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Background:Remodeling due tomyocardial infarction (MI) significantly increases patient

arrhythmic risk. Simulations using patient-specific models have shown promise in

predicting personalized risk for arrhythmia. However, these are computationally- and

time- intensive, hindering translation to clinical practice. Classical machine learning

(ML) algorithms (such as K-nearest neighbors, Gaussian support vector machines, and

decision trees) as well as neural network techniques, shown to increase prediction

accuracy, can be used to predict occurrence of arrhythmia as predicted by simulations

based solely on infarct and ventricular geometry. We present an initial combined

image-based patient-specific in silico and machine learning methodology to assess risk

for dangerous arrhythmia in post-infarct patients. Furthermore, we aim to demonstrate

that simulation-supported data augmentation improves prediction models, combining

patient data, computational simulation, and advanced statistical modeling, improving

overall accuracy for arrhythmia risk assessment.

Methods: MRI-based computational models were constructed from 30 patients 5

days post-MI (the “baseline” population). In order to assess the utility biophysical

model-supported data augmentation for improving arrhythmia prediction, we augmented

the virtual baseline patient population. Each patient ventricular and ischemic geometry

in the baseline population was used to create a subfamily of geometric models,

resulting in an expanded set of patient models (the “augmented” population). Arrhythmia

induction was attempted via programmed stimulation at 17 sites for each virtual

patient corresponding to AHA LV segments and simulation outcome, “arrhythmia,”

or “no-arrhythmia,” were used as ground truth for subsequent statistical prediction

(machine learning, ML) models. For each patient geometric model, we measured and

used choice data features: the myocardial volume and ischemic volume, as well as

the segment-specific myocardial volume and ischemia percentage, as input to ML

algorithms. For classical ML techniques (ML), we trained k-nearest neighbors, support

vector machine, logistic regression, xgboost, and decision tree models to predict the
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simulation outcome from these geometric features alone. To explore neural network ML

techniques, we trained both a three - and a four-hidden layer multilayer perceptron

feed forward neural networks (NN), again predicting simulation outcomes from these

geometric features alone. ML and NN models were trained on 70% of randomly

selected segments and the remaining 30% was used for validation for both baseline

and augmented populations.

Results: Stimulation in the baseline population (30 patient models) resulted in reentry

in 21.8% of sites tested; in the augmented population (129 total patient models) reentry

occurred in 13.0% of sites tested. ML and NN models ranged in mean accuracy from

0.83 to 0.86 for the baseline population, improving to 0.88 to 0.89 in all cases.

Conclusion: Machine learning techniques, combined with patient-specific,

image-based computational simulations, can provide key clinical insights with high

accuracy rapidly and efficiently. In the case of sparse or missing patient data,

simulation-supported data augmentation can be employed to further improve predictive

results for patient benefit. This work paves the way for using data-driven simulations for

prediction of dangerous arrhythmia in MI patients.

Keywords: patient-specific modeling, computational cardiology, machine learning in cardiology, modeling and

simulation, biophysical modeling, data augmentation, electrophysiological modeling

1. INTRODUCTION

Ventricular arrhythmia, resulting from abnormal impulse
propagation in the heart, is a leading cause of death in the
industrialized world (Zipes and Wellens, 1998). Ventricular
tachycardia (VT), a life-threatening regular and repetitive fast
heart rhythm, frequently occurs in the setting of myocardial
infarction (MI), as does the even more dangerous and
disorganized ventricular fibrillation (VF), occurring when
blockage in the coronary arteries impedes perfusion to the heart

muscle, causing both acute and chronic damage. Implantation of
a cardioverter-defibrillator (ICD) is the most effective measure
for preventing lethal arrhythmias post-MI; however, ICD therapy

is costly and can be associated with procedural complications,

infections, device malfunctions and diminished quality of life
(Zipes et al., 2016). In addition to the risks associated with
ICD implantation itself, current guidelines for which patients
may benefit from this intervention critically need improvement.
Currently clinical criteria for identifying ICD candidates for
the primary prevention of sudden cardiac death (SCD) rely
almost exclusively on a nonspecific reduction in global left
ventricular function (ejection fraction < 35%). Only 5% of
patients who meet this criterion and thus undergo device
implantation receive life-saving appropriate defibrillation shocks
(Smer et al., 2017). Patient-specific models can be successfully
employed to improve arrhythmia risk assessment for post-MI
patients. Specifically, previous work in computational cardiology
has helped both in outlining the role of MI mechanistically
driving arrhythmia risk, and in assessing individualized patient
risk for dangerous arrhythmia (Arevalo et al., 2013, 2016).
Specifically, clinical magnetic resonance imaging (MRI) with late
gadolinium enhancement (LGE) can be used to construct a 3D

computer model of an individual patient’s heart, incorporating
the patient’s ventricular geometry, structural remodeling, as
well as electrical properties (subcellular to organ). This patient
heart, used in a series of virtual electrophysiology lab induction
protocols, can be used to assess individual risk for dangerous
arrhythmia post-MI and links abnormal myocardial structure
to arrhythmogenicity. The above approach, and analogous
methodologies for other disease states, have been making inroads
with great success so far, but simulations in computational
cardiology are resource- and time-intensive. Despite notable
successes, in many cases their costliness hinders their translation
to clinical practice for improved patient risk assessment and
treatment planning.

Artificial intelligence (AI, encompassing both traditional,
feature-based machine learning, as well as “deep” neural
networks), has emerged as remarkably successful in tackling a
wide variety of challenges in healthcare over the last decade,
including in cardiology (Topol, 2019; Lopez-Jimenez et al., 2020;
Erickson, 2021). In contrast to biophysical models, which can
offer detailed personalized insight as outlined above but can
be cumbersome with respect to computational resources, once
trained, AI models can be remarkably efficient and quick to run,
as well as accurate. Thus, AI is attractive for clinical timescales
wherein decisions need to be made quickly on readily available
computer systems. AI algorithms can learn outcomes (e.g.,
classify disease or assess risk) as based on key patient biomarkers
(i.e., hand-engineered features), in the case of traditionalmachine
learning, or even in the case wherein distinguishing biomarkers
are unknown (in the case of deep learning/neural networks,
which often provide superior accuracy and recall).

Indeed, machine learning has been used extensively in
cardiovascular medicine, not least in the automatic interpretation
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and classification of ECG signals (Kusunose et al., 2020; Chang
et al., 2021; Hicks et al., 2021; Thambawita et al., 2021; Van
De Leur et al., 2021; Zhou et al., 2021). Many studies have
also successfully employed ML in arrhythmia risk stratification,
including advanced ML-enabled image analysis (Feeny et al.,
2020; Krittanawong et al., 2020; Trayanova, 2021). Recently,
ML models have been combined with biophysical modeling
to assess risk for dangerous arrhythmia as well as to uncover
mechanisms of rhythm disturbances and to manage treatment
for affected patients (Prakosa et al., 2013; Bernard et al.,
2018; Lozoya et al., 2019; Shade et al., 2020; Banus et al.,
2021; Monaci et al., 2021; Sermesant et al., 2021; Trayanova,
2021). Biophysical cardiac computational modeling and ML
have also increasingly been combined to focus on drug-induced
proarrhythmic risk assessment, as in e.g., Yang et al. (2020)
and Sahli-Costabal et al. (2020). Thus, biophysically-detailed,
patient-specific models, which may offer mechanistic insight, can
be combined with AI models, which offer superior speed and
accuracy for predictive tasks. However, AI models often require
sufficient data for optimal performance. Usage of clinical data
already implies particular challenges, including practicalities of
access for engineering development and necessary requirements
for data protection, e.g., anonymization. However, data from
clinical studies, while sufficient for traditional statistical analysis,
may also simply not represent the quantity of data necessary to
achieve a superior result with some AI approaches, e.g., neural
networks. Furthermore, data features which are hand-selected or
engineered as based on traditional clinical biomarkers may not
provide optimal predictive performance.

Generally, data augmentation is a technique used to create
novel examples of data by slightly altering existing data and/or
creating de novo synthetic data from existing data for training
of machine learning models. This additional data acts as a
regularizer, and helps to reduce overfitting when training models,
particularly neural networks. Data augmentation has been used
in diverse biomedical contexts to improve model performance,
see e.g., ECG classification models including GAN-enabled
augmentation of ECG datasets (Golany et al., 2020; Shaker
et al., 2020; Thambawita et al., 2021). Biophysical simulation-
based data creation (augmentation) goes a step further, to use
detailed mechanistic models, often incorporating patient-specific
aspects, to increase and enrich the amount of data available
to train AI models. These broadly range from e.g., biophysics-
based domain adaptation methods to improve AI-enabled image
processing in the brain (Gholami et al., 2018) to studies applicable
to arrhythmia assessment and treatment planning in patients
(Lozoya et al., 2019; Shade et al., 2020).

Computational cardiac simulations can create expanded
patient data — as based on first-principles biophysics
— for a single patient, or a population of patients: i.e.,
voltage-mapping to assess inducibility of VT post-MI, when
only image-based geometries (LGE-MRI) are available. The
expanded, augmented population from biophysically-detailed
computational cardiology simulations can then be used to
train AI models for a downstream task (in this case, assessing
patient risk for dangerous arrhythmia post-MI by a series of
classification models).

In this study, we present an initial combined image-based
patient-specific in silico and machine learning methodology to
assess risk for dangerous arrhythmia in post-infarct patients.
Furthermore, we aim to demonstrate that simulation-supported
data augmentation improves prediction models, combining
patient data, computational simulation, and advanced statistical
modeling, improving overall accuracy for arrhythmia risk
assessment. We present a semi-automated image-based patient-
specific modeling and simulation pipeline and well as data-
augmentation and machine learning techniques, and show that
a combined approach can provide key clinical insights with
high accuracy rapidly and efficiently. In the case of sparse or
missing patient data, simulation-supported data augmentation
can be employed to further improve predictive results for
patient benefit. This work paves the way for using data-
driven simulations for prediction of dangerous arrhythmia in
MI patients.

2. METHODS AND MATERIALS

2.1. Image-Based Modeling Pipeline
Several prior studies have developed pipelines generating
personalized heart models, (e.g., Vadakkumpadan et al.,
2010); however, these processes have generally been time-
consuming and manual. We developed and implemented
a semi-automatic pipeline for generating patient-specific
ventricular models (Figure 1). All steps are fully automated,
with the exception of MRI segmentation, which required
manual intervention. The entire pipeline is open-source and
available to the public. This semi-automated pipeline involves
segmentation from MRI medical images of the heart, finite
element model generation, virtual myocardial fiber generation,
and node reordering as preparation for continuum model
electrophysiological simulations.

2.1.1. Baseline Clinical Information for Initial Patient

Groups
In collaboration with Rigshospitalet in Copenhagen, DK, we
received access to MRI of 48 patients suffering from first-time
MI (Jabbari et al., 2015; Ravn Jacobsen et al., 2020). After
immediate primary percutaneous coronary intervention (PPCI),
all patients underwent MRI scans 5 days post procedure. The
data set available for this study was reduced to 30 patients after
data assessment for quality and suitability for the image-based
modeling pipeline described below.

2.1.2. MRI Segmentation
Segmentation was attained using Segment v2.1 R5752, a freely
available software for medical image analysis (https://medviso.
com/segment/). Described in Engblom et al. (2016) is the
algorithm for infarct quantification from which we attained
all ischemic measurements. A complete segmentation had all
relevant slices for a given patient scan segmented into the
endo- and epicardia for both the LV and RV, as well as
potential ischemic tissue (Figure 1A). After segmentation of
all slices, the extracted ventricular heart geometry for a given
patient scan could be visualized as a 3D model as viewed
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FIGURE 1 | (A) Patient MRI and segmentation of endocardial, epicardial, and ischemic surfaces. (B) Rule-based fiber orientation. (C) The generated 30 baseline

geometries with ventricles rendered semi-transparently.

in Figure 1C. All segmentation results were saved as binary
MATLAB files (.mat extension).

2.1.3. Slice Alignment and Surface Generation
Surface generation of segmented regions for creation of finite
element models relies upon inter-slice registration for correct
alignment, to remove patient motion artifacts. Marciniak et al.
have previously described these methods in detail (Marciniak,
2017; Marciniak et al., 2017). The post-adjusted data was then
extracted and converted into four separate surfaces (LV and
RV endocardia, LV and biventricular epicardia). Surfaces were
created using the Visualization Toolkit (VTK) (Schroeder et al.,
2006). Ischemic points were converted into a surface using VTK
and Insight Segmentation and Registration Toolkit (ITK) (Yoo
et al., 2002). Surfaces were visualized in Paraview (Ayachit, 2015).
All surfaces were stored as .vtk files.

2.1.4. Finite Element Model Generation
The creation of 3D models based on generated surfaces was
attained using gmsh (Geuzaine and Remacle, 2009). Mesh
generation included three surfaces: the LV and RV endocardium
and the biventricular epicardia as well as tetrahedral mesh
of the ventricular myocardium and ischemic tissue. Following
successful mesh generation, gmsh model output files were
converted for use by the simulation software openCARP
(Plank et al., 2021). The heterogeneous ischemic regions were
incorporated into the ventricular mesh, first by generating
volume and surface finite element meshes from the ischemic

surface previously generated. Next, the ischemic volume was
divided into numbered, layered regions representing a gradient of
ischemic injury, with severity increasing toward the center of the
damaged region. Regions were assigned based on distance from
the outer surface of ischemic tissue using a scikit-learn Nearest
Neighbors algorithm in Python (Pedregosa et al., 2011). For
the baseline population, the number of regions for each model
was between 10 and 27, depending on ischemia size. Finally,
each point of ischemic volume and its corresponding region was
mapped to the parent heart model.We additionally incorporated,
tested, and implemented a node reordering optimization scheme
for each resultant model to minimize eventual simulation times.
Computation of rule-based myocardial fiber orientation was
completed using the algorithm described in Bayer et al. (2012).
Fibers are visualized in Figure 1B.

2.1.5. Automation
The majority of the described pipeline is automated, excepting
manual MRI segmentation, which takes about 15 min when
completed by trained personnel. Once complete, the segmented
binary .mat file can be input directly into the pipeline, resulting in
the output of a personalized finite element heart model, including
injured tissue, ready for use in simulations and further analysis.
The pipeline is available to the public via GitHub at https://
github.com/vildenst/3D-heart-models; the repository includes
detailed installation and running instructions and offers access
to all necessary software.

Frontiers in Physiology | www.frontiersin.org 4 November 2021 | Volume 12 | Article 745349

https://github.com/vildenst/3D-heart-models
https://github.com/vildenst/3D-heart-models
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Maleckar et al. In-silico and ML Models for Arrhythmia Risk

2.1.6. Resultant Baseline Patient Models
Each of the 30 patient models in the baseline patient population
is represented in Figure 1C; with healthy myocardium in red and
the ischemic region in blue.

2.1.7. Creating an Augmented Population of Patient

Hearts
The MRI-based modeling pipeline described in previous sections
was used to create several additional patient-geometry-based
models. Ischemic volume could be effectively decreased from the
baseline model, which incorporated the image-based ischemic
tissue divided into several layered regions. In each patient heart,
ischemic sizes were reduced by 1, 2, 5 and 10 layered regions
to create four novel patient hearts with smaller ischemic sizes.
Ischemic volume was reduced by defining the outer layers
as electrophysiologically normal tissue, while a gradient from
normal to fully ischemic tissue was used for the remaining inner
layers. This process resulted in 99 additional, novel ischemic
ventricular geometries derived from the original 30 patient hearts
(the baseline population), resulting in a total of 129 ventricular
models (the augmented population).

2.2. Electrophysiological Simulations and
Determination of Arrhythmic Vulnerability
2.2.1. Parameters Defining Conductivity and

Electrophysiology
The ten Tusscher model represented healthy ventricular cell
membrane electrophysiology (ten Tusscher and Panfilov, 2006),
while damaged tissue in the ischemic region was modeled
by alteration of ionic conductances as well reduced tissue
conductivity in both the transverse and longitudinal directions
as given below. Furthermore, we modeled ischemic regions as
graded, with damage of increasing severity toward the center
(Tomaselli and Zipes, 2004).

Presented in Supplementary Tables 1, 2 are the parameter
values used for healthy tissue and ischemic regions, respectively
(ten Tusscher and Panfilov, 2006; Kazbanov et al., 2014).
All values are based on those used in a previous 3D
model of human ventricular fibrillation (Kazbanov et al.,
2014). Supplementary Table 1 gives parameter settings of
the ten Tusscher model corresponding to a steep APD
restitution slope of 1.8, increasing vulnerability to reentry.
Supplementary Table 2 shows the example values for a five-layer
ischemic region. The ischemic tissue was subdivided into 50%
outer and 50% inner layer. This distribution was chosen as a large
ischemic border zone has been shown to be pro-arrhythmogenic
(Heidary et al., 2010). The innermost 50% of the ischemic tissue
were modeled with 30% reduction in the INa and ICaL currents;
while the outermost 50% were modeled with a 20% reduction
in both currents compared to the healthy values. Extracellular
potassium concentration was increased linearly from 7.5 to 10
mM from the outermost to the innermost ischemic regions. To
further increase the arrhythmogenecity of the ischemic tissue,
fATP was set to 0.0049 similar to what has been done previously
(Ferrero et al., 2003). The resulting action potential traces are
shown in Supplementary Figure 1.

Supplementary Table 3 references the tissue conductivities
used for both healthy and ischemic tissue (Kléber et al., 1986;
Poelzing et al., 2004; Akar et al., 2007; Hooks et al., 2007; Weiss
et al., 2007; Clayton and Panfilov, 2008; Arevalo et al., 2016).
Healthy conductivities have the same values as used previously
(Arevalo et al., 2016) and ischemic conductivities have been
reduced by 40% to model conduction slowing due to ischemia
(Kléber et al., 1986; Akar et al., 2007; Jie and Trayanova, 2010).

2.2.2. Pacing Site Selection and Vulnerability

Simulation Protocol
A simulated pacing protocol similar to standard clinical
procedures triggering potential arrhythmic behavior was
employed, as described previously (Cheng et al., 2013; Arevalo
et al., 2016). Seventeen evenly distributed pacing sites in the
LV, as based on the standard defined by the American Heart
Association (AHA), were automatically selected as based on
model orientation. As for other methods, this is available in the
GitHub repository. Briefly, to each of these 17 LV pacing sites
for each model, five pacing stimuli (S1) were delivered with
a cycle length of 350 ms, followed by an S2 stimulus 200 ms
following. If no arrhythmic behavior were detected, the S1-S2
period would be shortened by 10 ms intervals until there were
reentrant circuits identified or until S2 failed to propagate. If
the latter were the case, an S3 stimulus would be delivered 250
ms after the last successful S2, following the same procedure.
Finally, an additional S4 stimulus would be delivered after 250
ms if no reentry were detected, following the same protocol
as the S2 and S3 stimuli. Figure 2A illustrates the protocol
described. Simulations were run for 2,000 ms following each
delivered stimulus to detect potential arrhythmic activity, with
outcomes defined as no reentry (NR), unsustained reentry
(UR) or sustained reentry (R) (Figure 2B). The software used
for simulations in this study is the open Cardiac Arrhythmia
Research Package (openCARP) (Plank et al., 2021). All
simulations were ran using 24 cores and 4G memory per CPU.

2.3. Arrhythmia Risk Classification Models
We assessed the ability of machine learning classification
algorithms to correctly classify virtual patient arrhythmia risk
(R and UR correspond to arrhythmia while NR corresponds to
no arrhythmia) as based on simple virtual patient model-derived
features. In each patient model (baseline plus augmented), global
ischemia volume and global ventricular volume was measured,
and for each of the 17 AHA LV segments the ischemic percentage
and tissue volume was measured (4 features, Figures 3A,B).

2.3.1. Machine Learning Algorithms
We investigated the performance of seven machine learning
classification algorithms (ML models): K-nearest neighbors
(knn), Gaussian support vector machine (SVM), logistic
regression, decision tree (tree), xgboost, and 3- and 4-hidden
layer multilayer perceptrons (feed-forward neural networks, 3-hl
NN and 4-hl NN, respectively).

For all ML models, a chosen data set was shuffled randomly
and split into train and test sets. The train and test sets were
further individually standardized prior to model training and
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FIGURE 2 | (A) Pacing induced arrhythmia protocol. The figure shows pacing sites on the myocardium (left), a schematic of corresponding AHA segments (top right)

and pacing intervals (bottom right). Each stimulus had a duration of 10 ms, current amplitude of 100 uA/cm2 and electrode volume of 1 mm3. (B) Activation maps

during a pacing train that resulted in induction of a sustained reentrant circuit. The stimulus was delivered near the ischemic border. Black region denote myocardium

located deep within the ischemic tissue that did not excite due to the severity of the remodeling.

FIGURE 3 | (A) Left to right: 3D representation of an exemplar patient model of the same 17-segment mapping, a medial slice of the same patient heart model

showing accompanying percentages of segment-specific ischemic burden. (B) Left to right: the same heart with semi-transparent LV, showing the global ischemic

burden in the baseline model, and this global burden reduced to 10 and then 4% to create two additional patient models for the augmented population. Both

segment-specific and global myocardial volume and ischemic burdens were used as features for machine learning models in this study.

post-run model performance evaluation via the test set: the
population mean was first subtracted then divided by standard
deviation. Each model was trained on 70% of randomly selected
segments and the remaining 30% of data (test set) was used for
validation. This procedure was repeated for 100 runs of each ML
model on each data set (both baseline and baseline + augmented).

2.3.2. Model Implementation
k-nearest neighbors was implemented using sklearn’s
KNeighborsClassifier (k was set to 5). Support vector machine
(SVM) was implemented using sklearn’s SVC (C was set
to 2). Logistic regression was implemented using sklearn’s

LogisticRegression. Tree was implemented using sklearn’s
DecisionTreeClassifier (max depth was set to 3). Xgboost was
implemented using xgboost’s XGBClassifier. 3-hl NN and 4-hl
NN were implemented using Keras sequential (an API built
on tensorflow). 3-hl NN used 32, 17 and 8 nodes, respectively,
in each layer. Activation functions were the rectifier linear
unit (ReLU) on hidden layers and the normalized exponential
function (softmax) on output. Batch normalization was applied
between each layer. The learning rate schedule was exponential
decay with an initial learning rate of 0.01, with decay steps set
to 100,000 and the decay rate to 0.9. We employed the gradient-
based optimization methods RMSProp with zero momentum
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TABLE 1 | Summary of arrhythmia simulation results.

Baseline models Augmented models

no. of layers removed 0 1 2 5 10

Total no. of patients 30 25 25 25 24

Mean global ischemia % 10.80 10.34 9.15 6.10 2.60

SD global ischemia % 10.54 8.65 7.86 5.62 2.77

no. of patients with reentry 17 15 10 8 3

% of patients with reentry 56.67 60.00 40.00 32.00 12.50

% of segments with reentry 21.76 18.82 13.41 7.53 1.18

Mean no. of reentries per model 3.70 3.20 2.28 1.28 0.21

SD no. of reentries per model 4.86 4.51 3.93 2.54 0.59

Columns represent the baseline and augmented populations, where ischemic volumes are reduced by 1, 2, 5, and 10 layers (from left to right). Patients without ischemia were not

further modified.

during training, as well as categorical crossentropy as the loss
function. Twenty-five epochs, batch size = 20. 4-hl NN employed
the same implementation as 3-hl NN, but with an additional
layer of 8 nodes at its end.

Other than specified, default parameter values from sklearn,
xgboost, and Keras sequential were used.

2.3.3. Model Performance Assessment
Accuracy, equal to the number of correct predictions divided by
the number of all predictions for the test data, was computed
for all ML models for both baseline and augmented data sets.
Precision was also calculated at a threshold of 0.5 for all ML
models for both baseline and augmented data sets, to determine
the proportion of positive arrhythmia identifications that were
actually correct, defined as precision =

TP
TP+FP . Model sensitivity

(also known as recall), defined as sensitivity =
TP

TP+FN was
additionally calculated at a threshold of 0.5 for ML model results
on both baseline and augmented patient population results,
where TP is the number of true positives, FP the number of
false positives, and FN the number of false negatives. Average
precision, a weighted mean of model precision for multiple
thresholds, was also calculated for all ML models for both
baseline and augmented data sets.

Receiver operating characteristic (ROC) curves were
calculated for all models for both baseline and augmented
population results (Melo, 2013b). The Area Under the ROC
curve (AUC) was also calculated for all ML model results
(Melo, 2013a).

P-values were calculated using a t-test to test whether
per-model prediction accuracy improved when including the
augmented patient population’s simulated arrhythmia outcomes,
as well as an F-test to test whether the per-model variance was
smaller when including augmented population results.

3. RESULTS

3.1. Arrhythmic Vulnerability in Baseline
and Augmented Populations
In the baseline patient model population, 17 segments in 30
patients were evaluated for global arrhythmic vulnerability. Of

these 510 segments, arrhythmia appeared in 111 segments during
the protocol (no arrhythmia in 399; a ratio of 0.218). In the
augmented patient model population, 17 segments in 129 total
patient models were evaluated. Of these 2,193 segments, global
arrhythmia appeared in 285 segments (no arrhythmia in 1,908;
ratio 0.130) during our protocol. A summary of the results are
given in Table 1.

The full set of results of the virtual vulnerability protocol
for all patient models as specified in Materials and Methods
can be found in Supplementary Table 4. Supplementary Table 5

summarizes the differences between the arrhythmic and non-
arrhythmic groups. In general, hearts with larger global
ischemic volumes were more inducible after the pacing protocol.
Additonally, pacing from segments with larger percentage of
ischemic tissue were also more likely to induce arrhythmia
(Oliveira et al., 2018; Martinez-Navarro et al., 2019, 2021). This
result suggests a mechanistic link between location of pacing
site and arrhythmia inducibility in post-MI patients. These
results are consistent with other studies that have shown that
ectopic beats originating from the borders of ischemic tissue
are more likely to result in wavebreak and reentry formation.
Additionally, a positive correlation between ischemic volume
and vulnerability to arrhythmia has been widely reported in the
literature (Rubenstein et al., 2008; Klem et al., 2012).

3.2. Performance of Arrhythmic Risk
Assessment Models
Segment-specific myocardial volume and segment-specific
ischemic percentage as well as total myocardial volume and
total estimated ischemic volume were calculated for each
patient model in the baseline and augmented populations as
detailed in Methods and Materials. Statistics on these features
as well as associated arrhythmia outcomes can be found in
Supplementary Table 5 (model input statistics).

Accuracy of all ML models trained and tested on data
from both the baseline and augmented populations is shown
in Table 2. For each of the seven ML models tested, mean
predictive accuracy improved and accuracy standard deviation
decreased when employing data from the augmented patient
population. For all models trained and tested on data from
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TABLE 2 | Results.

Model Mean Standard deviation Max Min

k-nearest neighbors, baseline 0.84386 0.02710 0.90196 0.77778

k-nearest neighbors, augmented 0.89468 0.00986 0.92553 0.87082

Support vector machine, baseline 0.86059 0.02358 0.92157 0.78431

Support vector machine, augmented 0.89453 0.01035 0.92097 0.87082

Logistic regression, baseline 0.86052 0.02342 0.92157 0.79085

Logistic regression, augmented 0.89749 0.01006 0.92097 0.87538

Decision tree, baseline 0.84261 0.02319 0.88889 0.78431

Decision tree, augmented 0.88868 0.01121 0.91489 0.86626

Xgboost, baseline 0.83118 0.02629 0.90196 0.73203

Xgboost, augmented 0.88722 0.00973 0.90881 0.86018

3 hidden layer neural network, baseline 0.84366 0.02785 0.92157 0.76471

3 hidden layer neural network, augmented 0.89353 0.01175 0.92401 0.86778

4 hidden layer neural network, baseline 0.84523 0.03018 0.90196 0.73856

4 hidden layer neural network, augmented 0.89470 0.01197 0.92249 0.86930

ML model accuracy for baseline and augmented populations.

TABLE 3 | Results.

Model Mean Standard deviation Max Min

k-nearest neighbors, baseline 0.86121 0.03168 0.93125 0.78341

k-nearest neighbors, augmented 0.86063 0.02158 0.91206 0.80355

Support vector machine, baseline 0.89963 0.02689 0.95743 0.82969

Support vector machine, augmented 0.88938 0.01627 0.92553 0.83582

Logistic regression, baseline 0.90478 0.02278 0.95267 0.84192

Logistic regression, augmented 0.9187 0.01033 0.94464 0.88435

Decision tree, baseline 0.89213 0.02918 0.94562 0.79392

Decision tree, augmented 0.89281 0.01768 0.9265 0.83708

Xgboost, baseline 0.87596 0.02704 0.9257 0.77737

Xgboost, augmented 0.90071 0.01106 0.91898 0.86177

3 hidden layer neural network, baseline 0.89673 0.02518 0.95611 0.79616

3 hidden layer neural network, augmented 0.91565 0.01147 0.94856 0.88724

4 hidden layer neural network, baseline 0.90069 0.02378 0.95003 0.82399

4 hidden layer neural network, augmented 0.91448 0.01316 0.94674 0.87139

ML model average precision for baseline and augmented populations.

the baseline patient population alone, SVM and logistic
regression performed best in terms of mean accuracy ( 0.86;
results among models ranged from 0.83 to 0.86). When
using results from the augmented patient population, all
ML models improved in accuracy (to 0.88 to 0.89; accuracy
and variance of accuracy among all model trials between
the baseline and augmented populations was statistically
significant; p-values shown in Supplementary Table 8.
Notably, 3- and 4-hl NN matched the performance of logistic
regression, all performing best when considering the augmented
population results.

Average precision (AP) of all ML models trained and tested
on data from both the baseline and augmented populations is
shown in Table 3. AP stayed the same, or modestly increased,
for all ML models tested, with the exception of SVM, which

decreased slightly. Sensitivity and precision of all ML models
trained and tested on data from both the baseline and augmented
populations at a threshold of 0.5 is additionally shown in
Supplementary Tables 6, 7, respectively.

Figures 4, 5 present the ROC curves for the highest-
performing models tested in both the baseline and augmented
populations, knn, decision tree, and logistic regression are shown
in Figure 4, while neural network ROC curves are presented in
Figure 5. Supplementary Figure 2 shows results for SVM and
xgboost. Corresponding AUC for all ML models trained and
tested on data from both the baseline and augmented populations
is shown in Table 4. While differences among models are
relatively modest, logistic regression, 3-hl NN, and 4-hl NN
performed similarly best in class, with confidence intervals as
shown in Figures 4B, 5A,B.
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FIGURE 4 | Machine learning model performance: ROC curves with 95% confidence interval for (A) k-nearest neighbors, (B) decision tree, and (C) logistic regression,

comparing models trained on augmented and baseline population. True positive rate = TP/(TP+ FN), false positive rate = FP/(FP+ TN).

FIGURE 5 | Artificial neural network performance: ROC curves with 95% confidence interval for (A) 3 and (B) 4 hidden layer feedforward neural network, comparing

models trained on augmented and baseline population. True positive rate = TP/(TP+ FN), false positive rate = FP/(FP+ TN).

4. DISCUSSION

4.1. Summary of Study and Findings
Here, we have presented a combined in silico and machine
learning methodology to assess risk for dangerous arrhythmia in

post-infarct patients. We have aimed to briefly demonstrate that
simulation-supported data augmentation can improve prediction
models and overall accuracy for arrhythmia risk assessment.
Briefly, we used a semi-automated image-based patient-specific
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TABLE 4 | Results.

Model Mean Standard deviation Max Min

k-nearest neighbors, baseline 0.86121 0.03168 0.93125 0.78341

k-nearest neighbors, augmented 0.86063 0.02158 0.91206 0.80355

Support vector machine, baseline 0.89963 0.02689 0.95743 0.82969

Support vector machine, augmented 0.88938 0.01627 0.92553 0.83582

Logistic regression, baseline 0.90478 0.02278 0.95267 0.84192

Logistic regression, augmented 0.9187 0.01033 0.94464 0.88435

Decision tree, baseline 0.85995 0.03819 0.92412 0.74988

Decision tree, augmented 0.89281 0.01768 0.9265 0.83708

Xgboost, baseline 0.87596 0.02704 0.9257 0.77737

Xgboost, augmented 0.90071 0.01106 0.91898 0.86177

3 hidden layer neural network, baseline 0.89673 0.02518 0.95611 0.79616

3 hidden layer neural network, augmented 0.91565 0.01147 0.94856 0.88724

4 hidden layer neural network, baseline 0.90069 0.02378 0.95003 0.82399

4 hidden layer neural network, augmented 0.91448 0.01316 0.94674 0.87139

ML model AUC for baseline and augmented populations.

modeling and simulation pipeline to create both baseline and
augmented patient populations, and assessed vulnerability to
reentry in both populations via a virtual programmed stimulation
protocol. We then calculated specific geometric features in all
patient models, and trained seven machine learning algorithms
(3 classification, 1 clustering, and 2 neural networks) to predict
arrhythmia outcome directly from these geometric patient model
features alone.

We found that this combined approach can provide insight
with high accuracy, rapidly and efficiently, with accuracy ranging
from 83 to 86% for all ML models for the baseline population.
Furthermore, all ML models improved in accuracy to 88–89%
(accuracy and accuracy variance was statistically significant; p-
values shown in Supplementary Table 8) when using results
from the augmented patient population, demonstrating that,
particularly in the case of small cohorts and/or sparse patient
data, simulation-supported data augmentation can be employed
to further improve results of predictive machine learning models.

4.2. Comment on Model Explainability and
Critical Features
Previous research has identified LGE volume (Klem et al.,
2012) and LV mass (Haider et al., 1998) as predictors for
sudden cardiac death. Because we implemented a decision
tree as one of the ML models evaluated and this performed
reasonably similar to other models, we were conveniently
able to directly probe the decision-making in this algorithm
to assess which feature(s) this model deemed as most-
important for its decision making. Again, the hand-picked
geometric features were: segment-specific myocardial volume
and ischemic percentage, as well as total myocardial volume
and total estimated ischemic volume, calculated for each patient
model and segment in both the baseline and augmented
populations. In both populations, the most important of the
four input features tested was estimated total ischemic volume
(Supplementary Figures 3, 4, respectively). However, in the

augmented population, the other three features (total myocardial
volume, segment-specific ischemic percentage, and segment-
specific myocardial volume) were more important for decision
making than in the baseline population. The decision trees
for the baseline and augmented populations can be seen in
Supplementary Figures 5, 6, respectively.

4.3. Biophysical Model-Based Data
Creation and Augmentation: A Growing
Body of Work
ML models have been utilized successfully and extensively in
arrhythmia risk assessment (Feeny et al., 2020; Krittanawong
et al., 2020) and in cardiovascular imaging, to diverse ends
(Prakosa et al., 2013; Bernard et al., 2018; Sermesant et al.,
2021). More recently, compound, explainable ML models
have demonstrated improved risk prediction for ventricular
arrhythmias as compared to traditional biomarkers (i.e., left
ventricular ejection fraction, LVEF), as validated retrospectively
in large clinical cohorts, (e.g., Ly et al., 2021). However, others in
recent years have also pioneered the combination of biophysical
modeling and ML approaches in arrhythmia risk assessment
(Lamata, 2018). In cardiac electrophysiology and arrhythmias,
applications include but are not limited to techniques for
electrical mapping of the myocardium, research to uncover
the basic mechanisms of arrhythmia, and arrhythmia treatment
planning and management, as recently reviewed in Trayanova
et al. (2021). A key utilization of biophysical model-enabled
data creation in this space has been for feature augmentation
to improve performance of learning schemes (Lozoya et al.,
2019; Shade et al., 2020). Notably, Shade et al. (2020) used
ML and personalized computational modeling in concert to
accurately predict whether a patient was likely to experience
AF recurrence following pulmonary vein isolation (PVI), using
only pre-PVI LGE-MRI scans as input. This work shares some
notable methodological similarities with the present study: only
patient LGE-MRI were used as input for electrophysiological
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computational models, and the (baseline) patient cohort size
was similar (32 vs. 0.30 in the present study). Also similarly,
Shade et al. found reasonable predictive performance with
traditional ML approaches and a simulation-augmented feature
set. The divergence in the current study is that the input
data was augmented via patient model population expansion,
rather than introduction of additional features, e.g., from our
electrophysiological simulations. Corrado et al. (2021) also
recently demonstrated the use of a virtual patient cohort to assess
risk for sustained atrial arrhythmia; an ML model (SVM) trained
on local conduction velocity and action potential duration was
able to accurately predict whether an arrhythmia would tether to
that tissue region. In the present study, simulations also provided
the ground-truth regarding patient vulnerability to arrhythmia,
as required for this proof-of-concept in post-MI patients. In
future work, we will indeed employ electrophysiological features
from simulations themselves to assess how their incorporation
improves and/or alters model performance.

4.4. Limitations and Future Work
Despite the successful proof-of-concept executed in this study,
there are acknowledged limitations to this work. In order
to expand the number of patient hearts in the augmented
population, the ischemic tissue in each patient heart was reduced
several times, as described in Methods and Materials. A naive
approach was thus adopted as a first step and ischemic volume
was not altered symmetrically, given practical limitations in
terms of computational time and tractability for patient-specific
biophysical simulations.

The patient population can be further augmented in several
ways to explore the empirical role of class balance in classifier
performance, as well as to create data of sufficient volume
to explore the improved performance of vanilla NN and
deep learning approaches e.g., convolutional neural networks.
Approaches to be used for augmenting patient populations
(the space of the patient-specific, image-derived geometries
and concomitant features) include shape modeling approaches
(Balaban et al., 2021) as well as generative adversarial networks
(Gholami et al., 2018; Shaker et al., 2020). Next steps for this
and related work research may include combining multi-organ
systems for joint study (e.g., Banus et al., 2021), to both better
constrain the parameter space of a personalized model and to
subsequently capture plausible physiologically mechanisms.

Furthermore, we have employed LGE-MRI from patients 5
days post-MI and have considered the damaged tissue region
as ischemic in the present study, rather than as an evolving
necrotic/fibrotic scar region. It is known, however, that the
initial region of ischemic injury evolves rapidly, spatially and
functionally, and may change significantly by the time of imaging
5 days later (Anversa and Sonnenblick, 1990; Holmes et al., 1994;
Ertl and Frantz, 2005; Geerse et al., 2009; Wan Ab Naim et al.,
2020), introducing uncertainty into our assumptions regarding
the modeling of damaged tissue.

Finally, to demonstrate potential clinical utility of the method,
validation of trained ML models with e.g., paired clinical

follow-up data for arrhythmia incidence for the non-augmented
population would be critical. Simulation results as presented here
and real clinical scenarios may be quite different; for instance,
the overall clinical arrhythmia rate may differ between specific
patient groups and from in silico incidence, and should be
taken into consideration. Presently, while comparison between
simulation results here and clinical data has not been possible
due to lack of appropriate data, appropriate follow-up data
and model validation is ultimately crucial for the method’s
translational utility.
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