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Ewa Szczepań ska-Sadowska 3 and Tymoteusz Żera 3*

1 Department of Experimental and Clinical Physiology, Doctoral School, Medical University of Warsaw, Warsaw, Poland, 
2 Department of Biophysics, Physiology, and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical 
University of Warsaw, Warsaw, Poland, 3 Department of Experimental and Clinical Physiology, Laboratory of Centre for 
Preclinical Research, Medical University of Warsaw, Warsaw, Poland

Vasopressin (AVP) is a key neurohormone involved in the regulation of body functions. 
Due to its urine-concentrating effect in the kidneys, it is often referred to as antidiuretic 
hormone. Besides its antidiuretic renal effects, AVP is a potent neurohormone involved 
in the regulation of arterial blood pressure, sympathetic activity, baroreflex sensitivity, 
glucose homeostasis, release of glucocorticoids and catecholamines, stress response, 
anxiety, memory, and behavior. Vasopressin is synthesized in the paraventricular (PVN) 
and supraoptic nuclei (SON) of the hypothalamus and released into the circulation from 
the posterior lobe of the pituitary gland together with a C-terminal fragment of 
pro-vasopressin, known as copeptin. Additionally, vasopressinergic neurons project from 
the hypothalamus to the brainstem nuclei. Increased release of AVP into the circulation 
and elevated levels of its surrogate marker copeptin are found in pulmonary diseases, 
arterial hypertension, heart failure, obstructive sleep apnoea, severe infections, COVID-19 
due to SARS-CoV-2 infection, and brain injuries. All these conditions are usually 
accompanied by respiratory disturbances. The main stimuli that trigger AVP release include 
hyperosmolality, hypovolemia, hypotension, hypoxia, hypoglycemia, strenuous exercise, 
and angiotensin II (Ang II) and the same stimuli are known to affect pulmonary ventilation. 
In this light, we hypothesize that increased AVP release and changes in ventilation are not 
coincidental, but that the neurohormone contributes to the regulation of the respiratory 
system by fine-tuning of breathing in order to restore homeostasis. We discuss evidence 
in support of this presumption. Specifically, vasopressinergic neurons innervate the 
brainstem nuclei involved in the control of respiration. Moreover, vasopressin V1a receptors 
(V1aRs) are expressed on neurons in the respiratory centers of the brainstem, in the 
circumventricular organs (CVOs) that lack a blood-brain barrier, and on the chemosensitive 
type I cells in the carotid bodies. Finally, peripheral and central administrations of AVP or 
antagonists of V1aRs increase/decrease phrenic nerve activity and pulmonary ventilation 
in a site-specific manner. Altogether, the findings discussed in this review strongly argue 
for the hypothesis that vasopressin affects ventilation both as a blood-borne neurohormone 
and as a neurotransmitter within the central nervous system.

Keywords: antidiuretic hormone, respiration, cardiovascular system, carotid body, sympathetic nervous system, 
circumventricular organs, brainstem, paraventricular nucleus of the hypothalamus
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INTRODUCTION

Vasopressin (AVP), also known as antidiuretic hormone, is a 
neurohormone critically involved in maintaining body homeostasis. 
It is synthesized in discrete nuclei of the hypothalamus and 
transported to the posterior lobe of the pituitary gland, from 
where it is released into the circulation in response to increase 
of extracellular fluid osmolality. In the bloodstream, AVP is 
paramount for maintaining water balance thanks to its renal 
action resulting in water reabsorption and urine concentration. 
The other stimuli for AVP release include hypovolemia, hypotension, 
hypoxia, hypoglycemia, strenuous exercise, and angiotensin II 
(Ang II; Szczepanska-Sadowska et  al., 2017). The same stimuli 
also promote increases in pulmonary ventilation and are often 
associated with life-threatening conditions (Doerschug et al., 2010; 
Frier, 2014; Thompson et  al., 2016; Convertino et  al., 2019; 
Lüning et  al., 2019).

In addition to its effects in the kidney, AVP exerts numerous 
extra-renal effects, including circulatory, nervous, endocrine, 
metabolic, and behavioral ones, which are discussed in detail 
in recent reviews (Szczepanska-Sadowska et al., 2017; Japundžić-
Žigon et  al., 2020). Together, these AVP-mediated responses 
counteract disturbances of the body homeostasis and help in 
adjusting body function to internal and environmental stressors. 
Along with the control of circulatory and nervous system, the 
precise regulation of the respiratory system is also critical for 
the homeostatic adjustments. It is important to realize that 
changes in pulmonary ventilation fulfil their adaptive role only 
when they are matched with parallel changes in cardiac output 
and body metabolism. In this review, we  summarize the most 
important studies analyzing regulation of AVP release and 
discuss the effects of this neuropeptide on the respiration under 
physiological and pathophysiological conditions, acting both 
as a blood-borne neurohormone and as a neurotransmitter 
within the central nervous system.

PHYSIOLOGY OF VASOPRESSIN

Vasopressin: Synthesis, Receptors, and 
Release
Vasopressin is synthesized in the form of pre-pro-AVP, which 
is processed into AVP, neurophysin II and C-terminal fragment 
of pre-pro-AVP known as copeptin. The neurohormone is 
produced predominantly in the paraventricular (PVN) and 
supraoptic nuclei (SON) of the hypothalamus in two 
histologically and functionally distinct pools of neurons – 
magnocellular cells projecting to the posterior pituitary and 
parvocellular cells projecting to the median eminence and 
extrahypothalamic brain structures, especially to the limbic 
system (Buijs, 1978; Dumais and Veenema, 2016) and the 
brainstem (Buijs, 1978; Kc and Dick, 2010; Kc et  al., 2010). 
Vasopressin is released into the circulation together with 
copeptin from the axonal terminals of the magnocellular 
neurons located in the posterior lobe of the pituitary gland 
(neurohypophysis; Schrier et al., 1979; Szczepanska-Sadowska 
et  al., 2017; Bichet, 2019). Vasopressin is also released from 

the nerve terminals of the PVN parvocellular cells in the 
median eminence into the hypothalamic-pituitary circulation, 
through which AVP reaches anterior lobe of the pituitary 
gland and promotes ACTH release (Gonzalez-Luque et  al., 
1970; Lee et  al., 2015). Besides hypothalamic synthesis in 
the PVN and the SON, AVP, or AVP mRNA is locally 
expressed in peripheral organs, such as the adrenal medulla 
and the heart (Nussey et  al., 1987; Hupf et  al., 1999; Takeda 
et al., 2002). Measurements of plasma concentrations of AVP 
are highly variable due to binding of the neurohormone to 
platelets and its short biological half-life (Nickel et  al., 2012; 
Bankir et  al., 2017). Copeptin, co-released with AVP in 
equimolar quantities, is very stable and may serve as a 
biomarker of AVP release (Morgenthaler et  al., 2006; 
Bankir et  al., 2017).

Vasopressin acts via three subtypes of receptors, which 
belong to the G-protein coupled receptors: V1aR, V1bR, and 
V2R. Vasopressin released into the circulation exerts its 
cardiovascular effects mainly through V1aRs, which mediate 
vasoconstriction and increase in vascular resistance in most 
of the vascular beds (Szczepanska-Sadowska et  al., 2017; 
Japundžić-Žigon et  al., 2020), and complex effects in the 
coronary circulation and cardiac hemodynamics (Pelletier et al., 
2014). Binding of AVP to V1aRs expressed on thrombocytes 
stimulates procoagulant activity of platelets (Launay et al., 1987; 
Horstman et  al., 1995; Colucci et  al., 2014).

Vasopressin also exerts numerous endocrine effects mediated 
by V1aRs and V1bRs that include regulation of insulin and 
glucagon release from the pancreatic islets, release of 
catecholamines in the adrenal medulla and glucocorticoids in 
the adrenal cortex, and stimulation of corticotropin release 
from the pituitary gland (Nussey et  al., 1987; Aguilera and 
Rabadan-Diehl, 2000; Takeda et al., 2002; Szczepanska-Sadowska 
et  al., 2017; Mohan et  al., 2019). In addition, AVP released 
into the circulation promotes gluconeogenesis and glycogenolysis 
in the liver and lipid metabolism in the fat tissue 
(Nakamura et  al., 2017).

Vasopressin plays a critical role in the regulation of water-
electrolyte balance via its V2Rs in the kidney, which depends 
on upregulation of the aquaporin 2 with resultant water trafficking 
in the apical membrane of the principal cells of the collecting 
duct (Wade et  al., 1981; Schrier, 2008; Bankir et  al., 2017).

Besides the systemic effects of AVP in the bloodstream, 
the neurohormone serves as a peptidergic neurotransmitter 
with both synaptic and “volume” mode of neurotransmission 
(Landgraf and Neumann, 2004). Vasopressin is released in the 
central nervous system from the nerve terminals of 
vasopressinergic neurons, whose cell bodies are located in the 
parvocellular division of the PVN. Up to 40% of the parvocellular 
cells of the PVN synthesize AVP and project to the brainstem 
and the spinal cord, where they terminate on sympathetic 
neurons (Pyner, 2009; Nunn et  al., 2011). Vasopressinergic 
neurons exert either V1aR-dependent sympthoexcitatory effects 
accompanied by a rise in arterial blood pressure, or 
sympathoinhibition with activation of the parasympathetic 
system and sensitization of the arterial baroreflex (Szczepanska-
Sadowska et  al., 2017; Japundžić-Žigon et  al., 2020).
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In addition to the central cardiovascular effects, both V1aRs 
and V1bRs participate in the regulation of mood, anxiety, 
aggression, pain, cognitive processes and memory, and adaptation 
to stress (Aguilera and Rabadan-Diehl, 2000; Szczepanska-
Sadowska et al., 2017). Emerging evidence indicates that V1bRs 
may serve as autoreceptors on the vasopressinergic neurons 
in the hypothalamus (Corbani et  al., 2018). Recently, it has 
been shown that V1bRs may be  involved in SARS-CoV-2 
infection by participating in the endocytosis of the virus’ 
particles (Yeung et  al., 2021). The tissue distribution of AVP 
receptors, their diverse biological functions, as well as agonists 
and antagonists are discussed in detail elsewhere (Koshimizu 
et al., 2012; Szczepanska-Sadowska et al., 2017). The respiratory 
actions of AVP are discussed in detail in the following sections.

Vasopressin Release and Respiration: 
Coincidence or Relationship?
The evidence discussed below indicates that stimuli that activate 
vasopressinergic neurons and increase AVP levels also affect 
respiratory activity (Figure  1). This raises a question whether 
release of AVP and changes in respiration in response to these 
stimuli are coincidental, or if there is a functional relationship 
between AVP and the regulation of the respiratory system. 
Next, we  discuss studies showing increased release of AVP 
and its surrogate marker copeptin under medical conditions 
accompanied by respiratory disturbances. Then, we analyze the 
evidence for AVP involvement in the regulation of 
respiratory system.

Regulation of Vasopressin Release
Activation of the vasopressinergic neurons and release of AVP 
into the circulation occurs in response to osmotic and 
non-osmotic stimuli. The magno- and parvocellular 
vasopressinergic cells of the hypothalamus are distinctly activated 
by various stimuli, with magnocellular cells being mostly 
activated by increase in sodium ion concentration and osmolality, 
hypovolemia, hypotonia, and hypoxia, while the parvocellular 
cells are more sensitive to various stressors, such as pain, injury, 
and psychological stress (Aguilera et  al., 2008; Ueta et  al., 
2011; Bankir et  al., 2017; Szczepanska-Sadowska et  al., 2017). 
Next, we  discuss main stimuli for AVP release and how they 
affect the respiratory system.

Osmotic - Dependent AVP Release
Vasopressin is released into the circulation in response to 
increase in plasma osmolality and sodium ion concentration 
in directly proportional manner (Verney, 1947; Quillen and 
Cowley, 1983; Thornton et  al., 1986; Baylis, 1987; Verbalis, 
2007). In young healthy men, plasma AVP concentration 
starts to increase at plasma osmolality of 285 mOsm/kg, 
and continues to rise till values of osmolality exceed 
310 mOsm/kg (Baylis and Robertson, 1980; Baylis, 1987). 
The changes in osmolality are detected in the organum 
vasculosum of the lamina terminalis (OVLT), in the 
subfornical organ (SFO), and in the magnocellular neurons 
of the PVN and the SON (Anderson et  al., 2000, 2001; 

Verbalis, 2007; Bankir et  al., 2017; Szczepanska-Sadowska 
et  al., 2017). The changes of extracellular fluid osmolality 
are mostly affected by changes in sodium ion concentration; 
however, other osmotically active substances (e.g., mannitol) 
that affect cell volume also trigger AVP release (Verbalis, 
2007). On the other hand, osmotically active solutes freely 
passing through the cell membrane (e.g., urea), have much 
weaker effect on cell volume and AVP release (Verbalis, 
2007). In addition, changes in activity of AVP neurons and 
subsequent release of AVP in the posterior pituitary lobe 
are regulated by availability of water and sensation of thirst 
and may precede actual changes in the extracellular fluid 
osmolality (Bankir et  al., 2017).

Several studies indicate that plasma osmolality and 
concentration of sodium ions may contribute to the control 
of respiration. Specifically, hyperosmolality was shown to inhibit 
respiration and to reduce increase in pulmonary ventilation 
evoked by thermoregulatory panting or adjustments to acid-
base balance disturbances in animals (Baker and Dawson, 1985; 
Kasserra et  al., 1991; Kasserra and Jones, 1993) and humans 
(Senay, 1969; Moen et  al., 2014). However, it should be  noted 
that experiments in the in situ preparations revealed direct 
excitatory effects of hyperosmolality on the carotid sinus nerve 
and the phrenic nerve activity (Trzebski et  al., 1978; Kasserra 
et al., 1991; O’Connor and Jennings, 2001; da Silva et al., 2019).

In contrast to hyperosmolality, acute hypoosmolality has 
been shown to stimulate breathing in conscious dogs (Anderson 
et  al., 1990) and transiently in rats (O’Connor and Jennings, 
2001). In women and men, hypoosmolality induced by ingestion 
of water also increases ventilation, although, this may be  in 
part compensatory response to metabolic acidosis induced by 
ingestion of tap water (Moen et  al., 2014).

Earlier experiments in vivo on cats have shown that perfusion 
of the carotid bodies with hypoosmotic solutions increases 
activity of the carotid sinus nerve (Gallego and Belmonte, 
1979) that is associated with increase in breathing. This 
stimulatory effect of hypoosmolality, at least in part, may 
be attributed to activation of calcium currents and depolarization 
of chemoreceptors in the carotid body directly induced by 
hypoosmotic stimulus, as shown in a rat (Molnár et  al., 2003). 
Another potential mechanism may depend on vasoconstriction 
of vessels supplying the carotid body, leading to decrease in 
the carotid body blood flow and activation of the chemosensitive 
glomus cells (Brognara et  al., 2021). It has been shown that 
hypoosmolality causes constriction of the vascular smooth 
muscles in various vascular beds (Lang et al., 1995; Aoki et al., 
2014), and this mechanism was postulated to be  involved in 
the activation of carotid bodies and increased activity of the 
carotid sinus nerve (Gallego and Belmonte, 1979).

Non-osmotic - Dependent AVP Release
Vasopressinergic neurons can be  activated and AVP secreted 
into the circulation in response to numerous non-osmotic 
stimuli. The most critical ones are hypovolemia and hypotension, 
physical exercise, hypoglycemia, hypoxia, and Ang II. Of note, 
these stimuli also affect the pulmonary ventilation and/or 
activate the carotid body and arterial chemoreflex.
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Hypovolemia and Hypotension
Vasopressinergic neurons are tonically inhibited by sensory 
input from cardiopulmonary low-pressure mechanoreceptors 
and high-pressure arterial baroreceptors located in the cardiac 
atria and large systemic veins and the walls of the aortic arch 
and the carotid sinus, respectively (Schrier et  al., 1979; Baylis, 
1987; Norsk, 1989). Decrease in the central blood volume and 
arterial blood pressure leads to unloading of these two groups 
of cardiovascular mechanoreceptors, which in turn results in 
activation of the hypothalamic vasopressinergic neurons (Baylis, 
1987; Szczepanska-Sadowska et  al., 2017). Consequently, 
hypovolemia, hypotension, or hemorrhage lead to massive 
release of AVP and its surrogate marker copeptin into the 
circulation (Arnauld et al., 1977; Fyhrquist et al., 1981; Wehberg 
et  al., 1991; Scott et  al., 1994; Muller et  al., 2007; Johnson 
et  al., 2014; Bankir et  al., 2017). It has been shown that in 
humans the arterial baroreceptors of the carotid sinus play a 

critical role in AVP release induced by decrease in arterial 
blood pressure (Norsk, 1989).

Hypovolemia and hypotension, caused by hemorrhage or 
pharmacologically induced vasodilation, lead to the increase 
in pulmonary ventilation (D’Silva et  al., 1966; Ohtake and 
Jennings, 1992; Matsuoka et  al., 1994; Walker and Jennings, 
1998). Progressive reduction of the central blood volume raises 
ventilation in men (Convertino et  al., 2009) and even small 
decreases in arterial pressure exert stimulatory effects on 
breathing in dogs (Ohtake and Jennings, 1992). Of note, under 
conditions of reduced cardiac output, this increase in pulmonary 
ventilation may serve as a pulmonary pump that by increasing 
the amplitude of changes in intrathoracic and intraabdominal 
pressures promotes venous return to the right cardiac ventricle 
and limits the decrease in stroke volume (Skytioti et  al., 2018). 
The changes in respiratory activity are dependent on the intra-
sinus pressure sensed by the arterial baroreceptors 

FIGURE 1 | Stimuli that cause AVP release into the bloodstream and activation of the vasopresinergic PVN neurons also increase the pulmonary ventilation. 
AVP in the bloodstream accesses the circumventricular organs (SFO, AP, and OVLT) that lack the blood-brain barrier and the carotid body at the carotid 
bifurcation. Vasopressinergic PVN neurons project to cardiovascular (RVLM) and respiratory (preBC/BC, rVRG, and C4 phrenic nucleus) centers, suggesting 
their involvement in the respiratory control (Kc et al., 2002a, 2010). (1) AVP at the AP inhibits phrenic nerve activity (Yang et al., 2006); (2) vasopressinergic 
projections to the rVRG tonically stimulate respiratory activity (Kc et al., 2010) and AVP applied into the rVRG or pre-Bötzinger complex stimulates activity of 
diaphragm (Kc et al., 2002a, 2010), which is accompanied by increase in arterial blood pressure; this is in contrast to findings indicating that AVP administered 
into the rVRG inhibits phrenic nerve activity with and without changes in arterial blood pressure (Chuang et al., 2003, 2005; Cheng et al., 2004); (3) AVP locally 
administered into the carotid bifurcation slightly increases ventilation (Żera et al., 2018); and (4) vasopressin receptors are expressed in the SFO (Ostrowski 
et al., 1994), and electric stimulation of SFO increases respiratory activity (Ferguson et al., 1989), but the respiratory effects of AVP acting at SFO have not 
been determined. AP, area postrema; AVP, vasopressin; BC, Bötzinger complex; C4, phrenic nuclei; CVLM, caudal ventrolateral medulla; cVRG, caudal ventral 
respiratory group; NTS, nucleus of the solitary tract; OVLT, organum vasculosum of the lamina terminalis; preBC, pre-Bötzinger complex; PVN, paraventricular 
nucleus of the hypothalamus; RVLM, rostral ventrolateral medulla; rVRG, rostral ventral respiratory group; SFO, subfornical organ; SON, supraoptic nucleus; 
and VLM, ventral lateral medulla.
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(Brunner et al., 1982). As the carotid baroreceptors are unloaded, 
the pulmonary ventilation increases, and vice versa, stimulation 
of the baroreceptors inhibits ventilation (Brunner et  al., 1982). 
This inhibitory effect of the baroreflex on the respiratory system 
is particularly prominent during expiration in the in situ 
preparation in rat (Baekey et  al., 2010) and is dependent on 
the respiratory drive in anesthetized rats (McMullan et al., 2009).

Physical Exercise
Physical activity is an acute stressor for the body homeostasis 
that robustly triggers release of AVP into the circulation 
proportionally to the intensity of exercise (Wade and Claybaugh, 
1980; Popovic et  al., 2019). Although exercise-induced 
hyperosmolality may be involved in the release of AVP (Takamata 
et  al., 2000), during high-intensity physical activity the increase 
in plasma AVP (or its surrogate marker copeptin) may be present 
despite hyponatremia or lack of changes in plasma osmolality 
(Wade and Claybaugh, 1980; Inder et al., 1998; Hew-Butler et al., 
2011), which indicates a non-osmotic release of AVP during 
intense physical exercise. Furthermore, it appears that prominent 
release of AVP in response to strenous exercise may lead to 
exercise-induced hyponatremia (Hew-Butler et  al., 2017).

Physical activity is also the main physiological stimulus for 
the increase in pulmonary ventilation. In humans, both the 
high intensity dynamic exercise and the isometric muscle 
contractions may cause hyperventilation, especially at the end 
of exercise or during recovery phase, respectively (Imms and 
Mehta, 1989; Johnson et  al., 1992). Thus, it is attractive to 
conjecture that AVP released during physical exercise may 
fine-tune respiratory responses and prevent excessive pulmonary 
ventilation, however, this requires further investigations.

Hypoglycemia
Insulin-induced hypoglycemia causes AVP release into the 
circulation both in animals (Plotsky et  al., 1985; Berkenbosch 
et  al., 1989; Caraty et  al., 1990) and in human subjects (Baylis 
et  al., 1981; Chiodera et  al., 1992). The increased release of 
AVP in response to hypoglycemia appears to be  independent 
of insulin (Chiodera et  al., 1992).

The hypoglycemia-induced AVP release counteracts low 
plasma concentrations of glucose by gluconeogenic and 
glycogenolytic effects of AVP in the liver and on the AVP-induced 
activation of the hypothalamic-pituitary-adrenal cortex axis 
resulting in glucocorticoid release (Nakamura et  al., 2017; 
Szczepanska-Sadowska et  al., 2017). Both experimental studies 
in animals and clinical observations in humans suggest that 
carotid bodies may be  involved in mediating the counter-
regulatory response to decreased blood glucose (Koyama et al., 
2000; Wehrwein et  al., 2015; Kakall et  al., 2019). Both in men 
and rats, hypoglycemia also induces pronounced hyperventilation, 
which depends on the release of humoral factors, such as 
adrenaline acting at the carotid bodies (Bin-Jaliah et  al., 2004; 
Ward et  al., 2007; Thompson et  al., 2016).

Hypoxia
Hypoxia is a key trigger for the peripheral chemoreflex elicited 
from the carotid bodies, which results in increase of the 

pulmonary ventilation, sympathoexcitation, and arousal 
(Marshall, 1994; Kumar and Prabhakar, 2012; Zera et al., 2019).

Hypoxia is also an important chemical stimulus for AVP 
release (Iovino et al., 2013; Szczepanska-Sadowska et al., 2017). 
It increases neurohypophyseal blood flow and increases plasma 
concentration of AVP both in animals (Wang et  al., 1984; 
Wilson et al., 1987; Hanley et al., 1988; Raff, 2011), and humans 
(Koller et  al., 1991). The effect of hypoxia on AVP release 
depends on the sensory input from the carotid bodies (Levy, 
1966; Wilson et  al., 1987; Iovino et  al., 2013). The rise of 
plasma AVP counteracts the hypoxia-induced vasodilation and 
helps in maintaining the peripheral vascular resistance (Walker, 
1986; Louwerse and Marshall, 1993), the action that complements 
the hypoxia-evoked sympathoexcitation.

Angiotensin II
Angiotensin II is a potent hormone that causes vasoconstriction 
and activates the sympathetic nervous system, promotes renal 
reabsorption of sodium ions directly by acting on the renal 
tubules and indirectly through the aldosterone pathway 
(Sztechman et  al., 2018). It is also the key hormonal factor 
causing AVP release (Fyhrquist et  al., 1979; Flôr et  al., 2018; 
Szczepanska-Sadowska et  al., 2018). This allows for integration 
of water-electrolyte balance and regulation of osmolality and 
volume of extracellular fluid (Szczepańska-Sadowska, 1996).

Besides its cardiovascular, renal and sympathetic effects, Ang 
II also increases ventilation in dogs (Potter and McCloskey, 
1979) and rats (Melo et  al., 2020), however acute studies in 
humans show insignificant effect of Ang II on pulmonary 
ventilation (Bristow et  al., 1971; Solaiman et  al., 2014). In 
animals, the stimulatory effect of Ang II on the respiratory 
system may be  reciprocally inhibited by AVP in a V1aR-
dependent manner (Anderson et al., 1990; Walker and Jennings, 
1994, 1995), which may involve inhibition of the renin release 
(Bunag et  al., 1967).

VASOPRESSIN/COPEPTIN RELEASE 
UNDER PATHOLOGICAL CONDITIONS

Next, we briefly summarize clinical observations indicating that 
AVP is released in excess under conditions of pulmonary 
dysfunction and medical conditions associated with abnormal 
breathing patterns. This raises a possibility that AVP is not 
only a biomarker of respiratory disturbances and hypoxia, but 
that it may also contribute to the regulation of the 
respiratory system.

Respiratory Disorders
Increased plasma concentration of copeptin, which reflects 
the increase in AVP release, is observed in several respiratory 
disturbances (Szczepanska-Sadowska et al., 2017). It is present 
in chronic obstructive pulmonary disease (COPD), in which 
copeptin level is predictive for the recurrence of exacerbation 
and all-cause mortality (Muller et  al., 2007; Zhao et  al., 
2014). Increased plasma copeptin level is also present in 
patients with lower respiratory tract infection, especially in 
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patients with community acquired pneumonia, in whom it 
has a predictive value for all-cause mortality, clinical instability, 
and deterioration (Muller et  al., 2007; Kruger et  al., 2010; 
Kolditz et  al., 2012). High copeptin concentration is also 
present in acute respiratory distress syndrome, acute lung 
injury, and cardiopulmonary oedema, where elevated copeptin 
has a better predictive value for short-term mortality than 
NT-proBNP, a marker of cardiac ventricles’ overload (Lin 
et al., 2012). Finally, some studies also indicate the potential 
role of copeptin in the diagnosis and risk stratification of 
patients with pulmonary hypertension (Nickel et  al., 2013) 
and pulmonary embolisms (Hellenkamp et al., 2018). Recently, 
it has been shown that elevated concentrations of copeptin 
are associated with worse outcome in COVID-19 patients 
with SARS-CoV-2 infection (Gregoriano et  al., 2021) and 
may discriminate between patients with COVID-19 and 
patients with community-acquired pneumonia 
(Kuluöztürk et  al., 2021).

Non-respiratory Disorders
Besides disturbances of the respiratory system, elevated plasma 
concentrations of AVP or copeptin are found in several 
non-respiratory disorders that are often accompanied by abnormal 
respiratory patterns and increased ventilation. Specifically, 
elevated copeptin concentration is predictive of worse outcome 
in patients with traumatic brain injury (Yang et al., 2014; Zhang 
et  al., 2014; Choi et  al., 2017), a condition associated with 
increased expression of V1aRs in the brain (Szmydynger-
Chodobska et  al., 2004) and abnormal respiratory patterns 
(Racca et  al., 2020). They are also seen in children with febrile 
and epileptic seizures (Evers et al., 2020). Furthermore, increased 
plasma concentration of copeptin has been found in patients 
with acute and chronic heart failure (Maisel et al., 2011; Düngen 
et al., 2018; Schill et al., 2021), a condition usually accompanied 
by abnormal respiratory patterns, such as Cheyne-Stokes 
breathing and sleep apnoea (Cowie et  al., 2021). Increase 
copeptin levels are also found in patients admitted to intensive 
care unit or emergency department with acute severe dyspnoea 
due to non-respiratory causes and accompanied by hypoxia 
and increased respiratory rate (Ara-Somohano et  al., 2017).

THE RESPIRATORY EFFECTS OF 
VASOPRESSIN

Vasopressin affects the respiratory system both as a neurohormone 
and as a neurotransmitter. Available evidence indicates that 
its respiratory effects are mainly mediated by V1aRs. Vasopressin 
present in the bloodstream may affect the respiratory system 
by interacting with V1aRs expressed in the lungs (Tahara et al., 
1998), the circumventricular organs (CVOs; Raggenbass et  al., 
1989; Ostrowski et  al., 1994; Tribollet et  al., 1999; Hindmarch 
et  al., 2011), and in the carotid bodies (Żera et  al., 2018). In 
addition to circulating AVP, vasopressinergic neurons projecting 
to the brainstem respiratory centers affect respiratory activity 
via V1aRs (Kc et  al., 2002a, 2010; Chuang et  al., 2005; Kc 
and Dick, 2010). It appears that the effects of AVP on the 

respiratory function is site-specific and may result in opposing 
effects, as discussed below.

Vasopressin Receptors in the Respiratory 
System, Chemoreceptors and Respiratory 
Centers of the Brain
Lungs and Pulmonary Circulation
It has been shown that V1aRs are predominantly expressed 
in the lung (Hirasawa et  al., 1994; Tahara et  al., 1998) and 
in the pulmonary arteries (Enomoto et  al., 2014). Contrary 
to arteries in the systemic circulation, AVP does not cause 
vasoconstriction of the pulmonary arteries, but rather it causes 
vasodilation, especially under conditions of hypoxic 
vasoconstriction of pulmonary vessels in animals (Walker et al., 
1989; Wallace et  al., 1989; Enomoto et  al., 2014; Sugawara 
et  al., 2019) and humans (Jeon et  al., 2006; Currigan et  al., 
2014). Thus, AVP does not increase pulmonary vascular resistance 
and the right ventricle’s afterload, but it only selectively increases 
the vascular resistance in systemic circulation (Walker et al., 1989; 
Jeon et  al., 2006).

Retrograde transneuronal labeling indicates that the airway-
related vagal preganglionic neurons receive innervation from 
vasopressinergic neurons of the PVN (Kc et  al., 2006, 2010). 
Furthermore, AVP acting on V1aRs depolarizes and increases 
firing rate of these preganglionic neurons (Yan et  al., 2017), 
which is suggestive of the broncho-constrictive and secretory 
effect of AVP. Nonetheless, available evidence points to limited 
effects of AVP on bronchoconstriction in laboratory animals 
(Bhoola et  al., 1962; Zheng et  al., 2017) and humans 
(Knox et  al., 1989).

Arterial Chemoreceptors
Recently, we  showed presence of immunostaining for both 
C-terminal and N-terminal fragments of the V1aR in the 
chemosensitive glomus cells of the carotid bodies collected 
from the normotensive Sprague-Dawley rats (Żera et al., 2018). 
Furthermore, expression of G protein q/11 and phosphokinase 
C, key intracellular components of the V1aR signaling, has 
been detected in the chemosensitive glomus cells with the 
single-cell transcriptomics in mouse (Zhou et  al., 2016). These 
findings indicate that circulating AVP may affect the glomus 
cells expressing V1aRs and presumably modulate the activity 
of the carotid body.

Circumventricular Organs
Circumventricular organs (CVOs) include the organum 
vasculosum laminae terminalis (OVLT) and the SFO that are 
located close to the third cerebral ventricle, and the area 
postrema (AP), which is situated in the dorsal surface of the 
medulla oblongata. They express numerous receptors, lack the 
blood-brain barrier and are accessible for hormones and 
mediators circulating in the bloodstream (Ufnal and Skrzypecki, 
2014). All CVOs express receptors for AVP, predominantly 
V1aRs (Raggenbass et  al., 1989; Jurzak and Schmid, 1998; 
McKinley et al., 1999; Tribollet et al., 1999; Kc and Dick, 2010; 
Hindmarch et  al., 2011). Upon binding to V1aRs in the CVOs 
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of the third ventricle, AVP exerts sympathoexcitatory and 
pressor effects (Ufnal and Skrzypecki, 2014; Szczepanska-
Sadowska et al., 2017; Japundžić-Žigon et al., 2020). In contrast, 
stimulation of V1aRs in the AP sensitizes the arterial baroreflex 
and results in hypotension (Hasser and Bishop, 1990; Japundžić-
Žigon et  al., 2020), which indicates opposite effects of AVP 
depending on the place of its action. A limited number of 
studies indicates that administration of AVP into the cerebral 
ventricles or directly into the AP decreases respiratory rate 
and phrenic nerve activity (Zerbe and Feuerstein, 1985; 
Yang et  al., 2006).

Respiratory Centers of the Brain
In rats, V1aRs are expressed on the sympathetic neurons of 
the rostral ventrolateral medulla (RVLM) and the respiratory 
neurons located in the rostral ventral respiratory column (rVRC; 
Kc and Dick, 2010) and pre-Bötzinger complex (Kc et  al., 
2002a). Retrograde labeling studies show that in addition to 
these nuclei, the phrenic nuclei receive vasopressinergic 
innervation from the PVN (Kc et  al., 2002a,b). The expression 
of V1aRs in these brainstem structures is augmented by exposure 
of the animals to hypoxia (Kc and Dick, 2010; Kc et al., 2010). 
Furthermore, a significant subpopulation of the vasopressinergic 
PVN neurons are activated by hypercapnia (Kc et  al., 2002b). 
Importantly, binding of AVP to V1 receptors was found in 
neurons across the nucleus of the solitary tract (NTS), including 
its caudal part (Raggenbass et  al., 1989) that receives sensory 
input from the arterial chemoreceptors (Lipski et al., 1976, 1977; 
Finley and Katz, 1992; Zera et  al., 2019).

Respiratory Effects of Vasopressin Acting 
as a Hormone
Circulating AVP may affect the neural control of the respiratory 
system either by binding to its receptors in the CVOs or 
receptors located in other peripheral tissues, especially the 
arterial chemoreceptors (Figure 1). Overall, prevailing evidence 
indicates that AVP as a hormone present in the bloodstream 
supresses ventilation. We  hypothesize that under conditions 
of hypoxia, oligo/hypovolemia, hypotonia, hypoglycemia, exercise, 
activation of renin-angiotensin system, the increase in AVP 
plasma concentration may help in limiting excessive increase 
in ventilation and prevent development of hypocapnia. Thus, 
it is likely that inhibition of ventilation by AVP may provide 
a fine-tuning mechanism that maintains respiratory activity at 
the most efficient level.

Vasopressin Circulating in the Bloodstream
Intravenous infusions of AVP transiently decrease pulmonary 
ventilation and phrenic nerve activity in conscious dogs (Ohtake 
and Jennings, 1993), anesthetized and awake rats (Louwerse 
and Marshall, 1993; Walker and Jennings, 1998; Żera et  al., 
2018; Brackley and Toney, 2021) and fetal lambs (Bessho et al., 
1997). Recently published pilot study in patients with autosomal 
dominant polycystic kidney disease showed that upon initiation 
of treatment with tolvaptan, a selective V2R antagonist, plasma 
copeptin level increased 6-fold and this was associated with 

a modest but significant increase in arterial carbon-dioxide 
and plasma acidity (Heida et al., 2021), suggestive of ventilatory 
inhibition by increased AVP levels in the bloodstream and 
enhanced stimulation of V1 receptors, which were not blocked 
by tolvaptan.

The inhibitory effects of AVP on the respiratory activity 
depend on V1aRs, as blockade of these receptors with selective 
antagonists completely prevents changes in pulmonary ventilation 
induced by systemic administration of AVP in anesthetized 
rats (Louwerse and Marshall, 1993; Żera et  al., 2018; Brackley 
and Toney, 2021). Furthermore, administration of V1aR 
antagonists may result in the increase in pulmonary ventilation 
in awake dogs (Walker and Jennings, 1994). However, it should 
be noted that insignificant effect of V1aR blockade on pulmonary 
ventilation was seen in conscious rats (Walker and Jennings, 
1998). Furthermore, intravenous administration of V1aR 
peptidergic antagonist, that does not cross the blood-brain 
barrier, has insignificant effects on hypoxia-induced increase 
in the pulmonary ventilation in conscious dogs (Overgaard 
et  al., 1996), suggesting lack of involvement of V1aRs located 
in the peripheral organs or CVOs in the increase in ventilation 
evoked by activation of the arterial chemoreflex in this species. 
However, systemic administration of V1aR antagonist unmasks 
stimulatory effects of Ang II on the respiration in dogs (Walker 
and Jennings, 1995). Interestingly, oxytocin, which is structurally 
related to AVP and acts as a weak agonist of the V1aRs 
(Szczepanska-Sadowska et  al., 2017), is capable of reversing 
the opioid-induced respiratory depression and this effect is 
fully unmasked by blockade of V1aRs (Brackley and Toney, 2021).

One of the plausible explanations of the inhibitory action 
of systemic administration of AVP on ventilation is a baroreflex-
mediated inhibition of the medullary respiratory neurons (Richter 
and Seller, 1975; Brunner et  al., 1982; Baekey et  al., 2010; 
McMullan and Pilowsky, 2010) due to the AVP-mediated rise 
in arterial blood pressure. However, as mentioned above the 
arterial baroreflex-mediated inhibition of the pulmonary 
ventilation in the conscious rat is vaguely pronounced (Walker 
and Jennings, 1996). Thus, another mechanism is presumably 
at play.

Vasopressin and the Circumventricular Organs
Based on the experimental work, Jennings (1994) suggested 
that angiotensin II and AVP present in the bloodstream may 
affect ventilation via interaction with the CVOs. Thus, one of 
such mechanisms may involve stimulation of the V1aRs in 
the CVOs, specifically in the AP. In addition to the AP neurons 
responding to both AVP and the rise in blood pressure, 
indicating their pressure-sensitivity, there are at least two pools 
of neurons in the AP that respond to circulating AVP 
independently from the changes in arterial blood pressure, 
indicating their AVP-sensitivity. One pool increases and another 
one decreases the firing rate in response to intravenous AVP 
(Smith et  al., 1994). Both types of responses are dependent 
on vasopressin V1 receptors, as their inhibition abolishes 
AVP-induced changes in the discharge frequency (Smith et  al., 
1994). Furthermore, in the medial regions of the NTS there 
are neurons that respond with increased or decreased firing 
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in response to AVP microinjections into the AP (Cai et al., 1994), 
indicating that the circulating neurohormone may affect activity 
of the NTS involved in the baro- and chemoreflexes via the 
neuronal pathway including the AP. In fact, application of 
AVP into the AP significantly reduces the phrenic nerve activity 
in mechanically ventilated, urethane anesthetized rats, and the 
inhibitory effect is prevented by local administration of V1aR 
antagonist into the AP or by pharmacological inhibition of 
the NTS (Yang et  al., 2006). This is further supported by 
observations that AVP administered into the cerebral ventricles, 
thus allowing for interaction of the neurohormone with the 
CVOs, decreases respiratory rate in the anesthetized rat (Zerbe 
and Feuerstein, 1985). However, it should be  noted that 
intracerebroventricular infusion of AVP in conscious macaque 
monkey had no effect on ventilatory parameters (Lee et  al., 
1985). This is contrary to the studies with electrical and 
pharmacological stimulation of the AP neurons in rabbits, 
which results in increased phrenic nerve activity (Srinivasan 
et  al., 1993; Bongianni et  al., 1994). It should be  noted that 
electrical stimulation of the AP may trigger both excitation 
or inhibition of the NTS neurons in rodents (Chrobok et  al., 
2021). Similarly, electric stimulation of the SFO increases 
ventilation in rats (Ferguson et al., 1989). Although, the V1aRs 
are expressed in the SFO (Ostrowski et  al., 1994), thus far it 
has not been determined how their stimulation affects the 
respiratory system. Available evidence and anatomical proximity 
to the respiratory neurons of the brainstem point to the AP 
as a putative CVO involved in mediating the respiratory effects 
of circulating AVP. However, given the limited number of 
studies that evaluated respiratory responses to AVP directly 
administered into the CVO, the role of CVOs in neural control 
of respiration by AVP awaits further corroboration from 
experiments specifically targeting AVP and the AP and/or the 
SFO, especially under conditions associated with activation of 
vasopressinergic system and in awake animals.

Vasopressin and the Carotid Bodies
Circulating AVP may also affect control of the respiratory 
system by binding to its receptors within the carotid body. 
We showed that in normotensive rats, AVP administered locally 
into the carotid body via the internal carotid artery causes a 
modest increase in the pulmonary ventilation without significant 
changes in the blood pressure (Żera et  al., 2018). Further 
studies are needed to determine whether these effects are 
directly dependent on activation of the chemosensitive glomus 
cells that express V1aRs (Żera et  al., 2018) or rather on 
AVP-mediated decrease in the carotid body blood flow that 
may sensitize the chemoreceptors (Przybylski, 1981; 
Brognara et  al., 2021).

Respiratory Effects of Vasopressin Acting 
as a Neurotransmitter in the Central 
Nervous System
The paraventricular nucleus of the hypothalamus is the main 
source of the vasopressinergic innervation of the brainstem 
and provides projections to the discrete nuclei of the brainstem 

and the spinal cord (Coote, 1995; Pyner, 2009; Coote and 
Spyer, 2018). Available evidence indicates that these 
vasopressinergic pathways may participate in the regulation 
of breathing.

Vasopressin and the Paraventricular Nucleus
Retrograde labeling and functional studies show neural pathways 
between the PVN and the NTS, the RVLM, and the 
presympathetic neurons of the spinal cord (Yang and Coote, 
1998; Yang et  al., 2002; Ferguson et  al., 2008; Affleck et  al., 
2012). The PVN is involved in the peripheral chemoreflex, as 
the inhibition or disinhibition of the PVN neurons result in 
the respective attenuation or augmentation of the peripheral 
chemoreflex-evoked sympathetic and respiratory responses 
(Reddy et  al., 2005). Furthermore, retrograde labeling studies 
combined with immunostaining for V1aRs show that the PVN 
vasopressinergic fibers terminate on neurons in the RVLM, 
the rVRC, the pre-Bötzinger complex, the NTS, and the phrenic 
nuclei (Kc et  al., 2002a, 2010; Jackson et  al., 2005; Figure  1). 
In a series of experiments, Kc et  al. (2002b) showed that 
hypercapnia activates vasopressinergic neurons in the PVN and 
hypoxia upregulates V1aRs in the RVLM, the ventral respiratory 
group and in the phrenic nuclei in the spinal cord (Kc et  al., 
2010). They also showed that in anesthetized mechanically 
ventilated and vagotomized rats, disinhibition of the PVN leads 
to increase in respiratory activity, as estimated by means of 
electromyography of the diaphragm and genioglossal muscle 
and that this increase can be  prevented by a pre-treatment of 
the RVLM and the rVRC with selective V1aR antagonist (Kc 
et  al., 2010). Along with the upregulation of V1aRs, the 
respiratory responses were augmented by chronic intermittent 
hypoxia (Kc et  al., 2010). The increases in respiratory activity 
evoked by disinhibition of the PVN were accompanied by 
pressor response and dependent on V1aRs (Kc and Dick, 2010, 
Kc et  al., 2010). Together, these studies indicate that activation 
of the vasopressinergic PVN projections to the RVLM/rVRC 
increases the respiratory activity via V1aRs.

Vasopressin and the Ventral Lateral Medulla
In addition, microinjections of AVP into the pre-Bötzinger 
complex or RVLM/rVRC also increased the diaphragm’s muscle 
activity in a V1aR-dependent manner (Kc et  al., 2002a, 2010). 
The increases in respiratory activity evoked by local application 
of AVP was accompanied by pressor response (Kc et al., 2002a). 
Furthermore, microinjection of the V1aR antagonist into the 
RVLM/rVRC resulted in a decrease in respiratory activity in 
rats exposed to chronic intermittent hypoxia (Kc et  al., 2010), 
suggestive of tonic vasopressinergic input to the respiratory 
neurons. Together, these studies indicate that AVP and V1aRs 
in the RVLM and rVRC are involved in stimulation of the 
respiratory activity.

Contrary effects were reported in a series of experiments, 
in which AVP was microinjected into various sites of the 
ventrolateral medulla (VLM) caudal from the RVLM determined 
as a pressor region of the VLM in urethane anesthetized and 
vagotomized rats that were paralyzed and mechanically ventilated. 
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In these experiments, microinjections of AVP applied into the 
VLM and the rostral ventral respiratory group (rVRG) caudal 
from the RVLM resulted in apnoea with subsequent inhibition 
of the phrenic nerve discharges (Chuang et  al., 2003, 2005). 
Although, the inhibitory effect of AVP on the respiratory activity 
was consistent, the pressor response was dependent on the 
site of injection. Applications of AVP into the lateral part of 
the VLM decreased the phrenic nerve activity and concomitantly 
elevated arterial blood pressure, whereas AVP application into 
the medial part of the VLM attenuated only the phrenic nerve 
activity, without significant effect on the arterial blood pressure 
(Chuang et al., 2003, 2005; Cheng et al., 2004). Microinjections 
of AVP into the VLM and the rVRG were also shown to 
inhibit activity of the hypoglossal nerve (Chuang et  al., 2005). 
Of note, these inhibitory effects of AVP on phrenic nerve 
activity were diminished by hypercapnia (Chuang et  al., 2003; 
Cheng et  al., 2004) and were completely abolished by 
pre-treatment with a selective V1aR antagonist (Chuang et  al., 
2003, 2005; Cheng et  al., 2004). Administration of the V1aR 
antagonist under resting conditions had insignificant effect on 
blood pressure and phrenic nerve activity in these experiments 
(Chuang et  al., 2003, 2005; Cheng et  al., 2004), suggesting 
lack of significant impact of vasopressinergic efferents innervating 
these structures on ventilation at rest. Together, these findings 
suggest inhibitory action of AVP on the respiratory neurons 
of the rVRG located caudally from the RVLM.

These two series of reports provide apparently conflicting 
results that may be  caused by the several differences in the 
experimental paradigms, including use of neuromuscular 
blockade and atropine. In addition, mechanical ventilation with 
continuous positive end-expiratory pressure potently increases 
plasma concentration of AVP (Annat et  al., 1983; Venus et  al., 
1985) and this activation of AVP release depends on the 
hydration status of the ventilated animal (Venus et  al., 1985). 
Thus, various levels of baseline activity of vasopressinergic 
system could have been present across the above studies. It 
should be  also noted that acute experiments under anesthesia 
investigating the autonomic responses related to the function 
of the brainstem and the hypothalamus may yield conflicting 
results to physiological responses observed in conscious animals 
(Kannan et  al., 1989). Nonetheless, it seems that in the more 
rostral part of the VLM/rVRC AVP promotes respiratory activity, 
whereas in the more caudal area, it inhibits respiration.

Vasopressin and the Nucleus of the Solitary 
Tract
The carotid body-evoked hyperglycemic response has been 
recognized as a contributing factor in the pathophysiology of 
metabolic syndrome (Conde et  al., 2017) and blockade of 
V1aRs in the NTS was shown to attenuate increase in the 
plasma concentration of glucose induced by activation of the 
peripheral chemoreflex (Montero et  al., 2006). Moreover, 
inhibition of the V1aRs in the NTS substantially reduces pressor 
and tachycardic effects of electrical stimulation of the PVN 
(Pittman and Franklin, 1985). Thus, it is probable that AVP 
in the NTS also modulates respiratory reflexes, especially those 
originating from the peripheral chemoreceptors. This assumption 

is further substantiated by evidence indicating that almost half 
of the NTS neurons respond with excitation to local application 
of AVP in the coronal sections of the rat’s brainstem (Raggenbass 
et  al., 1989). Furthermore, in anesthetized cat, iontophoretic 
applications of AVP into the NTS revealed excitatory effects 
of the neuropeptide on the inspiratory neurons of the NTS 
(Henry and Sessle, 1989). However, microinjections of AVP 
into a discrete region of the NTS rostral to the calamus 
scriptorius also produced inhibition of the phrenic nerve activity 
in rats (Yang et  al., 2006). Further investigations are required 
to elucidate the significance of AVP action in the NTS for 
regulation of respiration.

The role of endogenous AVP and vasopressinergic neurons 
in the regulation of the respiratory system is also indirectly 
supported by spectral analysis of the blood pressure variability, 
the heart rate variability, and selective pharmacological inhibition 
of AVP receptors in the central nervous system in awake rats, 
which suggests that vasopressin and V1aR/V1bRs are involved 
in enhancing ventilation and respiratory-induced blood pressure 
oscillations (Japundzic-Zigon, 2001; Milutinović et  al., 2006). 
Furthermore, experiments in the Brattleboro rats lacking AVP 
indicate that although under resting conditions their breathing 
is normal, under challenging conditions of septic shock their 
respiratory adaptation, i.e., increase in respiration, is absent 
(Brackett et  al., 1983), which suggests the important role of 
the neuropeptide in respiratory adaptation to disturbed 
homeostasis. This is further supported by known respiratory 
problems, including sleep apnoea, decreased ventilation and 
spells in patients with Wolfram syndrome characterized by 
diabetes insipidus and a lack of AVP (Thompson et  al., 1989; 
Licis et  al., 2019).

FUTURE PERSPECTIVES

Evidence pointing to the involvement of AVP in the regulation 
of respiration mainly emerges from experimental studies in 
anesthetized animals, in which either local or systemic injections 
of the neuropeptide or its selective antagonists were performed. 
Given the complexity of AVP-induced responses including 
water-electrolyte, cardiovascular, metabolic and behavioral ones, 
novel approaches are needed to decipher the integrative role 
of AVP in the regulation of breathing in conscious and intact 
animals under physiological conditions and in 
disturbed homeostasis.

Targeted control and modification of the vasopressinergic 
neurons with optogenetics and chemogenetics have been 
proposed for determining the role of AVP in the regulation 
of physiological functions and behavior (Murphy et al., 2012; 
Yoshimura and Ueta, 2019). These novel techniques open 
prospects for dissecting vasopressinergic pathways and 
functional role of AVP in the regulation of the respiratory 
system. Recently, chemogenetic activation of endogenous AVP 
has been applied in figuring out the anorexigenic effects of 
AVP (Yoshimura et  al., 2017; Sanada et  al., 2021). Targeted 
optogenetic stimulation/inhibition of vasopressinergic neurons 
in the hypothalamus and extra-hypothalamic regions or 
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vasopressinergic efferents innervating specific brain structures 
have been used in various experimental models (Ishii et  al., 
2016; Smith et  al., 2016; Hume et  al., 2019; Yoshimura and 
Ueta, 2019; Tabarean, 2021)., Moreover, successful optogenetic 
stimulation or inhibition of the SFO or the OVLT neurons 
revealed novel information on the regulation of thirst and 
drinking, vasopressinergic neurons and control of blood 
pressure (Oka et  al., 2015; Zimmerman et  al., 2016; Pool 
et  al., 2020; Frazier et  al., 2021). The optogenetic approach 
has been also proposed (Abdala et al., 2015) and successfully 
applied in delineating respiratory networks of the brainstem 
(Alsahafi et  al., 2015; Basting et  al., 2015; Koizumi et  al., 
2016; Cregg et al., 2017; Malheiros-Lima et al., 2018; Fortuna 
et  al., 2019; Ikeda et  al., 2019; Souza et  al., 2020). These 
new technologies may help in dissecting the role of AVP 
in regulation of breathing by precise chemogenetic or 
optogenetic activation of vasopressinergic neurons projecting 
to the brainstem, optogenetic inhibition or stimulation of 
specific pools of respiratory neurons within the brainstem 
and CVOs, especially ones with V1aR phenotype, and targeted 
modulation of vasopressinergic fibers supplying them. Such 
experimental manipulations carried out in awake animals in 
physiological state and under conditions of hypo/
hyperosmolality, hypovolemia, hypotension, hypoglycemia, 
hypoxia, exercise, or activation of renin-angiotensin system 
will bring to light the integrative role of AVP acting both 
as a neurohormone and a neurotransmitter in adjusting the 
respiratory system to disturbed homeostasis.

CONCLUSION

Vasopressin is one of the key hormones involved in maintaining 
body homeostasis and plays critical role in adjusting various 
body systems to changing internal and external environments. 
A great attention has been dedicated the role of AVP in 
maintaining renal water-electrolyte balance and regulation 
of the circulatory system. Recently, the central effects of 
AVP related to cognition, mood, memory, and pain have 
been recognized. Available evidence indicates that AVP also 
plays a complex role in the regulation of the respiratory 

system. As a neurohormone present in the circulation, AVP 
influences the respiratory activity via the circumventricular 
organs, especially the AP, and the arterial chemoreceptors, 
specifically those located in the carotid bodies. In the area 
postrema, AVP inhibits the phrenic nerve activity, whereas 
in the carotid bodies it appears to promote ventilation. Acting 
as a neurotransmitter in the brainstem, AVP exerts both 
stimulatory and inhibitory effects on the phrenic nerve activity 
in a site-specific manner; however, this awaits further 
investigations in conscious animals. The respiratory effects 
of AVP appear to be predominantly mediated by the vasopressin 
V1a receptors. Strong evidence indicates that vasopressin 
may be  an important neuropeptide involved in maintaining 
respiratory homeostasis.
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