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Atrial flutter (AFL) is a common atrial arrhythmia typically characterized by electrical

activity propagating around specific anatomical regions. It is usually treated with catheter

ablation. However, the identification of rotational activities is not straightforward, and

requires an intense effort during the first phase of the electrophysiological (EP) study,

i.e., the mapping phase, in which an anatomical 3D model is built and electrograms

(EGMs) are recorded. In this study, we modeled the electrical propagation pattern

of AFL (measured during mapping) using network theory (NT), a well-known field of

research from the computer science domain. The main advantage of NT is the large

number of available algorithms that can efficiently analyze the network. Using directed

network mapping, we employed a cycle-finding algorithm to detect all cycles in the

network, resembling the main propagation pattern of AFL. The method was tested on

two subjects in sinus rhythm, six in an experimental model of in-silico simulations, and 10

subjects diagnosed with AFL who underwent a catheter ablation. The algorithm correctly

detected the electrical propagation of both sinus rhythm cases and in-silico simulations.

Regarding the AFL cases, arrhythmia mechanisms were either totally or partially identified

in most of the cases (8 out of 10), i.e., cycles around the mitral valve, tricuspid valve

and figure-of-eight reentries. The other two cases presented a poor mapping quality

or a major complexity related to previous ablations, large areas of fibrotic tissue, etc.

Directed network mapping represents an innovative tool that showed promising results

in identifying AFL mechanisms in an automatic fashion. Further investigations are needed

to assess the reliability of the method in different clinical scenarios.

Keywords: cardiac arrhythmias, network theory (graphs), atrial flutter, electrograms, catheter ablation

1. INTRODUCTION

Atrial arrhythmias include many diverse rhythm disturbances for which a wide range of
different arrhythmia mechanisms are responsible. Generally, these arrhythmias respond poorly to
antiarrhythmic drugs and after many years of technological advances in cardiac electrophysiology,
catheter ablation is today recognized as the treatment of choice (Lee et al., 2012).

Atrial flutter (AFL) is a common supraventricular arrhythmia characterized by a reentrant
circuit around a central obstacle, which can be a fixed anatomical structure or a functional
electrophysiological line of block (Cosio et al., 2006). Depending on the obstacle, AFL is usually
classified as “typical”, if the re-entry is around the tricuspid valve, or “atypical” if the tricuspid
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valve is not involved (Saoudi et al., 2001; Bun et al., 2015).
Atypical AFL is often associated with structural heart disease,
especially in patients that have undergone cardiac surgery or
extensive catheter ablation for the treatment of atrial fibrillation
(AF). In these cases, an electrophysiological (EP) study is the
most common way to unveil the mechanisms causing the
arrhythmia and plan a proper ablation (Gerstenfeld et al., 2004).
Although AFL is not directly related to death, it affects life
quality due to the higher ventricular activation rate, and it can
cause significant complications such as heart failure and stroke
(Biblo et al., 2001). Also, the presence of AFL usually suggests
an underlying predisposition to AF, which is a more complex
arrhythmia (Waldo and Feld, 2008).

Ablation approaches guided by activationmaps obtained from
three-dimensional (3D) electro-anatomical mapping systems try
to localize and target atrial arrhythmia drivers. Computerized
mapping systems are of crucial importance for delineating the
more complex circuits of atypical AFL (particularly in the context
of abnormal atrial anatomy, multiple circuits, and regions with
scars). Successful ablation is dependent on identification of a
critical isthmus in the reentrant circuit, which can be interrupted
either with a line, or focal point of ablation (Lee et al., 2012).
If an incorrect target is ablated, the patient will certainly not be
cured and, due to scarring with an ineffective ablation procedure,
there is an additional risk that a new arrhythmia may be induced
(Chugh et al., 2005; Deisenhofer et al., 2006). Moreover, there
are indications that AFL and AF could be expressions of a single
arrhythmogenic substrate, which would make it significant to
fine-tune the concept of “curing” AFL (Cosio et al., 2006). With
the aim of optimizing catheter ablation, we believe new tools
for the assessment of cardiac excitation patterns are needed to
help determine the underlying mechanisms, and to improve the
identification of the appropriate targets.

In spite the considerable variety of network theory
applications in many disciplines, only recently directed
networks have been applied with a goal to identify the sources
of cardiac arrhythmias. Zahid et al. (2016) proposed to use the
“minimum cut” algorithm based on network flow analysis to
predict optimal ablation targets for left AFL. Vandersickel et al.
(2019) demonstrated the wide applicability of directed networks
for the detection of driving mechanisms of cardiac arrhythmias
(focal or reentrant) in both the atria and ventricles. The same
authors applied the method to more complex clinical atrial
tachycardia cases (Van Nieuwenhuyse et al., 2021b). This latter
work is very recent and resembles similarities with our work,
which we discuss in the section 4.

In this study, we formally define a technique, that we
called “directed network mapping”, recently introduced in our
preliminary work (Vila et al., 2021) and inspired by the work
of Vandersickel et al. (2019). Directed network mapping creates
a directed network by processing intracardiac electrograms
(EGMs) to model the electrical propagation on the atrial surface.
Atrial conduction paths can be indeed identified based on the
time delay between activations collected at two locations at close
distance. Then, network theory algorithms can automatically
identify arrhythmia mechanisms from the network created. The
goal of this study is to verify the applicability of directed network

mapping for the identification of AFL mechanisms in both in-
silico and clinical settings. We tested the accuracy of directed
network mapping in 10 simulated atrial models of various AFL
types and in 10 clinical AFL cases.

2. MATERIALS AND METHODS

2.1. Creation of a Directed Network for
Electrical Mapping
In this work, electrical propagation on the atrial surface
was modeled using network theory. In general, a network is
composed of nodes which are connected through edges. In
our context, nodes were defined as specific sites on the atrial
surface and edges represented the directed electrical propagation
from one site to a nearby one, which made the network a
“directed” one. In this section, we proposed an algorithm to build
the directed network from the unipolar electrograms (EGM)
and electrode coordinates (spatial positions) acquired during
sequential mapping in an EP study. That is, we linked the
electrical activation of the cells in the atria with a corresponding
network made of M nodes. The main steps of the algorithm are
illustrated in Figure 1.

The algorithm started selecting a set of M network nodes
equally distributed (as much as the geometry permits) on the
entire atrial endocardial surface. The i-th node was defined by
its spatial 3D position pi = [xi, yi, zi]. In addition, for each node
i, we expected its corresponding unipolar EGM 8i, collected at
that spatial position pi. 8i was the vector of the EGM samples.

The first step of the algorithm was the preprocessing of each
EGM. The major disadvantage of atrial unipolar recordings
is the contamination of substantial far-field ventricular
activity, that typically overlaps the signal of interest. For
this reason, ventricular activity cancellation was performed.
Many cancellation techniques exist in the literature (Sörnmo,
2018). We used an advanced cancellation strategy, which
integrates local modeling of the atrial activity and average beat
subtraction (Rivolta et al., 2019). Figure 1C exemplifies the
cancellation process on a single unipolar recording.

In order to model wave propagation into the network, only
nodes spatially close to each other on the atrial surface were
allowed to be connected through an edge. Delaunay triangulation
technique was applied to define the set of neighbors for each node
i, hereafter mathematically defined as Bi. All nodes connected to
the node i through a triangle were considered as neighbors. An
example of neighbors determination is illustrated in Figure 1B.

The next step was to establish whether an edge from node i to
any of its neighbors in Bi had to be created based on the EGM
at the nodes. We created a connection only if the conduction
velocity, estimated for the electrical wave propagating between
node i and j ∈ Bi, was within a physiological range. In other
words, only electrical waves propagating in certain directions
with respect to the vector connecting the nodes i and j were
eligible to determine a connection. The conduction velocity
criterion was defined as follows

CVmin < CVij =
dij

τij
< CVmax (1)
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FIGURE 1 | Depiction of the main steps of the directed network mapping technique. (A) Left atrial 3D model with LAT colormap. (B) Set of nodes (in green) equally

distributed on the atrial surface with neighboring nodes connected using Delaunay triangulation. (C) Ventricular activity cancellation and preprocessing of one unipolar

recording. The top panel of (C) shows original EGM and the time instants of the ventricular activity are marked in red. The middle panel shows the same EGM after

performed cancellation. The bottom panel shows the result of the EGM filtering meant to emphasize the activations. The amplitude scale is in arbitrary units. (D) Final

directed network (in red) after processing all the signals at each node to determine the existence and direction of the connections between nodes. The color map

represents the LAT value across the atrial surface referenced to the activation of a specific node in the mesh.

where CVmin and CVmax were set to 10 and 250 cm/s, according
to physiological limits (Konings et al., 1994; Harrild and
Henriquez, 2000); dij was the Euclidean distance between pi and
pj in cm, and τij was the time delay between8i and8j in seconds.
The delay τij was estimated using the cross-correlation function
between 8i and 8j. In particular, τij was set as the time delay
associated to the first maximum of the cross-correlation between
the two signals. To reduce the effect of noise and spurious
local morphology, before computing the cross-correlation, xi
and xj were preprocessed with bandpass filtering (3rd order
Butterworth, 40–250 Hz, zero phase), rectification, and lowpass
filtering (3rd order Butterworth, 20 Hz, zero phase) (Botteron
and Smith, 1995). Figure 1C illustrates how the preprocessing
emphasized the activations in the signals as opposed to signal
morphology. In case the delay τij was negative and the absolute
value of CVij was within the physiological range, the directed
edge was created from node j to node i (instead of i to
j). As common in network theory, the connections between
the nodes in the network are described using a connectivity
matrix C with entries cij. The existence of a directed edge
between nodes i and j was set by having cij = 1, and
0 otherwise.

In order to compute the time delay τij using cross-correlation,
the EMGs 8i and 8j had to contain at least one local atrial
activation each. For each time window of length l, a network was
created using the approach described so far. In addition, in order
to detect sustained atrial arrhythmia, the creation of the network
was repeated on consecutive windows (with possible overlap) and
then were “averaged” to build a final directed network A, whose
entries were defined as follows:

aij =

{

1 1
N

∑N
n=1 c

n
ij ≥

1
N

∑N
n=1 c

n
ji + γ

0 otherwise
(2)

where N was the total number of networks “averaged”, cnij the

entry in the connectivity matrix Cn for the n-th network, and
γ ≥ 0 a threshold parameter. A connection in A was established
from node i to node j, setting aij = 1, if the average connection

strength
∑N

n=1 c
n
ij/N, in direction i to j, was larger than the

average connection
∑N

n=1 c
n
ji/N, in the opposite direction, j to i,

plus a small positive safety threshold γ , used to avoid random
connection, due to noise, to appear.
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2.2. Detection of Cycles in the Directed
Network
Having at disposal the directed network corresponding to an
electrical mapping, macroreentries can be found by detecting
cycles (i.e., closed-loops) in the network. A cycle L is defined as a
non-empty sequence of nodes linked by directed edges in which
the first and last node coincide. A standard depth-first search
(DFS) algorithm was used for the purpose of detecting the cycles.

Given the large number of nodes in the network, in real
applications, the cycle finding algorithm may provide cycles that
are very similar to each other, and differ only by a few nodes (in
many cases, just one). These cycles belong to the same anatomical
region and, in practical terms, should be considered as a single
one. A network-based grouping algorithm of these cycles, based
on the amount of nodes shared, was designed by means of the
following three steps.

First, the amount of shared nodes between cycle h and k was
computed as follows

whk =
#Lh

⋂

Lk

sup{#Lh, #Lk}
(3)

where # was the cardinality of a set, #Lh

⋂

Lk represented the
number of nodes shared between Lh and Lk, that were then
normalized by the length of the longest cycle. Hence, the quantity
whk was bounded, by construction, between 0 and 1.

Second, each whk was used to build a further undirected graph
whose nodes were cycles. A connectivity matrix W was built
using the values of whk. In the graph, the edge between cycle h
and k existed only if whk was greater than a certain threshold t.
Intuitively, a low value of t facilitates the merging of the cycles. In
our study, t was empirically set to 0.6 by visual inspection of the
grouping algorithm results.

Third, a standard algorithm based on DFS was applied
to locate connected components in the undirected graph just
created. A connected component of an undirected graph is a
set of nodes such that each pair is connected by a path. All the
cycles belonging to the same connected component were grouped
together and considered to represent the same reentry.

2.3. Directed Network Mapping for
Sequential Data
In the clinical setting, ablation procedures are guided by the
results of electro-anatomical mapping. Data are derived from
recordings of multipolar catheters, which are moved inside the
atria to map the relevant regions and guide the intervention.
Several catheter configurations are available on the market, and
usually present a few electrodes (in the range of a few tens). With
this typical setting, only snapshots of a few seconds of EGMs in
the current position of the electrodes become available. In order
to map the electrical activity of both atria, sequential mapping is
used to construct both voltage and activation maps. The latter is
built by using a temporal reference, usually the QRS complex of
the surface electrocardiogram (ECG) or the activation detected
in a catheter inserted in the coronary sinus, to temporally
align the activations identified within successive snapshots for
each electrode. In addition, the positions of the electrodes are

also tracked over time, with a magnetic- and impedance-based
navigation system, thus allowing the construction of a 3D map
of the geometry and of the electrical activation. In our study,
we (retrospectively) utilized the data collected via sequential
mapping to create a directed network that models the electrical
propagation during AFL.

Sequential mapping brings two issues for directed network
mapping. First, the number of atrial locations at which EGMs
are collected is typically too large for building a directed network
meant to model the electrical propagation. Many of these
EGMs are acquired on locations very close between each other.
However, current navigation systems report localization errors of
about 1 mm (Jiang et al., 2009). Hence, the electrical propagation
between very close electrodes cannot be estimated reliably. In
addition, a large number of nodes prevents the network to be
efficiently processed by the network theory algorithms, thus
hampering the use of the technique during EP studies. Second,
the recordings are not acquired concurrently at the same time
(EGMs are collected sequentially with the same probe, which
is moved).

In order to tackle these two issues, a coarsening procedure
was designed to build a network composed of a smaller number
of nodes M, each associated with an EGM temporally aligned
with the others. We proceeded as follows. First, having at
disposal a virtual anatomy (output of the electro-anatomical
mapping during ablation), M points were distributed all over
the geometric mesh of the atrial surface and the Delaunay
triangulation technique was applied. The output of this step were
the 3D coordinates pi of each node, each contained in a triangular
tessellation involving the neighboring ones. The next step was to
assign the electrical activities measured by the moving catheter
to each 8i. The position and electrical activity of each electrode
on the catheter were tracked over time. Let p̃en and 8̃en be the
3D position and electrical activity of electrode e at time index
n, respectively. The assignment was performed by (i) checking
whether the average position of the electrode was near to one
of the nodes pi; and (ii) the 3D coordinates of the electrode
did not vary in the window of observation (i.e., the maximum
range of movement of the catheter across axes did not exceed
a given threshold). The window was defined as l-samples-wide
and centered on the reference QRS complex of each beat. More
formally, let Wq be the set of l time indices centered on the q-
th QRS complex (where #Wq = l, ∀q). The voltage samples

8̃en, collected with the electrode e in the window of observation
(i.e., n ∈ Wq), were assigned to the node i if the two following
conditions were matched

∥

∥

∥

∥

∥

∥

pi −
1

l

∑

n∈Wq

p̃en

∥

∥

∥

∥

∥

∥

< r1

max
x,y,z

(

max
n

p̃en −min
n

p̃en

)

< r2

(4)

where r1 and r2 were two thresholds set to assess the closeness
to the node of the electrode and its position stability in time.
They were empirically fixed at 6 and 2 mm, respectively. The max
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and min operators assessed the maximum and minimum values,
along a given axis, of a vector or matrix, respectively.

This procedure may assign multiple signals to each node due
to the presence of many QRS complexes and the many EGMs
collected. In order to determine whether the directed edge should
be created from node i to j, the delays between all pairs of signals
associated with node i and j were computed using the procedure
described in section 2.1, and a t-test was performed to verify if the
average delay was significantly different from 0ms (significance
level α: 0.05). Then, if the difference was statistically significant,
the edge was created only if the conduction velocity associated
with the average delay was within the physiological range, as
assessed by Equation (1).

2.4. Validation of Directed Network
Mapping in Sinus Rhythm
Directed network mapping was first validated using data from
two subjects in sinus rhythm (ages 67 and 54, both male).
The data were collected from Fondazione I.R.C.C.S. Ospedale
Maggiore Policlinico in Milan, Italy. Electro-anatomic mapping
was performed using multielectrode catheters and the CARTO R©

3 (Biosense Webster Inc., Irvine, CA, USA) navigation and
mapping system. To allow correct local electrogram assessment,
the default protocol mandated that the mapping catheter was
maintained in each location for 2.5 s after points were acquired.
Although patients were paroxysmal AF cases undergoing
pulmonary vein (PV) isolation, they were in sinus rhythm during
the mapping and had no prior known substrate modifications.
The CARTO R© 3 system provided activation maps in the form
of local activation times (LAT). Every patient that underwent
transcatheter cardiac mapping and ablation procedure had
signed an informed consensus statement about periprocedural
risk and about the use of clinical data for clinical research in
the respect of privacy policy. A directed network map was built
as described in the previous section and the results checked by
visual inspection, comparing the connections of the network
(connectivity matrix) with the LAT map.

2.5. Validation of Directed Network
Mapping in Simulated AFL Cases
Next, we validated the directed network mapping algorithm in
simulated AFL scenarios. To do so, based on simulated AFL
mechanisms implemented in a previous work by Luongo et al.
(2021), we retrospectively analyzed 6 different computational
AFL scenarios. These simulations included right AFL as well as
left AFL forms, like macroreentries around the valves and across
the roof. A complete list of scenarios is provided in Table 1.

Cardiac excitation was modeled using the fast marching
approach to solve the Eikonal equation (Jacquemet, 2010;
Trachtler et al., 2015). The atrial electrophysiological activity
was simulated on the triangulated volumetric mesh of a bi-
atrial anatomy (Figure 1A), generated from segmented magnetic
resonance imaging data of a healthy subject (Krueger et al., 2013).
Inter-atrial connections and fiber orientation were generated
by a rule-based algorithm (Wachter et al., 2015; Loewe et al.,
2016). Scars were added circumferentially around ipsilateral

TABLE 1 | List of simulated AFL mechanism scenarios.

No. Atrium Mechanism Position Direction

1 Right Macroreentry Tricuspid valve CCW

2 Right Macroreentry Tricuspid valve CW

3 Left Macroreentry Mitral valve CW

4 Left Figure-of-eight macroreentry Both PVs Anterior

5 Left Figure-of-eight macroreentry Both PVs Posterior

6 Left Figure-of-eight macroreentry Right PVs Anterior

pulmonary veins representing ablation scars from the previous
pulmonary vein isolation intervention. The simulations were
initiated by manually placed triggers and refractory areas. They
were continued at least 5 s to confirm a stable excitation pattern.
The simulated excitation resulted in a LAT for each anatomical
node that was not isolated. Spatio-temporal transmembrane
voltage distributions were derived from the LATs using the
Courtemanche human action potential model adapted to AF
conditions (Loewe et al., 2016).

For each scenario, we distributed 400 equidistant nodes on
the endocardial surface: half of them in the left and the other
half in the right atrium (with 7.8mm average distance between
two neighboring nodes). The spatial distribution of nodes is
visible in Figure 1B. The 3D coordinates of the nodes, along
with corresponding synthetic unipolar EGMs, were used as input
to the network mapping algorithm. The unipolar pseudo-EGM
8i for the i-th node was calculated using the infinite volume
conductor approximation:

8i(x, y, z) = −
1

4π

σintra

σextra

∫ ∫ ∫

∇Vm(x
′, y′, z′)

·∇

(

1

r

)

dx′dy′dz′ (5)

where σintra is the intracellular conductivity (within the
cardiac tissue), σextra the extracellular conductivity (within the
whole domain), ∇Vm(x

′, y′, z′) is the spatial gradient of the
transmembrane voltage in the point with coordinates x′, y′,
z′ (Malmivuo and Plonsey, 1995). The values of 8i(x, y, z)
computed over time were then stored in the vector 8i.

The results were validated by locating the cycles in the network
(section 2.2) and visually comparing their locations with the LAT
map produced by the simulated mechanism.

2.6. Validation of Directed Network
Mapping in Clinical AFL Cases
The algorithm was retrospectively validated on 10 patients (age:
66 ± 5 years; male/female: 7/3) with AFL who underwent an
EP study and radiofrequency catheter ablation. The subjects
selected by the clinicians were all complex AFL cases who had
a history of AF and at least a previous pulmonary vein isolation
or additional substrate modifications. The study was done using
a 64 mini-electrode small basket array (IntellaMap OrionTM,
Boston Scientific, Inc., Malborough, USA) that enabled rapid
high-density mapping. The cases were provided by Stdtisches
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Klinikum Karlsruhe, Germany and included 2 AFL scenarios in
the right and 8 in the left atrium. The complete list of clinical
cases is provided in Table 2. Data collection was performed
according to the Helsinki Declaration guidelines on human
research. The research protocol used in this study was reviewed
and approved by the local review board. All patients provided
written informed consent.

Each AFL case was analyzed offline retrospectively, after the
intervention, by directed network mapping, after exporting all
EGMs and the corresponding 3D coordinates from the electro-
anatomical mapping system. Only data collected before the actual
ablation were analyzed.

For each case, the average directed network was created by
following the steps reported in section 2.1. Briefly, M = 100
nodes were distributed over themesh andDelaunay triangulation
was performed to determine all sets of neighbors. Then, for each
QRS complex, N = 5 different networks were created using a
sliding window of length l, defined as half of the average distance
between QRS complexes, with overlap of 100ms. Given the time
index nq of the q-th QRS complex (i.e., R peak), the sliding
window started at nq − l/2 − 200ms and was moved ahead 4
times with a stride of 100 ms. All networks were then “averaged”
to obtain the average directed network. Once created, cycles were
detected and then grouped together according to the algorithm
described in section 2.2.

We finally compared the cycles found in the directed
network with the clinical report of the patient. The clinicians
provided information about the suspected AFL mechanism (as
hypothesized after the successful ablation) and the corresponding
part of the atrium involved (see Table 2). Depending on the
suspected mechanism, we analyzed only the groups of cycles
with a certain minimum number of nodes. In particular, in
case of macroreentries, only cycles with at least 10 nodes were
considered. On the other hand, for microreentry (case number
6), all cycles were analyzed. The evaluation of the correspondence
between what was found by our algorithm and the clinical
report was performed a-posteriori together with the clinician (the
algorithm was run only once and before having any knowledge of
the clinical reports; it was not adapted to the specific mechanism
at hand).

3. RESULTS

3.1. Validation in Sinus Rhythm
The directed network mapping algorithm was first tested on the
left atrium of the two patients in sinus rhythm and provided
a result in line with the expectation. The electrical propagation
started in the septum, propagated along both the anterior
and posterior wall and ended around the left PVs. The LAT
map provided by the CARTO R© 3 system confirmed that the
propagation found was properly detected. Figure 2 shows a few
examples of the electrical propagation (red arrows) superimposed
over the LAT map.

3.2. In-silico Validations
The efficacy of the directed network mapping was also tested in
6 different simulation settings, involving several types of AFL,

induced on a 3D anatomical model of both atria. In each of the
6 setups, the algorithm was able to precisely detect the expected
reentrant paths around the anatomical obstacles.

For the reentry around the tricuspid valve with
counterclockwise (CCW) direction (simulation 1), we detected
three groups of cycles. The first one was the main driving cycle
of a typical right AFL around the tricuspid valve. The second was
the lower reentry going around the inferior vena cava. The third
group was simply the combination of these two, sharing some
of the nodes. In case of a tricuspid valve reentry with clockwise
(CW) direction (simulation 2), the results were very similar,
but only the first two groups were found. Figure 3A reports the
cycles found for the first AFL simulation.

For the macroreentry around the mitral valve with CW
direction (simulation 3), two cycles were detected by the
algorithm. The first one was around the mitral valve, whereas
the second was propagating around the left PVs in opposite
direction. Figure 3B reports the cycles found for the third AFL
simulation.

For the figure-of-eight simulation setting involving both PVs
in anterior direction (simulation 4), two groups of cycles were
found: one for each pair of PVs. On the other hand, for the
posterior direction (simulation 5), four groups of cycles were
found: two cycles with different radius for each pair of PVs. In
both simulation scenarios, the identified cycles were matching
what was induced in the simulation. Figure 3C reports the results
for fourth AFL simulation.

In the final scenario of figure-of-eight (simulation 6), five
groups of cycles were identified. These cycles were all describing
the figure-of-eight pattern induced in the simulation by means of
parallel cycles. Lowering the threshold to t = 0.45 produced two
groups of cycles. For visualization purposes, Figure 3D reports
the cycles found for the sixth AFL simulation with the lower
threshold t.

The results of the simulated cases, not contained in Figure 3,
are reported for completeness in the Supplementary Materials.

3.3. Validation With Clinical Data
A directed network was retrospectively created for each of the 10
EP studies recorded during ongoing AFL.

The first two clinical cases presented tricuspid valve reentry
with typical AFL (case 1 and 2). Two groups of cycles were
identified for each case, similarly to those found in simulation
1 and 2, i.e., one cycle around the tricuspid valve and one around
the inferior vena cava. These two cycles commonly appear
together, and they are clinically treated by performing an ablation
line at the floor of the right atrium between the inferior tricuspid
annulus and the inferior vena cava (cavotricuspid isthmus).
These two cases fully matched the expectations of the clinicians.
Figure 4A reports the results of case 1.

Cases 3, 4, and 5 were left atrial reentries around the mitral
valve in clockwise direction. In case 3, no cycle around the mitral
valve was found, but one was detected around the left PVs in
counterclockwise direction. Cycles with a lower number of nodes
were not found either. We detected that three edges around
the mitral valve were not built by the algorithm, while all other
nodes were properly connected to form a cycle around the valve.
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TABLE 2 | Complete list of analyzed clinical AFL cases.

No. Atrium Suspected mechanism Description

1 Right Tricuspid valve reentry CCW Typical right atrial flutter. Patient had previous PVI.

2 Right Tricuspid valve reentry CCW Typical right atrial flutter. Patient did not have previous PVI.

3 Left Mitral valve reentry CW Patient had previous PVI with anterior block line from mitral valve to left superior PV. A gap was detected

in the block line.

4 Left Mitral valve reentry CW Patient had previous PVI. Posterior roof block from left superior PV to right superior PV.

5 Left Mitral valve reentry CW Patient had previous PVI. Gaps were found in the PVs from the previous ablation.

6 Left Microreentry around PVI gaps Patient had previous PVI. Gaps found in both left and right PVs from the previous ablation.

7 Left Figure-of-eight reentry Patient had previous PVI.

8 Left Figure-of-eight reentry Patient had previous PVI. Previously ablated with a FIRM system based on rotor detection.

9 Left Figure-of-eight reentry Patient had previous PVI. Gaps found in both left and right PVs from the previous ablation.

10 Left Figure-of-eight reentry Patient had previous PVI with anterior block line from mitral valve to left superior PV. Suspected

figure-of-eight around right PVs and mitral valve. Gaps were detected in the right PVs and in the anterior

block line.

FIGURE 2 | Electrical propagation pattern detected by directed network mapping (red arrows) superimposed over the LAT map (exported from CARTO® 3) for two

subjects in sinus rhythm in posterior view. LSPV, left superior PV; LISP, left inferior PV; RSPV, right superior PV; RIPV, right inferior PV; MV, mitral valve.

Regarding the detected cycle, it commonly appears when mitral
valve reentry is present. Similar results were found in simulation
3. Figure 4B reports the “broken” cycle in blue color and the
identified one in red. In case 4, a cycle around themitral valve was
found but none was identified around the left PVs. This result was
as expected. Indeed, the clinical report stated that a posterior roof
block line from the left superior PV to the right superior PV was
made in a previous ablation, which would prevent any rotation
around the left PVs. Figure 4C shows the cycle identified for
case 4. Finally, in case 5, no cycle resembling macroreentries was
identified. Cycles of all lengths were thus plotted and small cycles
around right PVs were found. These small cycles were in line with
the gaps identified in the PVs and reported in the clinical report.
Figure 4D reports the small cycles detected by the algorithm for
this last case.

In case 6, as reported in the clinical report, during the EP
study, a total of three gaps were found in the previous wide

area circumferential ablation lines (WACA). Two gaps were
found in the left WACA. On the left side, a WACA related,
localized reentry mechanism involving both gaps could be
detected. The right WACA line presented with a single posterior
gap. The excitation wave-front was meandering with a reduced
conduction velocity through the gap. The algorithm found three
small cycles (less than 10 nodes) near the right inferior PV, while
none was detected on the left side.

Cases 7, 8, 9, and 10 were suspected figure-of-eight
macroreentries. In cases 7 and 8, the algorithm correctly detected
the propagation pattern around the PVs. In particular, in case
7, two groups of cycles rotating around both left and right PVs
were found, as reported in Figure 4E. On the other hand, in
case 8, a complete cycle around the right PVs was found and
a “broken” one, with only one edge missing, was identified on
the left side. Figure 4F reports the results for this case. In case 9,
no macroreentry was detected by the algorithm. However, when
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FIGURE 3 | Cycles found on 4 AFL simulations: (A) Macroreentry on tricuspid valve CCW (simulation 1), (B) Macroreentry on mitral valve CW (simulation 3), (C)

Figure-of-eight around both PVs in anterior direction (simulation 4) and (D) Figure-of-eight around right PVs in anterior direction (simulation 6; the threshold t was set to

0.45 for visualization purpose). Only one cycle randomly selected from each group has been plotted. The color map represents the time interval between the initial

time of the stable phase of the simulation and the first atrial activation in each node.

plotting cycles with fewer nodes, the algorithm found small cycles
around the left and right superior PVs. These cycles might have
been caused by gaps found on the PVs and reported in the clinical
report. Finally, in case 10, the algorithm found only one group of
cycles with at least 10 nodes. The cycles belonging to the group
were found going around and through the right PVs and traveling
along the anterior block line from a previous PVI. A gap in the
right PVs was confirmed by the clinical report. However, this case
was too complex to confirm the success of the algorithm.

To summarize, the algorithm (i) identified the exact same
mechanism and its location in 4 cases (case 1, 2, 4, and 7); (ii)
partially identified the mechanism in 4 cases (case 3, 6, 8, and 10);
and (iii) failed to identify the mechanism in 2 cases (case 5 and 9).

The display of the cases, which did not enter Figure 4, are
reported in the Supplementary Materials.

4. DISCUSSION

In the present work, we verified that directed network mapping
can be used to properly detect different types of AFL reentry.
The method was applied to a broad range of simulations and

clinical cases of AFL. First, we showed that directed network
mapping can be used to accurately represent the electrical
propagation pattern in sinus rhythm. Second, directed network
mapping was able to correctly locate macroreentries in in-silico
AFL models, where we tested 6 different scenarios. Finally, we
tested the technique on 10 clinical cases of AFL and compared
the results with clinical reports by expert electrophysiologists.
Overall, in this retrospective pilot study, the algorithm proved
to be satisfactory according to the clinicians’ opinion with
respect to the complex cases analyzed and has potential for
clinical use. In fact, in addition to the fully identified cases
(4/10), it is worth mentioning that the mechanisms of the cases
labeled as “partially identified mechanisms” (4/10) were actually
detected by the algorithm but not in their entirety. This makes
it difficult to classify the performance of the algorithm with
simply “identified” or “not identified”. Yet, we included in this
group cases with even just a single edge missing (e.g., case
8—Supplementary Figure 14, Figure-of-eight reentry) or when
the mechanism can be identified even just observing one cycle
(e.g., case 8 and 10—Supplementary Figures 14, 16). For these
cases, physicians may still get useful insights on the underlying
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FIGURE 4 | Cycles found on 6 clinical AFL cases: (A) Macroreentry around tricuspid valve CCW (case 2), (B) Macroreentry around mitral valve CW (case 3), (C)

Macroreentry around mitral valve CW (case 4), (D) Microreentry through gap in PV ablation line (case 6), (E) Figure-of-eight around PVs in anterior direction (case 7),

(F) and Figure-of-eight around PVs in anterior direction (case 8). Only one cycle randomly selected from each group has been plotted in red color. Blue arrows

represent “broken” cycles that were manually traced with visual inspection. LPV, left PVs; RPV, right PVs; MV, mitral valve; TV, tricuspid valve.

mechanism and thus considering the goal as achieved (but we
considered it as a partially identified mechanism instead of
fully identified).

Over the years, network theory has had many different
applications, but to the best of our knowledge, there was not a
large amount of research in this domain to understand cardiac
arrhythmias, until very recently. In the study by Vandersickel
et al. (2019), directed networks were used to describe electrical
excitation to extract the arrhythmia mechanism. In their
work, the authors established a proof-of-concept using in-silico
simulations of several activation patterns and clinical data of
atrial tachycardia (AT) to demonstrate the wide applicability
of directed networks in this domain. In their very recent

follow-up study (Van Nieuwenhuyse et al., 2021b), authors
evaluated the diagnostic accuracy of their method in more
complex AT cases. They retrospectively analyzed 51 AT cases
and compared the diagnoses made by their method with those
of the experts based on high-density activation maps. They
showed that cardiac mapping based on network theory could
outperform high density activation mapping for specific types
of AT (e.g., localized reentry), whereas for macroreentries, the
directed network performed similarly to experts. These results
hint that directed network may be a valuable tool during
EP studies.

Our algorithm and the one proposed by Vandersickel
et al. (2019) share the same goal, i.e., modeling the electrical
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propagation through directed networks and exploiting network
theory to infer information about the arrhythmia mechanisms.
Inspired by their study, we recently investigated the use of
directed network mapping for AF characterization and rotor
detection in computerized simulations (Vila et al., 2021).
However, during AF, the creation of network based on LATmaps
(as proposed by Vandersickel et al., 2019) become a difficult
task. We then designed an algorithm directly estimating the
time delay between activations recorded in nearby sites using
a cross-correlation based algorithm. This approach was found
to be more reliable with respect to computing the difference
between LAT values in different sites (Shors et al., 1996; Cantwell
et al., 2015). Motivated by these preliminary results, we started
investigating on the applicability of directed networks for the
identification of macroreentries in AFL. This problem required
the implementations of a DFS algorithm for cycle detection, a
grouping algorithm for cycles in similar locations, and a study
specifically designed to test the algorithms on clinical cases:
the work described in this manuscript. Very recently, a new
contribution by the same research group has been released (Van
Nieuwenhuyse et al., 2021b) and shares similarities with our
analyses. First, both our work and theirs tested the capability
of a directed network to correctly detect and group cycles. In
this regard, our approach was based on a secondary graph
taking into account the position of all nodes in the cycles,
whereas they proposed a clustering technique based solely on
the centroid of the cycles, that might group cycles with different
orientations and with similar centers. Second, even though we
both analyzed complex atrial arrhythmias, the objectives of the
studies were different. Our study was focused on the validation
of the algorithm, whereas they compared the output of the
algorithm with the identification of the mechanisms performed
by experts. Apart from different technical implementations and
study designs, it was very satisfactory to find out that both studies
corroborated the robustness of directed network and network
theory to characterize AFL and its various mechanisms.

Other approaches to understand cardiac arrhythmias, based
on network theory, are vastly distinct and mostly applied
for AF characterization. For example, using high density
contact mapping, directed networks were applied to describe
AF by identifying recurring wavefront propagation patterns
(Zeemering et al., 2013). AF was also described with a directed
network by Richter et al. (2012), applying sparse modeling for
the estimation of propagation patterns. Directed arrows can
also be created based on the concept of Granger causality
between different signals (Alcaine et al., 2017; Luengo et al.,
2019). This approach could be an alternative way to generate
the network, but it requires implementing a linear multivariate
autoregressive model instead of deriving the activation times.
Studies on undirected networks exist too. For example, Sun et al.
(2014) created the network by quantifying the similarity between
EGMs collected at different locations. Features from the network
were then extracted and used to distinguish between SR and
AF. In another study, Tao et al. (2017) used mutual information
between pairs of nodes to build the network. Authors found that
successful AF ablations led to networks with a higher connectivity
with respect to unsuccessful ones. Overall, the use of directed

network mapping, or in general network theory, to characterize
the electrical propagation has several advantages with respect to
a LAT map. In particular, it opens up to a whole new field of
automated analyses. For example, the identification of reentries
and focal points can be automatically and quickly performed,
thus promoting a faster inspection of the ongoing arrhythmia.

We used unipolar EGMs as input to the directed network
mapping. The major disadvantage of unipolar EGMs is that
they also record substantial far-field ventricular signal, which
interferes with the atrial activity. Because of the susceptibility to
noise and far-field potentials, unipolar EGMs are not often used
in clinical practice, leading to the routine use of bipolar EGMs
(Stevenson and Soejima, 2005). However, bipolar EGMs can be
sensitive to wavefront direction, bipole orientation, electrode
size, interelectrode spacing, and the exact spatial location of
the measurement is less precise (Ndrepepa et al., 1995; Nairn
et al., 2020). Therefore, assessment of the exact LAT based on
bipolar EGMs can introduce ambiguity, especially in low-voltage
EGMs with multiple peaks (Haddad et al., 2014). To overcome
the problem of far-field ventricular signal in unipolar EGMs,
many different cancellation techniques have been developed. The
classical approach is to employ the average beat subtraction
(ABS) method, which considers the ventricular activity to be
uncoupled from the atrial one. The method uses a single EGM,
then calculates an average template of the ventricular activity
(localized by means of the surface ECG), and subtracts it from
the unipolar EGM, revealing the hidden actual atrial activity.
Even though many variations to ABS have been proposed using
the most diverse approaches, these methods still require signal
acquisitions from several seconds to minutes, during which the
catheter must be held still, and they are mostly applied offline.
Signal acquisitions should be repeated after each change of
catheter position, which prolongs the procedure to obtain state
of the art map densities (more than 15,000 points on average;
Takigawa et al., 2018), even if simultaneous wall contact of at
least 20 electrodes per mapping position is assumed. For that
reason, there is clearly a need to process the signals faster in real-
time. During the last years some significant steps forward were
taken in this direction with works such as Frisch et al. (2020)
and Ríos-Muñoz et al. (2020). For example, Frisch et al. (2020)
proposed to model the ventricular activity acquired at different
locations during mapping and interpolate the voltage in locations
not visited by the catheter. The main assumptions were that the
ventricular activity varies smoothly across the atrial surface and
that the atrial activity is not overlapped to the ventricular one
(or, at least, uncorrelated). In this way, the model could be used
afterwards to remove the ventricular activity.

The most common method to detect the existence of a cycle
in directed networks is using DFS, by finding an edge that points
to an ancestor of the current vertex (it contains a back edge).
Since we are employing DFS and looking at all the vertices
along with their edges, we have a runtime of O(V + E) with a
space complexity of O(V + E) as well, where V is the number
of nodes and E is the number of edges. The computational
time required to build the directed network and to find the
cycles was approximately 5 min computed on a Mac Book Pro-
Intel core i9-9880H 3.3 GHz for a mapping phase lasting on
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average 20 min, without an optimized code. This method detects
reentries very efficiently if such cycles are present in a network,
but there were cases where some “broken” cycles existed, i.e.,
cycles of many nodes where only a few couples of edges were
not created (Figure 4F reports one of such cases colored in blue).
The cause for having those missing links might be the noise in
the recordings or perhaps scarred or fibrotic tissue in that region.
While in this work, when we suspected reentries in that specific
anatomical region, we performed a close visual inspection, in
the future the entire procedure should be revised designing a
completely automatic algorithm, capable of coping with (a few)
missing edges.

In this study, we investigated on directed network mapping
for the identification of only AFL macroreentries. However, the
technique showed some potential for microreentries as well.
In fact, a few cycles of the smallest allowed dimension (i.e.,
3 nodes) were detected for the clinical cases 5, 6 and 9 (see
Supplementary Materials 11, 12, 15). The atrial area involving
microreentries has been found to vary from few millimeters up
to 2–3 cm as diameter. For example, Jaïs et al. (2009) reported
evidence of slow conductive areas as small as 2 centimeter around
which a reentry was observed. Furthermore, in 2020, Mantovan
et al. (2020) were the first to report a microreentry circuit
confined to a region size of a couple of millimeters. These areas
range from 3 to 300 mm2. In our clinical cases, the average
distance between nodes was 16.8 mm, that corresponded to a
reentry with an area of approximately 120 mm2, hence the actual
dimension of the smallest detected cycles was in line with what
previously reported.

4.1. Limitations and Future Works
The current work is a proof of concept; still many different
clinical settings are not yet tested. It remains to be seen how
directed network mapping will characterize cardiac excitation in
other types of arrhythmia, for example in cases with multiple
rotors, or in a very fibrotic tissue. A possible limitation is
that sequential mapping may fail to capture important dynamic
changes in atrial electrophysiology when the arrhythmia is not
stationary. In this proof-of-concept, we analyzed the entire
mapping procedure, thus assuming AFL as stationary. This
simplification might have led to spurious connections, possibly
mitigated by the averaging network procedure put in place.
Although the method does not require sequential mapping by
itself, it is the predominantly available technology at present, and
so we relied on that.

Other limitations regard the way the network was created.
For example, the step involving the distribution of nodes on
the mesh and Delaunay triangulation could create spurious
connections between nodes that were not originally neighbors
(for instance, in anatomical regions with high curvatures or
narrow structures, e.g., appendage or PVs, see Figure 1B near
the appendage). This problem will be mitigated in the future
by downsampling the original mesh provided by the mapping
system using dedicated algorithms. Moreover, we used the
ventricular activity to temporally align EGMs after sequential
mapping. Despite the coronary sinus is the most used time
reference during EP studies for AFL, the use of ventricular

activity should not affect substantially the creation of the network
when AFL is stationary (i.e., fixed atrio-ventricular conduction
ratio). We leave the comparison with the coronary sinus
reference for future investigations. Furthermore, the number of
simulated and clinical cases at disposal did not make feasible a
systematic evaluation of the effects of the model parameters on
the detected mechanism, hence we preferred to visually inspect
the results. The influence of the parameters will be investigated
on future works.

The current algorithm offers the visualization of the detected
cycles as a means for guiding the ablation. For example,
the algorithm may show that different cycles cross the same
anatomical region (e.g., Figure 4A), thus making it as a suitable
candidate spot for the ablation, due to the fact that both cycles
will likely stop. However, the critical cycle or the ablation area
still need to be delineated by the physician. It might not be
excluded that, in the future, the identification of the critical
cycle could be done automatically through the use of other
technologies such as Signal Processing, Artificial Intelligence
or High Resolution Computerized Simulations directly in
the EP lab.

Another important extension of our method could be
the conversion of the directed network into a weighted
directed network by assigning a weight to each edge. The
weight could be the level of “fractionation”, the conduction
velocity, or other important features for the mechanism
undergoing. This new approach requires a completely new set
of algorithms where it is necessary to assign a physiological
meaning on cycles built on edges with weights. However,
this is not straightforward in our opinion, hence we leave
this for future investigations. Yet, we believe that. together
with an appropriate colormap, the visualization may become
more informative and support better the planning of the
optimal ablation.

An important step forward for the evaluation of the
performance of our algorithm in AFL cycle detection would
be the investigation on biatrial AFL and epicardial bridging.
Biatrial AFL could be tackled by the presented algorithm if both
the left and the right atrial geometry were given, connected
and mapped. Since the septal connections could easily be
considered for biatrial geometries, we are confident that the
current implementation of our algorithm would perform well
for biatrial AFL bridging via the septum. On the other hand,
“invisible” bridges between the left and the right atrium that
are not captured by the endocardial geometry acquired during
mapping, alongside with epicardial bridges within one atrium,
are more challenging. If the path taken by the AFL cycle is not
part of the provided geometry, the present algorithm cannot
identify it due to a lack of appropriate input data and may
result in missing edges and interrupted cycles. Future works for
cycle detection are in the directions of allowing tolerance in
missing edges. Indeed, it is possible to upgrade the cycle-finding
algorithm to incorporate properties of the atrial tissue in such a
way to report the cycle even when a missing link (i.e., “invisible”
bridge) is hampering the identification. This approach would
likely be suitable for biatrial AFL and epicardial bridging but it
requires extensive investigations.
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A very significant potential application, and we believe the
next step for directed network mapping, should be AF. AF is
the most common sustained disorder of cardiac rhythm and
is estimated to affect 1.5–2% of the general population with
a prevalence that increases with age. Patients with AF have
a five-fold higher risk of stroke and two-fold higher risk of
death (Zoni-Berisso et al., 2014). Even though catheter ablation
is at the forefront of the treatment of AF, it still produces
moderate success rates (Verma et al., 2015), which is related to
the lack of understanding of AF mechanisms. If the directed
network mapping methodology may in the future offer some
new insight in AF mechanisms remains to be seen. With
respect to the application of network mapping in AF, so far
we tested it in a simulation study, where we used a highly
detailed computational 3D model of human atria in which
sustained rotor activation was present (Vila et al., 2021). The
main goal was to assess the potential of directed network
mapping to characterize AF, and to use it for rotor detection.
Additionally, in another recent study by Van Nieuwenhuyse
et al. (2021a), the authors showed that network mapping can
overcome some of the limitations of phase mapping, by being
able to exclude the false rotors that phase mapping generates.
The next important step in this direction is to analyze clinical
AF cases.

5. CONCLUSION

Using network theory to characterize cardiac excitation
represents an innovative and promising tool that has the
potential to be used in an EP study for the treatment of AFL.
In cases when the physician cannot unequivocally identify
the driving mechanism using the LAT map and where several
hypotheses can be formulated, directed network mapping
could aid the operators by showing existing cycles in the
network, possibly associated with conduction pathways
sustaining AFL. In addition, this technology, along with
dedicated visualization techniques, may represent an novel
way to report the physicians an overall description of the
arrhythmias in place, and speed up the planning of the
ablation therapy.
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