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Background: Effective and reliable monitoring of asthma at home is a relevant factor

that may reduce the need to consult a doctor in person.

Aim: We analyzed the possibility to determine intensities of pathological breath

phenomena based on artificial intelligence (AI) analysis of sounds recorded during

standard stethoscope auscultation.

Methods: The evaluation set comprising 1,043 auscultation examinations (9,319

recordings) was collected from 899 patients. Examinations were assigned to one of

four groups: asthma with and without abnormal sounds (AA and AN, respectively),

no-asthma with and without abnormal sounds (NA and NN, respectively). Presence of

abnormal sounds was evaluated by a panel of 3 physicians that were blinded to the

AI predictions. AI was trained on an independent set of 9,847 recordings to determine

intensity scores (indexes) of wheezes, rhonchi, fine and coarse crackles and their

combinations: continuous phenomena (wheezes + rhonchi) and all phenomena. The

pair-comparison of groups of examinations based on Area Under ROC-Curve (AUC) was

used to evaluate the performance of each index in discrimination between groups.

Results: Best performance in separation between AA and AN was observed with

Continuous Phenomena Index (AUC 0.94) while for NN and NA. All Phenomena Index

(AUC 0.91) showed the best performance. AA showed slightly higher prevalence of

wheezes compared to NA.

Conclusions: The results showed a high efficiency of the AI to discriminate between

the asthma patients with normal and abnormal sounds, thus this approach has a great

potential and can be used to monitor asthma symptoms at home.

Keywords: asthma, monitoring, auscultation, rhonchi, wheezes, stethoscope, breath, phenomena

1. INTRODUCTION

Asthma affects 1–18% of the general population in different countries (Global Initiative for
Asthma, 2020) and is characterized by chronic airway inflammation causing recurrent attacks
of breathlessness, cough and wheezing sounds. All this leads to expiratory airflow limitation. Its
symptoms differ in intensity and severity over time. The variations may be triggered by different
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factors such as exercise, allergen or irritant exposure, change in
weather, or respiratory infections (Global Initiative for Asthma,
2020). In recent decades asthma prevalence has increased
worldwide, mainly due to environmental and lifestyle risk factors,
particularly in children. Nunes et al. (2017) estimates the mean
cost per patient per annum to be $USD 1900 in Europe and
$USD 3100 in the USA. Uncontrolled asthma leads tomuchmore
significant increase of treatment cost (Sullivan et al., 2014).

In order to reduce social and personal impact of asthma on
patients, the key is to achieve good symptom control mainly
due to monitoring. Such control minimizes risk of asthma-
related mortality, exacerbations, persistent airflow limitation
and adverse events of treatment (Global Initiative for Asthma,
2020). This allows asthmatic subjects to maintain normal activity
levels resulting in reduction of the overall impact of the disease
in society.

The Global Initiative for Asthma (GINA) questionnaire
(Global Initiative for Asthma, 2020) defines wheezing (that
includes two continuous sound phenomena: wheezes and
rhonchi) as a key asthma symptom that must be monitored
since it is a typical indicator of obstructed airflow (Pasterkamp,
2017) and is the most common and specific symptom aligned
with asthma (Daines et al., 2019; Global Initiative for Asthma,
2020). Other commonly recognized adventitious lung sounds
are fine and coarse crackles, which are typically associated with
other medical conditions e.g., pneumonia. However, for asthma
patients, it may be very difficult, if not impossible, to assess
the level of wheezes in the respiratory tract at home. This is in
particular due to the difficulty in distinguishing wheezing from
crackling, especially coarse crackles which are often mistaken for
rhonchi, and vice versa. This task is not trivial even for skilled
medical professionals (Pasterkamp, 2017; Hafke-Dys et al., 2019).
Finally, the interpretation of wheezes differs based on the person
who observes them, the environmental and the cultural context
(Global Initiative for Asthma, 2020). Therefore, a quantitative
metric that defines an objective level of observed wheezes in
asthmatic patients could enhance asthma monitoring.

Usually asthma patients have regular visits every 3–6 months
so a physician must rely on their subjective opinion or opinion
of parents in the case of children. As suggested by Carroll et al.
(2011), patient’s opinions significantly differ from the physician’s
assessment. This can lead to either poor treatment of asthma or
overdiagnosis of asthma or exacerbations.

The recent epidemic, moreover, highlights new risks and
obstacles to healthcare that may become more common in the
future. One of the most important findings in this context is that
telemedicine has become a recognized tool of communication
between patient and physician (Rasmussen et al., 2005; Mann
et al., 2020; Vafea et al., 2020).

Some scientific and commercial solutions related to remote
medical care of respiratory conditions have begun to be
developed in the last few years. Multiple publications have
focused on wheeze detection using various signal processing
techniques and machine learning (Pramono et al., 2019). Lin
and Lin (2016) used frequency cepstral coefficients (MFCCs)
in combination with a gaussian mixture model (GMM) on
recordings from 9 asthmatic and 9 healthy patients to detect

the presence of wheezes resulting in a sensitivity of 88.1% and
specificity of 99.5%. Riella et al. (2009) used amulti-layer artificial
network on a dataset of 112 recordings and achieved 84.82%
accuracy in wheeze detection, while Lin et al. (2015) used a
back-propagation neural network to detect wheezes in a set of
32 asthmatic and 26 healthy patients resulting in sensitivity of
94.6% and specificity of 100%. Other research focused on asthma
detection or measuring asthma severity. For example, Shaharum
et al. (2016) used a k-nearest neighbors (KNN) algorithm to
classify the asthma severity on three levels (mild, moderate,
and severe) and achieved a 97.5% accuracy based on wheeze
detection in recorded signals. The cited works yielded promising
results, however they were tested on limited datasets and groups
of patients and their performance might not scale to larger
populations. Comparison of datasets and reported results are
shown in Table 1.

Adejumo and Shaw (2018) state that electronic monitoring
devices (EMD) hold promise and with further technological
development, carefully considered study design, and better
understanding of patient barriers such devices could lead to
lower morbidity and mortality in asthmatic patients. Multiple
EMDs were created and tested. Satat et al. (2016) presented
an EMD for home monitoring of asthma in children using
multiple stethoscopes while Koehler et al. (2018) showed an
automated respiratory sound monitoring device, which records
respiratory sounds continuously by three small bioacoustical
sensors attached to the trachea and to the back of the patient.
Furthermore, Ra et al. (2016) introduced a system for daily
asthmamonitoring using an array of microphones, a smartphone
and a cloud service to have sensitivity of 98.4% and specificity
of 95% in detecting wheeze sounds on a set of 103 recordings.
Such EMDs are very accurate but they require non-standard or
sophisticated hardware making the process hard or unfeasible in
real-life scenarios.

In this paper, we propose a novel approach to acoustic
data analysis that may essentially help in remote control
and management of asthma patients. This is based not just
on wheeze/rhonchi detection, but additionally on a unique
approach to quantitative measurement of the intensity of these
sounds. The main aim of our research is to assess whether
a quantitative measure of respiratory pathological phenomena
intensity computed by an AI algorithm can be used for
asthma monitoring.

2. MATERIALS AND METHODS

2.1. Lung Sounds Database
In this study, a proprietary large-scale database of lung sounds
was used. The database was built with signed consent from the
patients or the parents of under-age patients and was approved
by a bioethical commission. Database recordings were gathered
between November 2017 and January 2021 by medical doctors
during standard auscultation procedures in their daily practice.
Each examination included up to 12 recordings registered in
different locations on the thorax. From this database two samples
were taken.
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TABLE 1 | Comparison of datasets used in other papers with best classification results reported (if available).

Article Dataset Sensitivity Specificity Accuracy

Lin and Lin (2016) 18 adult patients (9 asthma, 9 healthy) 0.881 0.995 N/A

Riella et al. (2009) 112 respiratory cycle recordings (40 wheezes, 72 without wheezes) 0.861 0.825 0.848

Lin et al. (2015) 58 adults (32 asthma, 26 healthy) 0.946 1.000 N/A

Shaharum et al. (2016) 30 mild asthma, 25 moderate asthma and 35 severe asthma samples N/A N/A 0.975

Ra et al. (2016) 63 wheezing sounds, 40 normal sounds 1.000 0.950 0.980

First sample comprising 9,847 recordings from 1,120 real-
life examinations was used to develop the proposed AI solution.
Second sample was used for validation. It consisted of all
examinations of patients that were not included in the first
sample and were not diagnosed with asthma with comorbidities.
Recordings in the validation sample were further processed
to check their quality. A trained acoustician with experience
in analysis of lung sounds assessed each recording and if he
determined that no breathing cycle could be heard or too
much background noise was present, the recording was rejected.
Eventually all examinations with less than four valid, good quality
recordings were removed.

The final dataset used for validation included 1,043
examinations gathered from 899 patients. This corresponded
to 11,000 unique recordings, of which 9,319 were good quality
recordings. The vast majority of examinations were performed
on unique patients, but in some cases one patient could be
examined up to three times. Two thousand eight hundred and
thirty-one signals were recorded with Littmann 3200 and 8169
with StethoMe stethoscopes. The lengths of recordings ranged
from 2.6 to 61.6 s, averaging to 14.6 s. A total of 33 medical
doctors contributed to this dataset, either in the form of sound
recordings, labeling or verification.

In Supplementary Materials, one can find the raw data that
were used to calculate results of this paper. For research purposes
we encourage everyone to send us the auscultatory recordings,
the algorithm will analyze the data and we send the results back
free of charge.

2.2. Proposed AI Solution
The output data of our AI algorithm is described with the help of
seven indexes describing pathological breath sound intensities.
Four base indexes represent the intensities of the four basic
types of adventitious breath sounds present in an auscultation
examination, namely:

• Wheezes Index
• Rhonchi Index
• Fine Crackles Index
• Coarse Crackles Index

These sounds are identified using nomenclature proposed by
Pasterkamp (wheezes, rhonchi, fine crackles, coarse crackles)
(Pasterkamp et al., 2015; Grzywalski et al., 2019), which
is recommended by the European Respiratory Society, the
International Lung Sounds Association, and the American
Thoracic Society. In addition to these indexes, we also estimate

the following three joint indices for the following combinations
of sounds:

• Continuous Phenomena Index (wheezes and rhonchi)
• Transient Phenomena Index (fine and coarse crackles)
• Overall Index (all phenomena).

The development of the proposed AI solution started with
the manual tagging of the first data sample (the development
dataset). This process was split into two stages. First, medical
professionals provided two sets of labels: a single label for the
whole auscultation examination and the four base labels for
each examination recording. Later we will refer to these as
ground truth examination-level labels and recording-level labels,
respectively. The examination-level label represented the patient’s
overall lung health state at the time of auscultation described on
a three-point scale:

• label 0: no or negligible abnormal sounds of any type
• label 1: some moderate abnormalities in sounds present
• label 2: large numbers of adventitious pathological sounds

The recording-level labels describe the presence of the four
basic pathological breath phenomena in each recording on
an analogous three-point scale (no/negligible, moderate, high
intensity). Each label was approved by at least two other medical
professionals before it was accepted for further use. The process
of labeling and assigning of patients to specific experiment groups
is shown in Figure 1.

In the second stage, based on examination and recording-level
labels, professional and trained acousticians prepared frame-
level annotations of breath sounds. Every sound present in each
recording was identified by providing a beginning and end
timestamp (i.e., start and end time of the phenomenon) and a
sound type label: wheeze, rhonchi, fine crackle, coarse crackle,
inspiration, expiration, or noise. Since these sounds often co-
occur, more than one annotation could have been present at any
given audio frame of a recording. At this stage, the protocol
required a consensus between at least two acousticians for the
annotation to be accepted.

At the core of our AI module is a recurrent-convolutional
neural network (RCNN), very similar to the one presented by
Grzywalski et al. (2019) trained on the frame-level annotations
of breath sounds. At the input the network accepts a single
examination recording and outputs a matrix called the prediction
raster. It contains information about the presence of a particular
breathing sound at a given time-point of the recording. Figure 2
shows an example of an input examination recording (first row)
and matching RCNN prediction raster (second row).
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FIGURE 1 | Process of assigning patients, examinations, and recordings to groups based on presence of abnormal sounds and asthma diagnosis.

The first layer of the network consists of a single convolution
layer that processes an audio sample (array of audio samples)
and approximates a STFT operation on the audio signal,
then a series of eight 2-dimensional convolution layers with
batch normalization are used to extract valuable parts of
the spectrogram. Finally a series of three bidirectional gated

recurrent unit (GRU) layers described by Cho et al. (2014) are
used to analyse the extracted features in time-domain. The whole
model contains approximately 7.4 million trainable parameters
and trains for about 24 h on a modern GPU. The dataset used
to train the RCNN was separate and did not contain recordings
from patients that were used to validate the proposed AI solution.
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FIGURE 2 | Process of determining the indexes values. The processing starts with an audio recording acquisition and analysis, through aggregation of the analysis

from one recording to calculation of the final indexes values for the entire examination.

To analyse intensities of breathing sounds in a recording, each
raster generated by the network is processed further to calculate
the overall presence of a given pathological sound. This is based
on an analysis of correlation of detected phenomena, detected
breathing cycle and detected noise in the recording. The obtained
values are scaled to fit to the ground truth recording-level labels.
This results in a set of four values, one for each abnormal
breathing sound (wheezes, rhonchi, fine, and coarse crackles)

ranging from 0.0 to 1.0. Low valuesmean that the given recording
contains no or negligible pathological sounds of a particular kind,
while high values correspond to a high prevalence of a given
pathological sound in the recording. This functionality is already
publicly available as a CE2274 certified medical device named
StethoMe AI.

Intensities of pathological breath sounds from individual
recordings are aggregated using an ordered weighted averaging
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aggregation operator (OWA) and scaled to fit the ground
truth examination-level labels to yield a single floating point
examination index. The OWA weights that are used to calculate
the respiratory indexes is based on continuous scale by non-linear
discretization based on the empirical data from tags. The index
value ranges from 0.0 when no or very little abnormal sounds are
present in the examination to 1.0 for patients with a high number
of pathological sounds present. The whole process of determining
the indexes values is depicted in Figure 2.

OWA inputs can be chosen in multiple ways. For example
the index can take into account multiple combinations of
pathological sound types, in particular all types can be used
(wheezes, rhonchi, fine, and coarse crackles), single pathology
types (e.g., just wheezes) or various combinations of thereof (e.g.,
continuous phenomena—wheezes and rhonchi). In this research
seven indexes were considered as described at the beginning of
this section.

2.3. Study Design
The validation examinations (second data sample) were divided
into four groups:

TABLE 2 | Validation dataset.

Group of examinations AA AN NA NN

Number of examinations 62 57 761 163

- Including male 22 32 408 89

- Including female 40 25 353 74

Number of recordings 721 457 7,988 1,834

- Incl. good quality recordings 661 386 6,781 1,491

Patient age

- Mean 19.4 21.8 18.7 19.1

- Std 20.7 22.3 26.8 25.2

• Asthmatic With Abnormal Sounds (AA)
• Asthmatic No Abnormal Sounds (AN)
• Non-Asthmatic With Abnormal Sounds (NA)
• Non-Asthmatic No Abnormal Sounds (NN)

Asthmatic patients are patients diagnosed with asthma by
an experienced medical professional using diagnostic criteria
defined by Global Initiative for Asthma (GINA) (Global Initiative
for Asthma, 2020). Since there is no standardized (international
or local) way of detecting and describing lung sounds, we
developed our own protocol to classify each examination as either
No Abnormal Sounds or With Abnormal Sounds. Abnormal
sounds tagged as present means that (a) in the data description
stage a medical professional identified adventitious sounds
(wheezes, rhonchi, fine, or coarse crackles) in the stethoscope
examination, and (b) this assessment was positively verified by
at least two other medical professionals. The medical personnel
involved in this process were blinded to the AI predictions.
Details about composition of the validation dataset split into
the four groups of patients is presented in Table 2 and the age
distribution of patients is presented in Figure 3. The dataset
consisted mostly of young adult patients (mean age of all patients
was 19 with standard deviation of 25.2) however it included
patients covering all age groups.

High imbalance in the number of auscultation examinations
between groups, especially the high number of NA examinations
results from the fact that in the data gathering step no particular
exclusion or inclusion criteria were used (except for exclusion
of asthmatic patients with comorbidities). Out of a total of
823 patients’ examinations with adventitious lungs sounds, only
62 were acquired from patients diagnosed with asthma, which
reflected the natural proportion in the population of people that
were seeking medical help from doctors that contributed to the
lung sounds database.

The seven indexes provided by the proposed AI solution
were then evaluated in terms of their ability to differentiate

FIGURE 3 | Age distribution of patients in each comparison group shown as a box plot. The box extends from the lower to upper quartile values of the data, with a

line at the median. The whiskers extend from the box to show the range of the data. Flyer points are those past the end of the whiskers.
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TABLE 3 | Mean and standard deviation of each index value within each group of

examinations.

Group of

examinations

AA AN NA NN

Overall index 0.37 ± 0.33 0.02 ± 0.04 0.39 ± 0.35 0.02 ± 0.03

Continuous

phenomena index

0.30 ± 0.29 0.01 ± 0.02 0.26 ± 0.32 0.01 ± 0.02

Wheezes index 0.14 ± 0.16 0.01 ± 0.01 0.11 ± 0.18 0.00 ± 0.01

Rhonchi index 0.17 ± 0.23 0.01 ± 0.02 0.17 ± 0.24 0.01 ± 0.02

Transient phenomena

index

0.08 ± 0.12 0.01 ± 0.03 0.16 ± 0.23 0.01 ± 0.02

Fine crackles index 0.06 ± 0.12 0.01 ± 0.03 0.13 ± 0.19 0.01 ± 0.02

Coarse crackles index 0.02 ± 0.06 0.00 ± 0.00 0.03 ± 0.12 0.00 ± 0.00

two groups of examination results. The following comparisons
were considered:

• AA vs. AN
• AN vs. NN
• AA vs. NA
• NA vs. NN

We decided not to perform cross comparisons (AA vs. NN and
AN vs. NA) as we find them less meaningful, since one cannot
deduce which factor is responsible for any difference that may
appear in results.

2.4. Methods
We calculated the Area under ROC-curve (AUC) (Bradley, 1997)
as a measure of separation that can be achieved between groups
within each considered pair using a given index. AUC ranges
from 0.0 to 1.0. High AUC values (close to 1.0) mean that the two
groups can be easily separated using the index, whereas values
around 0.5 correspond to no such distinguishing capability. Low
values of AUC (close to 0.0) also indicate good separation,
but with reversed correlation, namely high index values are
associated with high probability that the examination belongs to
the second group of patients, not the first.

3. RESULTS

As the first outcome of our experiment, in Table 3 we present
the statistics regarding mean and standard deviation of index
values within each of the four groups of examinations. Next,
in Figure 4 we present the ROC curves for all indexes and all
considered pairs of groups of examinations. Finally in Table 4,
we summarize the obtained ROC values that illustrate how well
the groups within each pair may be separated using each index.
Finally we calculated classificationmetrics (sensitivity, specificity,
and accuracy) for all comparisons and indexes. To obtain the
classification metrics for each comparison group and index type
we selected an optimal threshold that balances the values of
sensitivity and specificity. Using this threshold we calculated
sensitivity, specificity, and accuracy. The results for comparison
groups and best indexes are presented in Table 5.

4. DISCUSSION

Our results show that the highest mean value of Overall
Index is in the NA group (0.39) followed by AA (0.37)
(Table 3). The two groups with no abnormal sounds have
much smaller values of mean Overall Index (0.02 in both
AN and NN groups). This is perfectly justifiable as patients
with abnormal sounds presence assignment are expected to
have adventitious lung sounds. It shows that the Overall
Index may be used for determining whether a subject has
pathological phenomena sounds in the lungs or not. The
Overall Index mean value in the NA group may possibly
be higher than in the AA group due to the presence of
patients with more severe medical conditions than asthma,
i.e., pneumonia.

Comparing both asthmatic groups (abnormal sounds
presence vs. no abnormal sounds presence) it is evident that
the examinations of the abnormal sounds presence group
contain more pathological lung phenomena of all kinds.
This pair of groups is characterized by the maximal AUC
value attained among all studied pairs and indices—0.942 for
the Continuous Phenomena index (Table 4). The degree of
separation using Overall, Continuous Phenomena, Wheezes, and
Rhonchi Indices is high, meaning that usually when asthmatic
patients have pathological lungs sounds, these are continuous
phenomena—wheezes or rhonchi, which is in line with the
literature (Global Initiative for Asthma, 2020). It shows that
these indices are good measure candidates to monitor asthma
patients’ auscultatory changes.

When comparing AA and NA groups more closely, it is
important to note that in the asthmatic group there are more
continuous phenomena, especially wheezes. Analyzing Table 3

one can see that the Continuous Phenomena Index is on average
higher by 0.04 and Wheezes Index by 0.03 in the AA group,
whereas the Rhonchi Index averages are exactly at the same level
of 0.17 in both groups. The Transient Phenomena Index, Fine
Crackles Index, and Coarse Crackles Index values averages are
higher in the non-asthmatic group. This is in line with the state
of the art in the asthma domain as transient phenomena are less
representative of asthma than continuous phenomena (Global
Initiative for Asthma, 2020). Analyzing AUC values of the AA
vs. NA groups it is noticeable that the Index that separates the
groups best is the Wheezes Index. Its value is 0.625 (Table 4) so
the separation is far from perfect. This is due to the fact that in
the NA group there are also patients with pathological wheeze
sounds in the lungs so it is not possible to distinguish between
the groups solely using a pathological lung sound index.

The degree of separation between NA vs. NN (Table 4)
as measured by AUC is also very significant, reaching 0.914
with Overall Index while the Continuous Phenomena Index
(0.834) shows no clear advantage over Transient Phenomena
Index (0.797) and all Indices except the Coarse Crackles Index
attain comparable values. This could mean that all phenomena,
except coarse crackles which are overall the least frequent in
the population, occur with a similar frequency in non-asthmatic
groups. This is also in line with the literature (Global Initiative
for Asthma, 2020).
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FIGURE 4 | ROC curves for all indices in comparison: (A) differentiation of AA and AN groups, (B) AN and NN groups, (C) AA and NA groups, and (D) NA and NN

groups.

As can be seen in Table 4 the smallest degree of separation
is observed in the AN vs. NN comparison. These groups
contain examinations of patients with no pathological sounds
and therefore cannot be easily separated using the indices.

When comparing the classification metrics in Table 5 we can
confirm previous findings. The Overall Index performs very
good when used for distinguishing between patients with and
without abnormal sounds in the asthmatic (sensitivity of 0.919,
specificity of 0.774, and accuracy 0.852) and non-asthmatic
groups (sensitivity of 0.938, specificity of 0.506, and accuracy
of 0.863). In case of the asthmatic patients we also see that the

Continuous Phenomena Index (including wheezes and rhonchi)
achieves good results in classifying presence of abnormal sounds
with sensitivity of 0.887, specificity of 0.887, and accuracy
of 0.887.

In groups with smallest degree of separation, namely AN vs.
NN and AA vs. NA we see that highest specificity and accuracy
are achieved using the Coarse Crackles Index (1.000 and 0.746 for
AN vs. NN, and 0.834 and 0.779 for AA vs. NA, respectively).

Comparing directly classification results of our proposed
solution with ones discussed in the introduction of this paper
shows at first our solution is slightly inferior to them. However,
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TABLE 4 | AUCs for all index values and four considered comparisons.

Comparison AA vs. AN AN vs. NN AA vs. NA NA vs. NN

Overall index 0.922 0.491 0.492 0.914

Continuous phenomena index 0.942 0.452 0.591 0.834

Wheezes index 0.902 0.514 0.625 0.793

Rhonchi index 0.904 0.430 0.562 0.787

Transient phenomena index 0.740 0.531 0.414 0.797

Fine crackles index 0.718 0.535 0.398 0.791

Coarse crackles index 0.565 0.497 0.478 0.582

The highest ROC values for each comparison are marked with bold font.

TABLE 5 | Classification results for all comparisons and best index in each group.

Comparison group Index type Sensitivity Specificity Accuracy

AA vs. AN Continuous phenomena 0.887 0.887 0.887

AN vs. NN Overall 0.321 0.763 0.651

AA vs. NA Wheezes 0.581 0.639 0.635

NA vs. NN Overall 0.809 0.891 0.823

it is important to note that our research is based on significantly
bigger dataset of recordings. For example, the biggest discussed
dataset was present in Lin and Lin (2016)—58 adults (32 with
asthma, 26 healthy) while our dataset contains recordings of
899 patients.

5. CONCLUSIONS

The results shown in the paper suggest that the Artificial
Intelligence approach proposed here may be a very good tool for
monitoring the respiratory system state of asthma patients. It can
distinguish between stable states and exacerbations leading to an
automatic monitoring of asthma. The results of this paper are
in line with the findings by Kevat et al. (2020) who confirmed
the high efficiency of a general automatic AI approach to the
detection of wheezes, rhonchi, coarse, and fine crackles. The
present approach makes use of those findings and goes one step
further to provide the tool for monitoring the most common
acoustic symptoms of asthma.

It is worth noting that detection of additional respiratory
sounds alone is not sufficient to diagnose asthma, but it is
information that can be used to effectively monitor the disease.
Wheezing and rhonchi are signs of obstruction in the respiratory
system, which is present during an asthma exacerbation event.
The appearance of these additional phenomena is a clear
indication to the patient and doctor that appropriate action must
be taken—either to take bronchodilator or to modify the long-
term treatment plan. In controlled asthma, these sounds should
not be permanently present in the respiratory system. It can be
found in the literature that most of the asthma exacerbation
cases are characterized by appearance of many abnormalities
and their intensity (Global Initiative for Asthma, 2020), thus
discrimination seems possible. Furthermore, some severe asthma

exacerbation result in a so-called “silent chest,” when there are no
abnormal sounds but the respiratory tract is almost completely
closed. Nevertheless, in such cases other symptoms, making it
possible to react. One must also bear in mind that the proposed
solutions is not capable of discrimination between some groups
(i.e., AN vs. NN and AA vs. NA). It means that its full potential
can be utilized once one is diagnosed and wants to monitor the
asthma state.

Moreover, our AI based solution is, in principle, tailored
for remote use applications and does not necessarily require
continuous and direct oversight by doctors while the high
quality results may be easily transferred on demand to and
used by specialists for further analysis and treatment decisions.
Indeed, the results generated by the proposed system are accurate
and have the potential to effectively support examination
and remote monitoring whenever in-person examination is
unfeasible. Furthermore, this easy and fast way of asthma state
monitoring may lead to much better and more precise analysis of
the patient’s state leading to treatment optimization. Finally, self
monitoring of asthma by the patient may also help raise disease
awareness and render this chronic disease less burdensome. It
thus holds the promise of more flexible and reliable health care.

To conclude, monitoring and treatment adjustments tailored
to patients needs are essential to achieve controlled asthma
and are therefore a fundamental part of comprehensive asthma
management (van den Wijngaart et al., 2016).
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and Kociński. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 11 November 2021 | Volume 12 | Article 745635

https://doi.org/10.1183/13993003.01217-2016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Artificial Intelligence Approach to the Monitoring of Respiratory Sounds in Asthmatic Patients
	1. Introduction
	2. Materials and Methods
	2.1. Lung Sounds Database
	2.2. Proposed AI Solution
	2.3. Study Design
	2.4. Methods

	3. Results
	4. Discussion
	5. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


