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Mitochondria-derived peptides (MDPs) are a new class of bioactive peptides encoded
by small open reading frames (sORFs) within known mitochondrial DNA (mtDNA) genes.
MDPs may affect the expression of nuclear genes and play cytoprotective roles against
chronic and age-related diseases by maintaining mitochondrial function and cell viability
in the face of metabolic stress and cytotoxic insults. In this review, we summarize clinical
and experimental findings indicating that MDPs act as local and systemic regulators of
glucose homeostasis, immune and inflammatory responses, mitochondrial function, and
adaptive stress responses, and focus on evidence supporting the protective effects of
MDPs against myocardial infarction. These insights into MDPs actions suggest their
potential in the treatment of cardiovascular diseases and should encourage further
research in this field.

Keywords: myocardial infarction, mitochondria-derived peptides, mitochondria, mitochondria-ER
communication, heart

INTRODUCTION

Mitochondria are semi-autonomous, double-membrane organelles that play critical roles in
maintaining cellular homeostasis by governing cell energy metabolism and influencing signal
transduction, reactive oxygen species (ROS)-mediated oxidative stress, and apoptosis (Brooks,
2018; Cao et al., 2020). Mitochondrial biogenesis is a highly dynamic process, and the rapid
recycling and turnover of mitochondrial components enables these organelles to adapt to metabolic
changes resulting from different cellular stressors (Del Campo, 2019; Chiang et al., 2020; Jin
et al., 2021). Thus, a decline in mitochondrial function is frequently associated with numerous
diseases. Extensive research sought to elucidate how mitochondria dysfunction affects the onset and
progression of myocardial infarction (MI), a condition characterized by impaired ATP synthesis
and energy metabolism, enhanced apoptosis, and abnormal Ca2+ dynamics in cardiac cells
(Sommer et al., 2016; Daiber and Münzel, 2020; Fender et al., 2020; Gori et al., 2020).

Cellular homeostasis is critically regulated by the interaction between mitochondria and the
cell nucleus via coordinated expression of mitochondrial and nuclear genes. Importantly, this
genetic crosstalk also allows cells to cope with environmental and metabolic stress (Ryan and
Hoogenraad, 2007; Quirós et al., 2016). The mitochondrial DNA (mtDNA) contains 37 genes that
encode 13 polypeptides, all subunits of the electron transport chain (ETC) (Mangalhara and Shadel,
2018), as well as 2 ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs) that are required
for their translation (Michel et al., 2015). In contrast with nuclear-encoded genes, the synthesis
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of mitochondrial proteins is independent of the translational
machinery associated with the endoplasmic reticulum.
Still, mtDNA-encoded proteins represent only ∼1% of the
mitochondrial proteome, which is estimated at up to 1,500
proteins that are therefore predominantly encoded by nuclear
DNA (Calvo and Mootha, 2010).

Mitochondria-derived peptides (MDPs) conform a new class
of peptides encoded by small open reading frames (sORFs)
within known mtDNA genes (Yen et al., 2013; Kim et al.,
2017). MDPs are widely distributed in various tissues such as
heart, vascular wall, kidney, skeletal muscle, and colon. MDPs
were shown to affect the expression of nuclear genes and play
cytoprotective roles through maintaining mitochondrial function
and cell viability under both normal and pathological conditions
(Krejcova et al., 2004; Tajima et al., 2005). In this review, we
summarize the effects of MDPs on immune and inflammatory
responses, glucose homeostasis, mitochondrial function, adaptive
stress responses, and apoptosis, and discuss the protective
actions of MDPs against MI (Mottis et al., 2019). We hope
this information will stimulate further research to materialize
the therapeutic potential of MDPs in the treatment of MI and
cardiovascular disease.

CLASSIFICATION AND FUNCTIONS OF
MITOCHONDRIA-DERIVED PEPTIDES

Eight MDPs have been identified up to date, all of them
transcribed from sORFs harbored in mtDNA genes encoding
12S rRNA and 16S rRNA transcripts (Lee et al., 2015). The 12S
rRNA gene is 954 nucleotides long, extends from nucleotides
648 to 1,601 (representing about 6% of the full mtDNA), and
the encoded product presents a conserved secondary structure.
The 16S rRNA gene is 1,559 nucleotides long and extends
between nucleotides 1,671–3,229 of the mtDNA (Galtier et al.,
2006). Several studies confirmed that MDPs regulate cellular
metabolism and survival by maintaining glucose homeostasis,
antioxidant capacity, and antiapoptotic signaling by binding to
intracellular and extracellular receptors through autocrine and
paracrine mechanisms (Yang et al., 2019).

Humanin
Humanin (HN), the first discovered MDP, was identified in the
brain of a patient with Alzheimer’s disease (AD) by Hashimoto
and his team in 2001 (Hashimoto et al., 2001). Through different
translational machineries, two HN peptides, 21 and 24 amino
acids long, are produced, respectively, in mitochondrial and
cytoplasmic compartments from a sORF located in the 16S rRNA
gene of mtDNA (Sreekumar and Kannan, 2020). HN is found
in circulating body fluids, such as blood and cerebrospinal fluid,
and in metabolically active organs such as the heart, liver, and
kidneys (Arakawa et al., 2008; Muzumdar et al., 2009; Chin et al.,
2013). In addition, nuclear DNA contains several ORF sites,
highly homologous to the mtDNA sequence encoding HN, which
potentially give rise to several HN-like peptides (Jiang et al., 2020;
Jusic and Devaux, 2020).

Humanin and its synthetic analogs have been shown to
have significant cytoprotective and glucose-lowering effects. For
example, the HN analog S14G (HNG) produced by substitution
of serine by glycine at position 14 in HN, is 1,000 times more
potent than HN (Arakawa et al., 2008). In turn, the HN homolog
HNGF6A, formed by an additional substitution of phenylalanine
by alanine at position 6, was shown to have an even greater effect
than HN and HNG in improving central insulin sensitivity and
lowering blood glucose levels in diabetic rats by counteracting
the proapoptotic actions of insulin like growth factor binding
protein-3 (IGFBP-3) (Muzumdar et al., 2009). Indeed, extensive
research demonstrated that HN plays a protective role against
various pathological conditions, including neurodegenerative
diseases (Cui et al., 2017), diabetes (Xie et al., 2014), endothelial
dysfunction (Ding et al., 2019), and cardiovascular disease
(Ren et al., 2020).

Apoptosis
The antiapoptotic action of HN has been shown to result from
inhibition of Bax-induced pore formation in the mitochondrial
outer membrane and subsequent suppression of cytochrome c
release (Ma and Liu, 2018). Besides, HN was shown to engage
the Bid BH3 domain, which mediates the association of Bid with
other Bcl-2 family members (Choi et al., 2007), and to bind
directly to the extra-long isoform of Bim (BimEL). The ensuing
inhibition of BimEL may thus contribute to the antiapoptotic
properties of HN (Luciano et al., 2005). The therapeutic
potential of HN as an antiapoptotic agent has been confirmed
by in vitro and in vivo experiments demonstrating increased
neuroprotection after HN binding to IGFBP-3 (Lee et al., 2013).

Oxidative Stress
Recent research also unveiled significant antioxidant properties
for HN and its derivatives. In cardiac myoblasts challenged
with H2O2, exposure to HNG lowered ROS levels, preserved
mitochondrial membrane potential and ATP levels, induced
activation of catalase and glutathione peroxidase, and decreased
the ratio of oxidized to reduced glutathione (GSH) (Klein et al.,
2013). Along these lines, HNG showed to beneficially regulate
GSH and sphingolipid metabolism in a rat model of diet-
induced obesity [46].

Inflammation
Zhao et al. (2013) showed that pretreatment with HN decreased
the secretion of proinflammatory cytokines, i.e., interleukin
(IL)-6, IL-1β, and tumor necrosis factor α (TNFα), induced
by lipopolysaccharide (LPS) in cultured astrocytes. In turn,
Jung et al. (2020) reported that intravenously administered HN
promoted a “reparative” microglia phenotype characterized by
enhanced phagocytosis and reduced proinflammatory responses
in a mouse model of intracerebral hemorrhage.

Regulation of Mitochondrial Function
Many studies have examined the role of HN in the regulation
of mitochondrial homeostasis. Experiments in human retinal
pigment epithelial cells showed that HN exposure preserved
essential functions related to energy production by increasing
basal oxygen consumption rate, maximum respiration rate,
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respiration capacity, and ATP production (Sreekumar et al., 2016;
Kleinbongard, 2020; Lahiri et al., 2020; Lindner et al., 2020). In
pancreatic MIN6 β-cells, HN promoted mitochondrial biogenesis
by increasing mitochondrial mass, mtDNA copy number, and
PGC-1α, NRF1, and mitochondrial transcription factor A
(mtTFA) levels (Qin et al., 2018b). Similarly, the HN analog HNG
counteracted oxidative stress-induced mitochondrial dysfunction
in cardiac tissue by reducing ROS generation and stabilizing
mitochondrial membrane potential, mitochondrial structure, and
ATP levels (Klein et al., 2013; Lobo-Gonzalez et al., 2020; Lyu
et al., 2020; Sawashita et al., 2020). However, further research is
needed to clarify the specific mechanisms by which HN sustains
mitochondrial integrity and function in mammalian cells.

MOTS-c
Mitochondrial open reading frame of the 12S rRNA-c (MOTS-
c) is a 16-amino-acid peptide encoded by a sORF within the
mitochondrial 12S rRNA. Originally identified by Lee et al. (2015)
in various tissues in rodents, as well as in human plasma, MOTS-
c proved to be an effective regulator of insulin sensitivity and
metabolic homeostasis by inducing activation of AMP-activated
protein kinase (AMPK). Subsequently, Kim et al. showed that
MOTS-c can translocate to the nucleus in response to metabolic
or oxidative stress, suggesting a novel role for MOTS-c in gene
expression regulation via retrograde (mitochondria to nucleus)
signaling (Quirós et al., 2016). Additional reports in animal
models pointed out that MOTS-c regulates insulin resistance
and attenuates the symptoms of hyperinsulinemia, obesity, and
osteoporosis (Lee et al., 2015, 2016; Ming et al., 2016; Hu and
Chen, 2018; Qin et al., 2018a; Lu et al., 2019; Mehta et al.,
2019; Yan et al., 2019; Weng et al., 2021). Moreover, MOTS-c
was shown to possess significant anti-inflammatory actions by
inhibiting the expression of immune-related genes (Zhai et al.,
2017; Li et al., 2018; Yan et al., 2019). Recently, Jiang et al.
(2021) reported that MOTS-c administration enhanced object
and location recognition memory formation and consolidation in
mice treated with amyloid-beta peptide (Aβ1-42) or LPS through
activation of hippocampal AMPK.

Small Humanin-Like Peptides (SHLPs)
Small humanin-like peptides (SHLP1-6) are encoded and
translated from a sORF contained within the same 16S RNA
gene harboring the HN-encoding sORF (Cobb et al., 2016).
Fist identified by Cobb et al. (2016), the 20–38 amino-acid-
long SHLP peptides were shown to be expressed in mouse
tissues including heart, liver, brain, kidney, spleen, prostate, testis,
and skeletal muscle. Using RT-PCR, a mitochondrial origin was
established for SHLPs 1, 4, 5, and 6, whereas SHLP2 and SHLP3
were amplified from both mitochondrial and nuclear cDNA
(Cobb et al., 2016). These authors also found that circulating
SHLP2 levels decline with age, and that male mice had higher
SHLP2 levels than female mice in both the young and old
groups. These results indicated that SHLP2 secretion levels vary
with age and sex.

The Cobb et al. (2016) study showed that similar to HN,
the neuroprotective actions of SHLP2 were associated with
phosphorylation of both extracellular signal-regulated kinase

(ERK) and signal transducer and activator of transcription 3
(STAT-3). Concordant also with HN effects, both SHLP2 and
SHLP3 were shown to improve mitochondrial quality control,
enhance oxidant consumption rate, mitochondrial biogenesis,
and ATP synthesis, and mediate anti-apoptotic effects (Cobb
et al., 2016). The beneficial influence of SHLP2 and SHLP3 on
age-related neurodegenerative disease is supported by evidence
that both SHLP2 and SHLP3 improved neuronal survival
following toxic insults (Cobb et al., 2016). In particular, a
prominent antiapoptotic effect was revealed for SHLP2 both in
neurons treated with Aβ1-42 (Cobb et al., 2016) and in age-
related macular degeneration (AMD) cybrid cells containing
mtDNA from AMD patients [REF]. Several studies reported
additional roles for SHLPs in the modulation of cardiovascular
function, insulin sensitization, inflammation, and GSH and
sphingolipid metabolism [46]. Interestingly, low circulating
levels of SHLP2 were linked with increased risk of prostate
cancer (Xiao et al., 2017; Mehta et al., 2019). Although these
findings consistently affirm the beneficial actions of SHLPs on
human health, further work is needed to elucidate the specific
mechanisms mediating SHLPs’ effects.

PROTECTIVE ACTIONS OF
MITOCHONDRIA-DERIVED PEPTIDES
AGAINST RISK FACTORS FOR
MYOCARDIAL INFARCTION

Ischemic heart disease is the leading cause of morbidity and
mortality in the world (Reed et al., 2017; Qiao et al., 2021;
Wischmann et al., 2020; Yang Y. et al., 2020; Zhang L. et al.,
2020). It develops as a consequence of risk factors such as
systemic arterial hypertension, left ventricular (LV) hypertrophy,
hyperlipidemia, atherosclerosis, insulin resistance, diabetes, and
aging (Ollauri-Ibáñez et al., 2020; Wang et al., 2020e; Watson
et al., 2020; Winter et al., 2020). Indeed, age represents the
largest risk factor for cardiovascular diseases, including cardiac
fibrosis, atrial fibrillation, and heart failure (Steenman and Lande,
2017; Santosa et al., 2020; Schinner et al., 2020; Seano and Jain,
2020; Selvaraju et al., 2020). As mentioned, a correlation between
MDP expression and age-related diseases is suggested by the
significant decline in circulating MDP levels that occurs with
age (Cobb et al., 2016). Since oxidative stress and mitochondrial
dysfunction are tightly involved in the mechanisms of age-related
diseases, MDPs, especially HN and MOTS-c, the most studied
ones, have emerged as promising therapeutic targets to treat
neurological, cardiovascular, and metabolic conditions associated
with advanced age (Zapała et al., 2010; Thummasorn et al., 2017;
Yang et al., 2019; Kim et al., 2021).

Mitochondria-derived peptides were shown to critically
influence lipid and glucose metabolism, two aspects closely
related with myocardial disfunction and infarction. Cobb et al.
(2016) reported that SHLP2 and SHLP3 enhanced 3T3-L1 pre-
adipocyte differentiation and increased leptin levels in mice.
Meanwhile increased peripheral glucose uptake and suppressed
hepatic glucose production were observed after intracerebral
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infusion of SHLP2 in rats subjected to systemic pancreatic
insulin clamp and physiologic hyperinsulinemic-euglycemic
clamp (Cobb et al., 2016). This suggests that central activity of
SHLP2 has obvious peripheral effects. Gong et al. (2015) showed
that intraperitoneal administration of the HN homolog HNG can
reduce weight, visceral fat contents, and hepatic steatosis in high-
fat diet (HFD)-fed mice. It is unclear, however, whether reduced
adipogenesis or increased lipolysis mediated these effects. Lee
et al. reported that MOTS-c enhanced lipid oxidation and glucose
metabolism in skeletal muscle by increasing the expression of
GLUT4 and inhibiting the folate-methionine cycle. The ensuing
inhibition of de novo purine synthesis caused accumulation
of endogenous 5-aminoimidazole-4-carboxamide ribonucleoside
(AICAR), a purine precursor, leading to activation of AMPK.
Because de novo purine synthesis is subjected to feedback
regulation by purine nucleotides, MOTS-c was proposed to
accelerate de novo purine synthesis, which is consistent with
the observed increase in NAD+ levels, glycolytic fluxes, and
increased routing of glucose to the pentose phosphate pathway
(PPP). Following AICAR accumulation, AMPK activation
stimulates fatty acid oxidation via phosphorylation-induced
inactivation of acetyl-CoA carboxylase (ACC) (Steinberg and
Kemp, 2009). Studies from Lee et al. (2015) also showed that
compared with control cells, HEK293 cells stably overexpressing
MOTS-c exhibited higher levels of carnitine shuttles, reduced
essential fatty acid levels, and increased levels of the β-oxidation
intermediate myristoyl-CoA. These studies concluded that
MOTS-c treatment prevented age-dependent and HFD-induced
insulin resistance by enhancing GLUT4 expression and the
rate of insulin-induced glucose utilization in skeletal muscle,
without changes in the hepatic glucose production rate (Lee
et al., 2015). In turn, Muzumdar et al. (2009) reported that
intracerebroventricular administration of HN during pancreatic-
euglycemic clamp increased insulin sensitivity, leading to a
reduction in hepatic glucose production by inducing fatty acid
metabolism and Akt signaling. Along these lines, Kuliawat et al.
(2013) showed that glucose-stimulated insulin secretion was
potently stimulated by the HN analog HNGF6A both in βTC3
cells and in pancreatic islets from normal and diabetic mice.

Coronary artery atherosclerosis, characterized by lipid
deposition, foam cell formation, and accumulation of cholesterol
in the arterial wall, is the leading cause of myocardial ischemia
and coronary artery disease (Tabas et al., 2007; Lyu et al., 2015;
Sawashita et al., 2020; Zhang Y. et al., 2020; Zhao et al., 2020).
Excessive production of ROS, caused by long-term occlusion of
the coronary artery, enhances oxidative stress and inflammation,
resulting in vascular endothelial dysfunction and accelerated
formation of atherosclerotic plaques (Lu et al., 2020; Watanabe
et al., 2020; Wincewicz and Woltanowski, 2020; Yang Q. K.
et al., 2020). The expression of HN in the endothelial cell layer
of human arteries and veins was first reported by Bachar and
colleagues. They showed, through in vitro experiments, that HN
protected against atherosclerosis by reducing ROS production
and attenuating oxidative stress (Bachar et al., 2010). The
formation of foam cells results from imbalanced cholesterol
influx and efflux in arterial wall-associated macrophages and
contributes to the onset and development of atherosclerosis.

Using cultured RAW 264.7 macrophages, Zhu et al. showed that
HNG prevents ox-LDL-induced foam cell formation. This effect
resulted from inhibition of CD36 and low-density lipoprotein
receptor (LOX)-1 upregulation, which reduced ox-LDL
endocytosis, coupled with upregulation of ATP-binding cassette
(ABC) transporter A1 and ABCG1 levels, which enhanced
ox-LDL efflux (Zhu et al., 2017). Hyperglycemia is an important
contributor to the pathological development of atherosclerosis
in diabetic patients. Wang et al. reported that HN treatment
prevented high glucose-induced attachment of monocytes
to human umbilical vein endothelial cells (HUVECs). This
effect was mediated by ERK5 phosphorylation and induction
of Krüppel-like factor 2 (KLF2) expression, upregulation of
KLF2 target genes such as endothelial nitric oxide synthase
(eNOs) and endothelin-1 (ET-1), and reduced expression of
leukocyte adhesion molecules (VCAM-1 and E-selectin) (Wang
et al., 2018). Qin et al. found that circulating MOTS-c levels
were downregulated in patients with coronary endothelial
dysfunction. They showed that plasma MOTS-c levels were
positively correlated with microvascular and epicardial coronary
endothelial function in study subjects, demonstrating also
that exposure to MOTS-c had no direct vasoactive effects but
improved acetylcholine-induced vasodilation in aortic explants
from renal artery stenosis mice (Qin et al., 2018a).

Role of Mitochondria-Derived Peptides
in Myocardial Ischemic Injury and
Ischemia/Reperfusion Injury
A pivotal feature of ischemia is the inadequate supply of oxygen
to the mitochondria to support oxidative phosphorylation
(OXPHOS). This causes excessive ROS production and oxidative
stress injury, leading to myocardial cell death (Zhu et al.,
2018; Zhou et al., 2019; Hughes et al., 2020; Wang et al.,
2020c). Myocardial ischemic injury usually results in infarction,
arrhythmias, and decreased myocardial contractility. Reperfusion
therapy refers to procedures that allow the rapid return of
blood flow to the ischemic area of the myocardium, through
which mortality can be approximately halved (Jin et al., 2018;
Smadja et al., 2020; Tan et al., 2020; Zhu et al., 2021).
However, reperfusion itself may induce irreversible cell injury
(e.g., necrosis and apoptosis), thus leading to extensive infarct
size, diminished cardiac contractile function, and arrhythmia
(Zhou et al., 2017a,b, 2018c; Szulcek et al., 2020; Wang et al.,
2020d). The ensuing reconstruction of the damaged myocardium
poses a big clinical challenge, as it is a key contributor to
cardiac dysfunction after MI (Zhou et al., 2018b, 2020; Singh
et al., 2020; Wang et al., 2020a). Myocardial fibrosis represents a
secondary response to the pathophysiologic remodeling process.
It involves profound changes in the interstitial myocardial
collagen network, facilitating the development of cardiac
dysfunction and arrhythmias and influencing the clinical course
and outcome of heart failure patients (Zhou et al., 2018a; Tomita
et al., 2020; Wang et al., 2020b).

Myocardial injury begins after about 20 min of coronary
occlusion, first affecting the subendocardium and papillary
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muscle, and extending thereafter into the mid-myocardial bed-
at-risk by about 60–90 min (Reimer et al., 1977). Myocardial
injury may be reversible because of the activation of physiologic
adaptations manifested in myocardial stunning, hibernation, and
pre- and post-ischemic conditioning (Heyndrickx et al., 1975).
However, prolonged ischemia causes irreversible myocardial
injury regardless of the tissue’s hypoxic tolerance and intrinsic
adaptive mechanisms. In this setting, oxygen consumption by
oxidative phosphorylation and the synthesis of high energy
phosphate products are reduced, along with decreased availability
of malate (a complex I substrate) and succinate (a complex II
substrate) in mitochondria (McCully et al., 2007). Alterations
in complex I activity and accumulation of succinate during
ischemia may be related to mitochondrial oxidative injury during
reperfusion (Pacher et al., 2006). Here, the maximal rate of
hydrolyzed succinate overwhelms the speed of ATP synthesis,
leading to a phenomenon called reverse electron transport
(RET) that results in enhanced ROS production by complex
I. Accordingly, pharmacological inhibition of complex I slows
the reactivation of mitochondria and reduces ROS (Chouchani
et al., 2013). Multiple biochemical and ultrastructural changes
occur in cardiac cells upon ischemia-induced ATP depletion.
Faced with oxygen deprivation, the heart switches from fatty
acid oxidation to anaerobic glycolysis to sustain ATP production,
leading to the accumulation of lactate and a decline in cellular
pH (Walker et al., 2000; Khabbaz et al., 2001). Intracellular
acidification stimulates the activity of the Na+/H+ exchanger,
which enhances in turn Ca2+ influx by activating the Na+/Ca2+

exchanger as a way to remove excess Na+ into the extracellular
space. This leads eventually to mitochondrial Ca2+ overload,
which ultimately results in mitochondrial swelling, increased
mitochondrial intermembrane distance, and deficient OXPHOS
(Pagliaro and Penna, 2015).

As with myocardial ischemic injury, the extent of
ischemia/reperfusion (I/R) injury varies based upon reversible
events, onset of reperfusion arrhythmias, cardiac stunning, etc.,
which determine the eventual occurrence of lethal reperfusion
injury (Hausenloy et al., 2016). Clinically, I/R injury is associated
with the disruption of the microvasculature leading to the no-
reflow phenomenon and activation of inflammatory reactions
(Wang et al., 2020b). Over the last decades, abundant research
focusing on lethal myocardial reperfusion injury reported the
mechanisms involved in this process. These alterations include
rapid normalization of pH, intracellular Ca2+ overload, and ROS
generation, all of which aggravate mitochondrial dysfunction
(Pan et al., 2013). A hallmark of the latter is the opening of
the mitochondrial permeability transition pore (mPTP), which
is thought to be the most noxious step during reperfusion
injury, leading to activation of apoptotic and necrotic signaling
pathways (Ruiz-Meana et al., 2009).

Several studies suggested that HN or its synthetic analogs
might be effective to treat MI. Recently, Wijenayake et al.
uncovered the cytoprotective role of a humanin homolog (TSE-
humanin), expressed in freshwater turtles, against sustained
hypoxia and oxidative damage (Wijenayake and Storey, 2021).
In a rat model of myocardial I/R injury, Thummasorn et al.
showed that endogenous HN levels were decreased at the end

of cardiac I/R. Interestingly, intravenous injection of HNG
15 min before I/R (but not during I/R) significantly decreased
arrhythmia incidence and infarct size, improved cardiac
mitochondrial function, and attenuated cardiac dysfunction.
The same group later showed that high- dose HNG (252 µg/kg)
administration during the ischemic phase increased myocardial
HN levels, reduced arrhythmia, myocardial infarction area,
and mitochondrial dysfunction. These effects were associated
with AKT signaling activation, inhibition of Bax translocation
to the mitochondrial membrane, and apoptosis prevention
(Thummasorn et al., 2017). Subsequently, using isolated cardiac
mitochondria, the same group showed that HNG was more
effective than cyclosporine A in decreasing oxidative stress
and alleviated mitochondrial damage caused by H2O2 by
decreasing complex I activity (Thummasorn et al., 2018).
Similarly, Muzumdar et al. showed that administration of
HNG one hour before or at the time of reperfusion improved
LV function and decreased infarct size in a mouse model
of I/R. The suggested mechanism involved AMPK/eNOS
signaling and downregulation of pro-apoptotic factors
(Muzumdar et al., 2010).

Role of Mitochondria-Derived Peptides
in Post-infarction Cardiac Fibrosis
The development of post-MI heart failure is associated
with complex and progressive cellular and ultrastructural
transformation events resulting in ventricular remodeling, a
phenomenon first described by Tennant and Wiggers in the
1930s (Tennant and Wiggers, 1935). The human left ventricle
has 2 to 4 billion cardiomyocytes, and a MI can cause the
death of ≥25% of this population in a few hours (Beltrami
et al., 2001). Due to the heart’s limited ability for rapid self-
repairing after catastrophic damage, scar formation, rather than
muscle regeneration, is often the major component of the healing
response following MI (Olivetti et al., 1991). The mechanisms of
post-infarction cardiac remodeling include interactions between
cellular, extracellular, and neurohormonal components. Early
changes occurring within the first 72 h of an acute myocardial
insult include expansion of the infarct zone, mainly because of the
degradation of intermyocyte collagen struts by serine proteases
and activated matrix metalloproteinases (MMPs) released from
neutrophils. Concomitantly, myocardial necrosis determines
an influx of inflammatory cells, including macrophages and
other antigen-presenting cells, which results in wall thinning,
ventricular dilatation, and eventually, cardiac rupture (Sutton
and Sharpe, 2000). Late remodeling mainly involves eccentric
hypertrophy and LV cavity dilation because of the increased load
on the non-infarcted myocardium (Anversa et al., 1985). Adverse
cardiac remodeling is facilitated by the imbalance between MMPs
and their inhibitors (tissue inhibitors of metalloproteinases;
TIMPs). These are regulated by several transcription factors and
enzymes, including the NF-κB and JAK-STAT pathways, which
are influenced by the renin-angiotensin-aldosterone system
(RAAS) (Chen et al., 2004). Despite the extensive knowledge
accumulated so far, clinical treatment of post-MI heart failure is
still very challenging and thus requires further research.
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Contrasting with the solid preclinical evidence supporting
the beneficial actions of HN and its analogs in cardiac
I/R injury, research on the possible influence of MDPs in
cardiac remodeling remains scarce. Recently, Wei et al. (2020)
reported that treatment with MOTS-c significantly decreased
blood pressure, maintained normal cardiac structure, reversed
ventricular remodeling, and reduced the stiffness of blood vessels
in a rat model of vascular calcification induced by vitamin D3 plus
nicotine (VDN) treatment. They further showed that MOTS-
c attenuated VDN-induced vascular calcification pathology by
stimulating AMPK signaling, reversing also the upregulation of
angiotensin II type 1 (AT-1) and endothelin B (ET-B) receptors
mediated by VDN. Overexpression of AT-1 receptors is linked
to increased myocardial fibrosis and cardiac dysfunction, which
is consistent with the beneficial effect of MOTS-c against both
oxidative stress and development of myocardial contractile
dysfunction (Honda et al., 2018). Regarding ET-B, experiments
with the AMPK agonist AICAR indicated that AMPK activation
downregulates ET-B receptor expression, stimulates autophagy,
and normalizes contractile responses to the ET-B agonist
sarafotoxin 6c in VSMCs cultured under high glucose conditions
(Chen et al., 2018).

OUTLOOK AND PERSPECTIVES

Mitochondrial dysfunction is closely correlated with the
symptoms of MI and cardiovascular disease (Suárez-Rivero
et al., 2016). Available data suggest that impaired synthesis of
MDPs in cardiomyocytes and endothelial cells contributes to
the pathological sequelae of cardiac I/R injury. Accordingly,
treatment with MDPs was shown to alleviate ischemic injury,
limit infarct area, and attenuate adverse cardiac remodeling
after experimental infarction in rodent models. However, in
the setting of MI, addressing the optimal time window at
which MDPs exert maximal effects would help validate their
use as pre-, per-, and/or post-conditioning agents. Collectively,
the findings summarized above suggest the therapeutic
potential of MDPs to treat MI as well as other common
age-related diseases.
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