p70S6K (P <

0.01) was detected in AE group; while the LeuRS expression level
(P < 0.01) and the phosphorylation state ratios of 4E-BP1 (P <

0.01), p70S6K (P < 0.01), and mTOR (P < 0.01) in RE group
were significantly greater. The LeuRS expression (P < 0.01) and

the phosphorylation state ratios of 4E-BP1 (P < 0.01), p70S6K (P
< 0.01), and mTOR (P < 0.01) in RE were also greater than AE
(Figure 3).

DISCUSSION

In the current study, we observed a significant increase in the
CSA and diameter of gastrocnemiusmuscle fibers, gastrocnemius
wet weight, muscle protein concentration, the phosphorylation
state of mTOR signaling, and the relative expression of LeuRS in
resistance exercise-trained rats. Aerobic exercise only resulted in
a significant but modest increase of muscle protein concentration
and p70S6K phosphorylation, and no differences in Sestrin2
expression level between groups was detected. We suggest
that LeuRS increases in the RE group only, is part of a
coordinated response of the resistance exercised muscle, which
may contribute for muscle protein accretion.

We demonstrated for the first time that up-regulation of
LeuRS expression and mTOR activation (in its two branches,
namely 4EBP-1 and P70S6K) was induced by 4 weeks resistance
exercise. In contrast, aerobic exercise training did not increase
LeuRS levels, but P70S6K phosphorylation was increased
compared to the control group (which suggests a moderate
activation compatible with the smaller increases of muscle mass
in this group). Since mTOR was not activated in this group,
it is possible to suppose that P70S6K activation was caused by
other pathways involved in muscle protein synthesis, like GSK3-
β. However, the non-activation of mTOR or increased LeuRS in
the AE group, suggests a role of LeuRS in activating the mTOR
signaling in the RE group.

The effects of LeuRS on protein synthesis in skeletal muscle
have not been widely reported, and only 4 studies provide
data concerning the role of LeuRS in C2C12 myoblasts or
muscle samples. Sato’s work showed that LeuRS knockdown via
siRNA did not decrease phosphorylated mTOR in differentiated
myotubes, nor did it affect hypertrophy (Sato et al., 2018).
Son et al. found that LeuRS negatively regulated myoblast
differentiation in vitro, and this function was independent of
its regulation of protein synthesis (Son et al., 2019). Carlin
and colleagues found that acute essential amino acid ingestion
did not alter the expression of LeuRS in skeletal muscle of
young participants, but did up-regulate RagB expression (Carlin
et al., 2014). While the consumption of a diet containing
twice recommended daily allowance of protein intake for 10
weeks showed a tendency to decrease the mRNA expression of
LeuRS, it did not affect the fasting mTORC1 signaling. However,
increased total RPS6 might still suggest improved muscular
translational capacity to maintain muscle mass (Zeng et al.,
2019). Taking these clues into consideration, this might suggest
a compensatory system for sensing leucine through Sestrin2. As
the affinity of LeuRS for leucine is similar to that of Sestrin2,
it remains elusive how these crucial sensors orchestrate leucine
sensing to stimulate mTOR activation. In the present work,
our results demonstrate the potential of LeuRS to modulate
mTOR activity in skeletal muscle. It’s reasonable to hypothesize
that LeuRS may be a key sensor responding to anabolic
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FIGURE 1 | Effects of exercise on (A) cross-sectional area (CSA), (B) diameter and (C) hematoxylin-eosin stained sections of gastrocnemius muscle in rats.

Magnification 100×, scale bars = 100µm. Values are provided as mean ± standard deviation for each group. SC, sedentary control group; AE: aerobic exercise

training group; RE, resistance training exercise group. **P < 0.01 vs. the SC group; #P < 0.05 vs. the AE group.

FIGURE 2 | Effects of exercise on (A) total and (B) myofibrillar protein concentration in gastrocnemius muscle. Values are provided as mean ± standard deviation for

each group. SC, sedentary control group; AE, aerobic exercise training group; RE, resistance training exercise group. *P < 0.05 vs. the SC group; **P < 0.01 vs. the

SC group; ##P < 0.01 vs. the AE group.

signals, and capable of regulating protein synthesis via mTORC1
signaling in skeletal muscle. Moreover, increased muscle protein
synthesis is always linked to increased intramuscular availability
of amino acids (especially leucine). Thus, it’s also reasonable
to speculate that resistance exercise training may have resulted

in an increased uptake of leucine, and then the increased
intramuscular leucine level promotes muscular leucine-sensing
by up-regulating of LeuRS expression. However, further studies
exploring the relationships between different exercise protocols,
age of subjects and LeuRS/Sestrin2-mTOR axis are warranted.

Frontiers in Physiology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 741038

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zhao et al. Exercise May Enhance Leucine-Sensing

FIGURE 3 | Effects of exercise on protein expression with relation to leucine-sensing. (A) blotting, (B) phosphorylation state of 4E-BP1 (Thr37/46), (C)

phosphorylation state of p70S6K (Thr389), (D) phosphorylation state of mTOR (Ser2448), (E) relative expression of LeuRS and (F) relative expression of Sestrin2. SC,

sedentary control group; AE, aerobic exercise training group; RE, resistance training exercise group. Data were expressed relative to the SC group. The expression of

LeuRS and Sestrin2 were normalized to GAPDH. The phosphorylation state of mTOR signaling was calculated as the ratio of phosphorylated protein to total. **P <

0.01 vs. the SC group; ##P < 0.01 vs. the AE group.

In terms of Sestrin2, studies that have compared untrained
young and old mice have reported conflicting results, with
one study showing lower levels (Lenhare et al., 2017), another
showing increased levels in older mice (Xia et al., 2017b), and a
third showing no difference between young and old humanmales
(Zeng et al., 2018). Sestrin2 functions as a negative regulator

of mTORC1 (Wolfson et al., 2016), but if Sestrin2 and LeuRS
regulate the downstream mTORC1 signaling cooperatively in
aging skeletal muscle, it is unclear how they affect mTORC1
activity. In light of these information, some scholars proposed
that LeuRS and Sestrin2 may function at different developmental
stages (Sato et al., 2018). Results concerning the effects of exercise
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on the expression level of Sestrin2 are unclear. In the research
conducted by Crisol and colleagues, a decrease in basal Sestrin2
in the quadriceps was found in mice following a 4 week chronic
exercise protocol on a treadmill running at 60% of peak workload
(5 days/week, 60 min/day) (Crisol et al., 2018). However, a series
of research from Fu’s lab showed a significant increase in Sestrin2
expression in the quadriceps muscle of mice after 6 or 8 weeks
treadmill running with progressively increasing workloads (up
75%VO2max) (Liu et al., 2015;Wang et al., 2018; Yu et al., 2019).
As for the effects of resistance exercise, to our knowledge only
one report exists. Zeng et al. showed no significant change in the
expression of Sestrin2 in muscle biopsies from the vastus lateralis
following a 12 week lower body strength training protocol (2
days/week, separated by 72 h) (Zeng et al., 2017). On the other
hand, we found that 4 weeks of concurrent training (3 days
of resistance exercise and 3 days of aerobic exercise weekly)
in 2-year old mice lowered Sestrin2 compared to 2-year old
controls, but was still significantly greater than young controls.
Our results in the present study are in line with Zeng and
colleagues’ findings concerning the effects of resistance exercise,
but being different from the reports of Crisol and colleagues
as well as Fu’s group concerning the effects of aerobic exercise.
In our humble opinion, the differences observed between these
reports could be explained by differences in exercise protocols,
especially the intensity and duration of exercise sessions. Four
weeks of lower intensity of aerobic exercise (<60% VO2max)
might not been strong enough to result in an adaptive change of
Sestrin2 expression, while higher intensity and longer duration
might lead to possible discrepancies in the results (such as 60 vs.
75% VO2max; 4 weeks training vs. 6–8 weeks training).

Some limitations should be taken into consideration when
interpreting the results of this study. First, we did not
investigate the effects of acute exercise and time course changes
on the expression of leucine-sensing related proteins (i.e.,
LeuRS, Sestrin2 and mTORC1 signaling). This information
may help explain the seemingly contradictory results between
gastrocnemius muscle protein concentration and the activity of
mTOR signaling in aerobic exercise-trained rats. Second, we were
not able to use a group with RagGTPases knockout mice, to fully
establish the interaction between LeuRS, Sestrin2, RagGTPases,
and downstream mTORC1 signaling.

CONCLUSION

In conclusion, 4 weeks resistance exercise training induced
favorable adaptations in the gastrocnemius muscle of young
rats, including increased wet weight, protein concentration,

muscle diameter and CSA, while aerobic exercise only resulted
in a significant increase of protein concentration. These
positive results were likely the result of elevated leucine-
sensing and subsequent protein deposition. From a molecular
mechanistic standpoint, LeuRS/mTOR signaling axis may be
involved in this adaptive process induced by exercise (especially
resistance exercise), as no differences between groups in
Sestrin2 were found. Further studies are needed to investigate
these hypotheses via the use of bioinformatics or gene chip
assay, and should be further verified by using targeted gene
knockout/overexpression animal models or blockers/agonists
(i.e., LeuRS and mTOR). Future studies are also needed to
determine whether these adaptations translate into healthy
benefits in human subjects when interventions are performed
with different protocols concerning the exercise duration and
the intensity.
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