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Irisin is a novel skeletal muscle- and adipose tissue-secreted peptide. It is conventionally
regarded as an adipomyokine and is a cleaved fragment of Fibronectin type III domain-
containing protein 5 (FNDC5). It is involved in the browning of white adipose tissue,
glucose tolerance, and reversing of metabolic disruptions. Fertility is closely linked
to energy metabolism and the endocrine function of the adipose tissue. Moreover,
there is established association between obesity and male infertility. Irisin bears strong
therapeutic promise in obesity and its associated disorders, as well as shown to improve
male reproductive functions. Thus, irisin is a molecule of great interest in exploring the
amelioration of metabolic syndrome or obesity-induced male infertility. In this review
we aim to enumerate the most significant aspects of irisin actions and discuss its
involvement in energy homeostasis and male reproduction. Though current and future
research on irisin is very promiscuous, a number of clarifications are still needed to reveal
its full potential as a significant medicinal target in several human diseases including
male infertility.
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INTRODUCTION

Metabolic syndrome and energy dyshomeostasis are among the major disruptors of male
reproductive health (Morrison and Brannigan, 2015). Obesity links with male infertility by
multitudinous mechanisms (Katib, 2015; Bhattacharya et al., 2020). Men with metabolic disorders
often have disturbed levels of reproductive hormones, most prominently with low testosterone
and high estradiol (Pauli et al., 2008). These hormonal imbalance reportedly corresponds to the
severity of metabolic syndrome (Rosenblatt et al., 2015). Insulin Resistance (IR), inflammation and
Oxidative Stress (OS) also are underlying players in the mechanism how excess body fat disrupts
reproductive functions (Morrison and Brannigan, 2015).

Various classical and non-classical hormones and factors have been discussed in bridging the
knowledge gap among metabolic disorders, energy dyshomeostasis and male infertility (Alahmar
et al., 2019; Bhattacharya et al., 2019; Dutta et al., 2019a,b,c; İrez et al., 2019; Sengupta et al.,
2019a,b). Irisin, discovered by Boström et al. (2012), is a novel myokine/adipokine secreted
by skeletal muscle as well as adipose tissues. Irisin is a remarkable molecule which is mainly
induced via exercise, and in the adipose tissues, it converts white adipocytes into metabolically
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active brown adipocytes, thereby holding promise as a
therapeutic in obesity (Zhang et al., 2014, 2016b). Irisin
has been shown to improve insulin sensitivity, enhancing
cognitive capacities, thereby reversing metabolic imbalances
and associated disorders (Perakakis et al., 2017). Despite
its essential contribution in energy homeostasis, its detailed
physiological actions on reproduction are yet to be explored.
Few studies on animals indicate positive impact of irisin upon
male fertility (Nanees and Reham, 2018; Tekin et al., 2019; Luo
et al., 2021). Thus, it may be assumed that irisin, via reversing
obesity, also ameliorates the obesity-induced disruptions in male
fertility. The present article thus reviews the available literature
pertaining to the versatile roles of irisin in metabolism, energy
homeostasis and male reproduction and discusses the possible
involved mechanisms.

IRISIN: AN ADIPO-MYOKINE AND ITS
RECEPTORS

The precursor of irisin is a transmembrane glycoprotein,
Fibronectin type III domain-containing protein 5 (FNDC5)
which was detected for the first time in 2002 (Ferrer-Martínez
et al., 2002; Teufel et al., 2002), and is also called FRCP2
and Pep. The FNDC5 proteolytic cleavage produces irisin in
response to Peroxisome proliferator-activated receptor gamma
coactivator 1 alpha (PGC-1 α) activation (Boström et al., 2012).
Irisin bears a molecular weight of 12 kDa with 112 amino acid
residues (Boström et al., 2012), while the structure of irisin is yet
to fully revealed.

Irisin was discovered through a study in search of factors
secreted in response to PGC-1α by the skeletal muscles
(Schumacher et al., 2013). PGC-1α mediates the physiological
benefits of exercise such as white-to-brown fat conversion
(Handschin and Spiegelman, 2008), improvement of insulin
sensitivity and signaling (Wenz et al., 2009). Studies have also
demonstrated that irisin is primarily released in response to
exercise (Boström et al., 2012; Huh et al., 2012).

Barely 6 years after the discovery of irisin, Kim et al. (2018)
clearly demonstrated that the physiological actions of irisin are
mediated via αV integrins located in osteocytes, myocytes, and
adipose tissues. They showed that irisin therapy ameliorated
hydrogen peroxide-induced apoptosis in MLO-Y4 (osteocyte-
like) cell-line, demonstrating that irisin confers protection against
apoptosis and induces bone resorption by upregulating sclerostin
(Kim et al., 2018). In addition, they demonstrated that FNDC5-
knockout mice had significantly lower expression of receptor
activator of nuclear factor kappa-B ligand (RANKL) mRNA
(Kim et al., 2018). Quantitative proteomics analyses in MLO-
Y4 osteocytes identified five cell surface proteins as possible
receptor candidates for irisin. Among them, only integrin β1
which binds with α-integrins to form obligate heterodimers,
is known to trigger downstream signaling; phosphorylation of
focal adhesion kinase (FAK), protein kinase B (AKT), and
cyclic AMP (cAMP) response element-binding protein (CREB)
(Schaller et al., 1994; Giancotti and Ruoslahti, 1999; D’Amico
et al., 2000). Irisin-treated MLO-Y4 cells showed phosphorylation

of FAK, AKT, CREB, and Zyxin (Kim et al., 2018). This infers that
irisin activates a pathway of integrin-like signaling. The αV/β5
integrin had the highest binding affinity while other integrin
complexes showed weak binding to irisin. Their quantitative
proteomics with mass spectrometry revealed that αV is the
most abundant integrin protein in MLO-Y4 cells followed by
integrin β1, integrin α5, integrin β5, integrin β3, integrin β6,
and integrin β8. Furthermore, it was reported that HEK293T
cells with forced expression of integrin αV/β5 but not αV/β3
showed enhanced FAK phosphorylation with irisin treatment.
Inhibition of αV/β5 absolutely blocked the observed irisin-
driven phosphorylation of FAK, CREB, and Zyxin. This finding
highlights the role of integrin αV/β5 in irisin-mediated functions
(Kim et al., 2018).

Although the physiological roles of irisin are still evolving,
recent studies have shown that irisin secretion is not limited
to the osteocyte, myocytes and adipose tissue as it has been
found in a variety of tissues. In central nervous system (CNS),
irisin expression has been detected in the Purkinje cells of the
cerebellum (Dun et al., 2013), spinal cord and cerebral cortex
(Huh et al., 2012). In peripheral tissues, it is reported in liver,
kidney (Aydin, 2014), salivary glands (Aydin et al., 2013), cardiac
muscles (Aydin et al., 2017), skin and testis (Aydin et al., 2014).
Among the male reproductive tissues, testis bears the highest
irisin expressions followed by prostate gland, while within testis,
irisin is mostly expressed in the developing germ cells, peritubular
cells and Leydig cells (The Human Protein Atlas, 2021; Figure 1).

IRISIN IN ENERGY HOMEOSTASIS AND
METABOLIC SYNDROME

Irisin partially bridges the knowledge gap on the interactions
of working tissues with other tissues to mediate energy
homeostasis. Although irisin is primarily known as a myokine,
it is also released from adipose tissue (Moreno-Navarrete
et al., 2013; Roca-Rivada et al., 2013), earning its name as
an adipokine. It mediates the beneficial metabolic effects of
exercise (Grygiel-Górniak and Puszczewicz, 2017). Irisin induces
the expression of mitochondrial uncoupling protein 1 (UCP1)
and conversion of white to brown adipose tissue, resulting
in raised energy expenditure by increased thermogenesis
(Zhang et al., 2017). Thus, irisin holds promise to be a
therapeutic molecule in mitigation of metabolic syndrome and
related disorders.

Irisin aids skeletal muscle glucose uptake, facilitate glucose
and lipid metabolism in liver, serving as insulin sensitizing
hormone and reversing conditions of hyperlipidemia and
hyperglycemia in metabolic disorders (Chen et al., 2016). Recent
studies depicted that irisin stimulates glucose uptake in muscle
cells via the calcium/ROS and P38/AMP activated protein kinase
(AMPK) mediated pathway (Mu et al., 2001; Zhang et al.,
2014; Figure 2). Irisin can ameliorate insulin resistance (IR)
by its influence on the functions of the tissues, mainly liver
and pancreas, that are involved in the etiology of type 2
diabetes (Moreno-Navarrete et al., 2013; Chen et al., 2016).
Moreover, thyroid hormones play significant roles in metabolism,
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FIGURE 1 | Expression and detection of Fibronectin type III domain containing 5 (FNDC5). (A) Global expression and detection of FNDC5 RNA/protein; (B) FNDC5
RNA (normalized expression) and protein expression in overall male reproductive tissues and specific testicular cells.

and it is reported that triiodothyronine (T3) can increase the
levels of adiponectin and leptin as well as improve insulin
sensitivity, while irisin has least impact on adipokines levels,
but it plays role in prevention of obesity or body weight
regulation owing to its effects upon lipid profile (De Oliveira
et al., 2020). Despite, the fact that central irisin administration
inhibits the hypothalamic-pituitary-thyroid axis, it appears to
be a key regulator of food intake and energy metabolism
(Tekin et al., 2018). As irisin impacts on hypothalamic-pituitary-
thyroid axis, it indirectly may impact on reproductive functions
(Sengupta and Dutta, 2018).

In mature adipocytes, irisin excites white-to-brown fat
conversion by elevating UCP1 and PR/SET Domain 16
(PRDM16) via upregulation of p38 mitogen-activated protein
kinase (MAPK) and extracellular signal-regulated kinase (ERK)
signaling (Boström et al., 2012; Raschke et al., 2013; Huh
et al., 2014; Zhang et al., 2014, 2016a). Several studies
examined the link between circulating irisin, adiposity, and
obesity in humans but with inconsistent results, which may
be explained by the fact that irisin may be involved in
compensatory mechanism for altered metabolism in obesity
and thereby different metabolic status of the specific obese
individual determines its levels. Some studies reported a positive
correlation between serum irisin levels, body mass index
(BMI) and adiposity (Stengel et al., 2013; Crujeiras et al.,
2014b), whereas others found inverse association among the
circulating irisin levels, BMI and the amount of fat tissue or
could not detect any significant change in circulating irisin
levels (Huh et al., 2012; Gouni-Berthold et al., 2013). Positive
relation of irisin with fat mass, waist circumference, waist-
to-hip ratio and leptin levels have also been evidenced in
obese subjects (Stengel et al., 2013; Crujeiras et al., 2014b)
while a negative association was shown between irisin and
adiponectin (Blüher et al., 2014). Furthermore, irisin levels
were significantly reduced following weight loss due to bariatric
surgery, an effect attributed to a lower fat-free mass and
decreased FNDC5 mRNA expression in skeletal muscle (Huh

et al., 2012). On the other hand, the reduction in irisin
levels was reversed in patients who regained their original
weight (Crujeiras et al., 2014a). This suggests that elevated
irisin levels could be a compensatory mechanism for the
abnormal metabolism and insulin sensitivity characteristic of
obese individuals (Huh et al., 2012). Obesity is characterized
by systemic inflammation (Bhattacharya et al., 2020), significant
imbalance in cytokine secretion that is a strong predictor of
developing IR and type-2 diabetes (Fantuzzi, 2005). In addition
to cytokines, the activated toll-like receptor 4 (TLR4) is also
strongly associated with IR as it increases TNF-α expression,
that in turn affects insulin signaling pathway in muscle and
adipose tissue (Könner and Brüning, 2011). Interestingly,
irisin treatment suppressed expression of pro-inflammatory
cytokines, nuclear factor-kappa B (NF-κB), TNF-α, and IL-6
in a concentration dependent manner. Irisin reduced MCP-
1 expression in the cultured adipocytes which subsequently
attenuated migration of macrophages in the presence of irisin.
Moreover, irisin induced the phenotypic switching of adipose
tissue macrophages from M1 (pro-inflammatory) to M2 (anti-
inflammatory) state (Dong et al., 2016). Therefore, FNDC5/irisin
expression is associated with some anti-inflammatory markers
(Moreno-Navarrete et al., 2013).

IRISIN ENERGY HOMEOSTASIS AND
MALE REPRODUCTIVE FUNCTIONS

Report by Kim et al. (2018) upended most of the conflicting
data on irisin receptor, but it also raises questions and
opens up studies in other fields. Are αV/β5 integrin receptors
expressed in the male reproductive tract? If yes, what are
their specific functions? Would inhibition of irisin (or FNDC5)
or its binding to αV/β5 affect male fertility adversely? (Kim
et al., 2018). Albeit available data establishing a link between
irisin and male reproductive function is scarce, its secretion
in the seminal vesicle, penis, and testis (Huh et al., 2012;
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FIGURE 2 | Mechanism of irisin actions linking energy homeostasis, obesity, inflammation, and male reproduction. (A) Irisin acts via activation of the AMP activated
protein kinase (AMPK), P38, MAPK (mitogen activated protein kinase) pathway; (B) irisin-activated pathway upregulates glucose transporter 4 (GLUT4) expression
and transportation to membrane, aiding cellular glucose uptake that follows increased glucose metabolism and energy expenditure; (C) irisin also induces the
expression of mitochondrial uncoupling protein 1 (UCP1) that aids conversion of white adipose tissue to brown adipose tissue, resulting in raised total body energy
expenditure, as well as facilitates pancreatic β-cell regeneration that contribute to irisin-mediated reversing of insulin resistance; (D) irisin downregulates nuclear
factor kappa-B (NF-kB) thereby playing role in suppressing inflammatory responses; (E) irisin-induced activation of Nrf2 (nuclear factor erythroid-2 related factor) may
increase production of antioxidant enzymes thereby curbing excess reactive oxygen species (ROS) and oxidative stress (OS); (F) irisin may act on the HPG
(hypothalamic-pituitary-gonadal) axis or directly upon the testicular cells to regulate male reproductive functions. Moreover, irisin actions to improve metabolic
balance as well as to reverse obesity, inflammation and OS, may confer ameliorative impact upon obesity/inflammation/OS-mediated male infertility.

Aydin, 2014) might infer that it exerts some autocrine and
paracrine effects on the male reproductive function. In addition,
since energy balance has been established to play key roles
in maintaining optimal reproductive function, irisin-driven
energy homeostasis may be beneficial to the male reproductive
function (Figure 2).

IRISIN AND STEROIDOGENESIS

The hypothalamic-pituitary-gonadal (HPG) axis is the main
endocrine regulator of the male reproductive functions
(Akhigbe et al., 2020). The hypothalamic signal to the pituitary
gland is via the gonadotropin-releasing hormone (GnRH)
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(Dhillo et al., 2005; Corradi et al., 2016). The pituitary gland
sends signal to the testis by releasing follicle stimulating
hormone (FSH) and luteinizing hormone (LH) from the
pituitary gonadotrophs. FSH and LH exert their effects on the
testis by binding to FSH-R that is predominantly expressed
in the Sertoli cells within the seminiferous tubules and LH-R
that is expressed in the interstitial Leydig cells, respectively
(Ramaswamy and Weinbauer, 2014). In response to LH
signaling, the conversion of cholesterol into testosterone
through series of biochemical events (Akhigbe et al., 2020).
The gonadotropins establish the adult population of Sertoli,
Leydig and stem germ cells and their functions, thus maintaining
normal spermatogenesis (Ramaswamy and Weinbauer, 2014).
Energy dyshomeostasis has been associated with upregulation
of estrogen receptor expression in the male hypothalamus
(Chimento et al., 2014). In turn, this triggers a negative feedback
mechanism and inhibits the pulsatile release of GnRH, resulting
in decline in FSH and LH release and impaired testosterone
production. Energy dyshomeostasis also increases the level
of aromatase, which raises the conversion of testosterone to
estrogen, thus inhibiting testicular function and suppressing
circulatory androgen (Hammoud et al., 2006).

Irisin (and FNDC5), possibly via elevation of expression
of mitochondrial UCP1, activates thermogenesis and lipolysis
with resultant maintenance of energy balance. This might
downregulate the expression of estrogen receptor in the
hypothalamus, ensuring optimal pulsatile GnRH release and
consequent FSH and LH release into the circulatory, resulting in
Leydig cell-dependent testosterone production. Re-establishment
of energy balance by irisin may also inhibit the conversion of
testosterone to estrogen via repression of aromatase activity.
Irisin-led elevation of UCP1 and PR/SET Domain 16 (PRDM16)
via upregulation of p38 MAPK and ERK signaling (Boström
et al., 2012; Huh et al., 2014; Zhang et al., 2014, 2016a) may
not only cause white-to-brown fat conversion, but also blunt
estrogen-induced cytokine-mediated inflammation.

It is possible that irisin-induced upregulation of p38 MAPK
and ERK signaling activates nuclear factor erythroid-2 related
factor (Nrf2) (Zhao et al., 2014), resulting in increased expression
and activities of antioxidants and protection against ROS
attack, oxidative stress and inflammation of the testis (Copple
et al., 2017; Askari et al., 2018). Thus, it preserves testicular
integrity and function, and promoting testosterone production
by mitigating effects of oxidative stress (OS), which has been
reported to induce inflammation, and vice versa (Akhigbe et al.,
2020), with consequent apoptosis of the testicular tissue and
testicular dysfunction.

Irisin may also exert regulatory role on the HPG axis.
Kisspeptins, a family of peptides encoded by the KISS1 gene,
has been reported to be expressed in the hypothalamus and
testis among other tissues (West et al., 1998; Pinilla et al., 2012).
The KISS1/GPR54 system plays a central role in the initiation
of HPG axis, testosterone production, pubarche, and fertility
maintenance (Navarro and Tena-Sempere, 2011). Kisspeptin
system thus governs the HPG axis. Impaired expression of the
kiss1 gene results in metabolic dysfunction and hypogonadism
(Castellano et al., 2006). Reports suggest significant role of
kisspeptin neuronal network in connecting energy homeostasis

to the reproductive axis (Brown et al., 2008; Hameed et al., 2011).
However, the exact mechanism of kisspeptin signaling is unclear.
Moreover, kisspeptin signaling has also has a regulatory role
in adipose tissue metabolism and it has been found to trigger
irisin release (Shamas et al., 2019). Reports also showed that
administration of irisin and kisspeptin increased neuropeptide Y
(NPY) levels (Ferrante et al., 2016; Orlando et al., 2018) depicting
the role of NPY in linking the kisspeptin and irisin pathways.
Increase in irisin levels following kisspeptin administration
also validate kisspeptin-mediated irisin release via direct irisin
neurons stimulation in the hypothalamus or by the active
skeletal muscles. It is also being suggested that the interactions
between irisin and kisspeptin neurons are involved in regulation
of reproductive functions (Tekin et al., 2019). The available
reports suggest that irisin, when administered alone trigger
reproductive hormones (Jiang et al., 2017), but mediate reverse
effects when combined with other factors (such as GnRH and
insulin) (Poretsky et al., 2017). Current studies are insufficient
to elucidate the effects of irisin on the HPG axis and thus on
reproductive functions. Current research is thus not enough to
elucidate the impacts of irisin upon the HPG axis with reports
claiming irisin to be inhibitory (Poretsky et al., 2017; Tekin et al.,
2019), activator (Jiang et al., 2017), or ineffectual (Huh et al.,
2014) on reproductive endocrine axis.

IRISIN, SPERMATOGENESIS, AND
SPERM QUALITY

Energy dyshomeostasis-led androgen suppression adversely
affects spermatogenesis via suppression of testosterone (Bieniek
et al., 2016). This results in oligozoospermia and azoospermia
(Sermondade et al., 2013). Irisin-mediated upregulation of the
expression of Elov13, Cox7a, and Otop1 genes and increased
energy expenditure maintain energy homeostasis (Boström et al.,
2012). It has been shown that irisin administration in obese
male rats could downregulate IR, decrease BMI, enhance the
serum levels of FSH and LH, increase testosterone levels
thereby resulting in improved spermatogenesis and increased
sperm parameters, namely sperm count and motility (Nanees
and Reham, 2018). Moreover, in vitro study demonstrated the
possible role of irisin in spermatogenesis owing to increased irisin
expressions in Sertoli cells and undifferentiated spermatogonia
transcripts in organotypic primate testicular tissue culture
(Wahab et al., 2020).

Several studies have linked obesity with adverse male fertility
profile (Jensen et al., 2004; Sermondade et al., 2013). The
obesogenic environment stimulates various adipose tissue-
derived hormones, among which leptin is widely studied and
rise in leptin following energy imbalance leads to increased
circulatory estrogen levels, resulting in increased conversion
of androgen to estrogen, thereby reducing testosterone levels
(Fantuzzi, 2005; Sengupta et al., 2019a). It also reduces
sex hormone-binding globulin production (Tsai et al., 2004)
thereby restricting the availability of free testosterone. Obesity
also mediates increase in pancreatic insulin production and
peripheral tissue insulin resistance (Farooqi et al., 2003). Reports
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claim that obesity-induced altered testosterone production,
spermatogenesis and semen quality may be carried out via some
common mechanisms that involve OS (Sengupta et al., 2019a).
The membranes of the sperm cells are rich in polyunsaturated
fatty acid that predisposes them to reactive oxygen species (ROS)
attack and oxidative damage including damaged sperm DNA
integrity (Selvam et al., 2020). It is credible to suggest that
irisin-induced activation of Nrf2 via upregulation of p38 MAPK
and ERK signaling (Zhao et al., 2014) may confer protection
against ROS attack and oxidative damage to the testis and
the sperm cells, thereby enhancing spermatogenesis and sperm
quality (Figure 2). Thus, the rise in energy consumption and
thermogenesis along with the Nrf2 signaling induced by irisin
(Zhang et al., 2014; Askari et al., 2018) would likely cause a decline
in energy dyshomeostasis-driven rise in obesity-led oxidative
damage. However, studies are needed to validate the most likely
assumption that the above mentioned irisin signaling pathway
may result in improved insulin sensitivity and sex hormone-
binding globulin production, restore testosterone production and
functions, spermatogenesis as well as semen quality.

CONCLUSION

Irisin is an important novel molecule to be investigated for
regulation of metabolic syndrome-induced male infertility. This
article describes the major elements of irisin functions and
discusses the relevance of irisin in energy homeostasis and male

reproduction. Irisin can reverse the adversities of metabolic
syndrome-mediated disruptions of male fertility and ameliorates
spermatogenesis and steroidogenesis, possibly via its direct
and/or indirect beneficial impact of amending insulin resistance,
inflammation, OS, imbalanced HPG axis and testicular functions.
It thus may provide new approach to treat male reproductive
disorders by addressing the root causes of infertility. In-depth
investigations are needed to reveal the detailed irisin signaling
pathways in regulation of male reproductive functions. While
irisin holds high promise in bridging the knowledge gap between
energy homeostasis and male fertility various facets await to be
explored to show its full potential as a key molecule in reverting
metabolic syndrome-induced male reproductive dyshomeostasis.
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