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Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular 
complications, while cardiovascular diseases remain a leading cause of death in both 
men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are 
abundantly expressed in arteries and are the key ionic determinant of vascular tone and 
organ perfusion. It is well established that the downregulation of vascular BK channel 
function with reduced BK channel protein expression and altered intrinsic BK channel 
biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed 
that diabetes-associated changes in signaling pathways and transcriptional factors 
contribute to the downregulation of BK channel expression. This manuscript will review 
our current understandings on the molecular, physiological, and biophysical mechanisms 
that underlie coronary BK channelopathy in diabetes mellitus.
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INTRODUCTION

Diabetes mellitus (DM) has become a global epidemic. The incidence and the prevalence of 
DM have steadily increased over the past few decades. According to the WHO report in 2021, 
over 422 million people worldwide have DM with a prevalence of 8.6%, causing 1.6 million 
deaths annually.1 Type 1 diabetes mellitus (T1DM) accounts for 5–10% of the total cases of 
DM and is caused by autoimmune-mediated destruction of pancreatic β-cells, leading to 
hyperglycemia and insulin dependence (Bluestone et  al., 2010; Op De Beeck and Eizirik, 2016). 
Type 2 diabetes mellitus (T2DM) represents 90–95% of the total cases of DM and is caused 
by insulin resistance with hyperinsulinemia, hyperglycemia, and hyperlipidemia in most patients 
(Pandey et  al., 2015; Halim and Halim, 2019).

Both T1DM and T2DM are intimately related to micro-vascular and macro-vascular diseases, 
including ischemic heart disease, cerebrovascular disease, and peripheral vascular disease, 
resulting in myocardial infarction, stroke, retinopathy, nephropathy, and neuropathy with organ 
and tissue damages in 70% of diabetic patients (Kurisu et al., 2003; Yeung et al., 2012; Beckman 
and Creager, 2016; Sorop et al., 2016). The clinical consequences of diabetic vascular complication 
are devastating. DM is the leading cause of end stage renal disease, new cases of blindness, 

1 https://www.who.int/health-topics/diabetes#tab=tab_1
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and non-traumatic lower extremity amputation, imposing global 
direct health expenditure of $ 760 in 2019 with a projected 
$ 825 billion by 2030 and $ 845 billion by 2045 (Williams 
et  al., 2020). Hence, it is critically important to understand 
the mechanisms of vascular dysregulation in DM so that better 
diagnostic and therapeutic approaches can be  developed to 
treat diabetic vascular complications more effectively.

Ionic mechanisms play a central role in the regulation of 
vascular reactivity. Vascular large conductance Ca2+-activated 
K+ (BK) channels are major determinants of such regulation. 
BK channels are densely populated in vascular smooth muscle 
cells (SMCs), particularly in small resistance arteries, and provide 
tight regulation of vascular tone and tissue perfusion. It is 
well established that vascular BK channel expression and function 
are abnormal in DM. Diabetic patients are known to have 
worse cardiovascular events and outcome, with higher risks 
of ischemic heart disease and myocardial infarction (Kurisu 
et  al., 2003; Yeung et  al., 2012; Sorop et  al., 2016). In this 
review, we will focus on recent findings in the coronary arterial 
SMCs, highlighting the diabetes-mediated changes in channel 
expression, function, and intrinsic properties, as well as the 
molecular mechanisms associated with these changes.

STRUCTURE AND FUNCTION OF 
VASCULAR BK CHANNELS

Cardiac perfusion is regulated by vasoactive agents released by 
the endothelium from mechanical sensing of luminal shear stress, 
including endothelium-derived relaxation factors (EDRF) and 
endothelium-derived hyperpolarizing factors (EDHF), the 
pharmacologic action of neuroendocrine factors, and the response 
of coronary arteriolar SMCs to intralumenal pressure (Goodwill 
et  al., 2017). Functional vascular BK channels are composed of 
the pore-forming α-subunits (BK-α) and the accessory β1-subunits 

(BK-β1) and/or γ1-subunits (BK-γ1; Figure 1; Knaus et al., 1994; 
Yan and Aldrich, 2012). Four BK-α and four BK-β1 assemble 
to form a functional BK channel. The stoichiometry and interaction 
between BK-α and BK-γ1 are currently unclear. BK-α is expressed 
ubiquitously on the cell surface and in mitochondrial membranes 
of excitable and non-excitable cells, while BK-β1 is distributed 
in the cell membranes of excitable cells. BK-γ1 is mainly found 
in the cell membrane of non-excitable cells (Singh et  al., 2013; 
Li et  al., 2016). BK-α (encoded by the KCNMA1 gene) contains 
the structure of six transmembrane domains (S1–S6) of voltage-
gated K+ channels in which S1–S4 constitute the voltage-sensing 
domain (VSD) and the S5-P loop-S6 form the ion permeation 
domain, containing the conserved K+ selectivity filter (TVGYG; 
Ma et  al., 2006; Cui et  al., 2009). In addition, the BK channel 
has a unique S0 segment unit in the extracellular N-terminus 
and a large C-terminal domain (CTD). The CTD has four 
cytosolic domains (S7–S10) with two regulators of K+ conductance 
domains (RCK1 and RCK2) that contain two high-affinity Ca2+ 
binding sites (Wu and Marx, 2010; Yuan et  al., 2010). One such 
site is the Ca2+ bowl (889-QFLDQDDDD-897) in RCK2 with 
a Ca2+ concentration at half-maximal effect (EC50) in the 10−6 M 
range (Xia et  al., 2002; Bao et  al., 2004). The other site (D367/
E535/R514) is located in RCK1 (Figure  1; Zeng et  al., 2005; 
Zhang et  al., 2010b). The RCK1s and RCK2s of four BK-α 
subunits form an octameric gating ring that connects to the 
VSD through a rigid linker (Yuan et  al., 2010; Tao et  al., 2017). 
Binding to intracellular free Ca2+ and membrane depolarization 
activate BK channels through allosteric changes in the gating ring.

In addition to Ca2+- and voltage-dependent activation, BK-α 
activity is tightly regulated by its accessory subunits, BK-β and 
BK-γ (Li and Yan, 2016; Gonzalez-Perez and Lingle, 2019). Four 
isoforms of β subunits (BK-β1-4, encoded by the KCNMB1-4 
genes) and γ subunits (BK-γ1-4, encoded by the LRRC26, LRRC38, 
LRRC52, and LRRC55 genes) have been cloned in mammalian 
cells (Li and Yan, 2016; Gonzalez-Perez and Lingle, 2019). 

FIGURE 1 | Schematic illustration of vascular Ca2+-activated K+ (BK) channel subunits. BK-α, BK channel α-subunit; BK-β1, BK channel β1-subunit; BK-γ1, BK 
channel γ1-subunit; S or TM, transmembrane domain segment; VDS, voltage-sensor domain; RCK, regulator of K+ conductance; LRR, leucine-rich repeat; 
LRRD, leucine-rich repeat domain; LRRCT, leucine-rich repeat C-terminus; LRRNT, leucine-rich repeat N-terminus; COOH, C-terminus; and NH2, N-terminus.
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In vascular SMCs, BK-β1 is the predominant vascular isoform. 
It contains two transmembrane domains (TM1 and TM2) with 
a relatively large extracellular loop that can reach the inner 
mouth of the BK-α channel pore and modulates the binding 
of iberiotoxin (IBTX) and the effects of fatty acids on BK channel 
activity (Torres et  al., 2014). The TM1 is thought to interact 
with the S2 of an adjacent BK-α subunit and the TM2 with 
the S0 of another adjacent BK-α subunit (Liu et  al., 2010). The 
presence of the BK-β1 subunit enhances channel sensitivity to 
Ca2+ activation.

BK-γ1 is also expressed in vascular SMCs (Evanson et  al., 
2014). BK-γ1 shares the structure of the leucine-rich repeat 
(LRR) protein superfamily and contains an extracellular 
N-terminus with six LRRs, a single transmembrane domain, 
and a short intracellular C-terminus (Figure  1). The effects of 
BK-γ1 on BK-α regulation can be  reproduced by a 40-amino 
acid peptide containing the transmembrane domain of BK-γ1, 
suggesting that this is an important structure in the regulation 
of BK channel physiology (Li et  al., 2016). BK-γ1 is known to 
enhance BK-α sensitivity to Ca2+ and voltage stimuli by magnitudes 
similar to those of BK-β1, allowing BK channel activation in 
the physiological range of intracellular free Ca2+ concentrations 
and membrane potentials of vascular SMCs (Tanaka et al., 1997; 
Cox and Aldrich, 2000; Yan and Aldrich, 2012). In heterologous 
expression systems, BK-β and BK-γ subunits can co-exist in 
the same functional BK channel complex. Their effects on the 
intrinsic properties of the channel were additive, suggesting 
that the multiplicity of BK-β/BK-γ combinations would generate 
a range of BK channels with distinct functional properties 
according to the specific stoichiometry of the contributing 
subunits (Gonzalez-Perez et  al., 2015). Since nothing is known 
about the role of BK-γ in the regulation of coronary BK channels 
in DM, this review will focus on the findings regarding BK-α 
and BK-β1  pathophysiology in DM.

Intracellular Ca2+ homeostasis in vascular SMCs is regulated 
by the balance between sarcolemmal Ca2+ entry (L-type Ca2+ 
channels and the transient receptor potential channels; TRP, 
etc.), release of Ca2+ from the endoplasmic reticulum/sarcoplasmic 
reticulum, uptake of cytoplasmic Ca2+ into intracellular stores, 
and extrusion through the sarcolemmal Ca2+ pump and Na+/
Ca2+ exchanger (Leopold, 2015). In vascular SMCs, BK channels 
link Ca2+ homeostasis with cellular excitability and regulate 
vascular tone through membrane hyperpolarization, providing 
a negative feedback mechanism on Ca2+ entry. BK channels 
are colocalized with L-type Ca2+ channels and TRPC/TRPV 
channels to form BK channel-Ca2+ signaling complexes in the 
sarcolemma of vascular SMCs, allowing channel regulation in 
the local cellular milieu (Earley et  al., 2005; Kwan et  al., 2009; 
Suzuki et  al., 2013; Hashad et  al., 2018). Activation of L-type 
Ca2+ channels and TRP channels in vascular SMCs produces Ca2+ 
sparklets and triggers Ca2+ release from the SR to generate 
Ca2+ sparks (Nelson and Quayle, 1995; Takeda et  al., 2011). 
With a single channel conductance of ~300 pS, BK channels 
contribute to 50% of the total K+ currents in coronary arterial 
SMCs (Wang et  al., 2011; Sun et  al., 2020). Activation of 
vascular BK channels by Ca2+ sparks/sparklets in their vicinity 
gives rise to spontaneous transient outward currents (STOCs), 

which hyperpolarize the cellular membrane potentials, inactivate 
L-type Ca2+ channels and TRP channels, reduce intracellular 
Ca2+ concentrations, and lead to vasorelaxation (Nelson et  al., 
1995; Ledoux et  al., 2006). In addition, BK channels are also 
expressed in vascular endothelial cells (ECs). Activation of 
endothelial BK channels may hyperpolarize adjacent SMCs, 
bestowing EDHF effects (Bryan et  al., 2005; Hughes et  al., 
2010). Nevertheless, activation of BK channels contributes to 
more than 70% of total vasodilation induced by bradykinin 
(Miura et  al., 1999) and 40% of total vasodilation induced by 
shear stress in human coronary resistance vessels (Lu et al., 2019).

CORONARY BK CHANNEL 
DYSFUNCTION IN DM

Both T1DM and T2DM are known to be  independent risk 
factors for cardiovascular diseases, and cardiovascular diseases 
continue to be a leading cause of mortality in diabetic patients 
(Dhalla et  al., 1985; Stone et  al., 1989; Brindisi et  al., 2010; 
Leon and Maddox, 2015). Although, the prevalence of 
cardiovascular disease in the general population has decreased 
by 35–40% over recent decades, such a decline has not been 
observed in patients with DM (Gregg et  al., 2007; Beckman 
and Creager, 2016; Cefalu et al., 2018). Endothelial dysfunction 
has been recognized as the mechanism that underlies vascular 
pathology of DM. Subsequent findings confirm that vascular 
smooth muscle dysfunction is equally important in the 
pathophysiology of diabetic cardiovascular complications 
(Creager et  al., 2003).

Impaired BK channel-induced vasodilation was first discovered 
in the cerebral arteries of fructose-rich diet-induced insulin-
resistant rats (Dimitropoulou et  al., 2002; Erdos et  al., 2002). 
Patch clamp studies provided direct evidence of BK channel 
dysfunction in freshly isolated coronary arterial SMCs from 
Zucker diabetic fatty (ZDF) rats, a genetic animal model of 
T2DM (Lu et al., 2005). Abnormal vascular BK channel function 
was also found in other diabetic animal models, including 
streptozotocin (STZ)-induced T1DM rodents, db/db T2DM 
mice, high fat diet (HFD)-induced obesity/diabetic mice and 
swine (Dimitropoulou et al., 2002; Pietryga et al., 2005; Burnham 
et  al., 2006; McGahon et  al., 2007; Yang et  al., 2007; Dong 
et  al., 2008; Lu et  al., 2008, 2010, 2012, 2016, 2017a; Borbouse 
et  al., 2009; Navedo et  al., 2010; Zhang et  al., 2010a; Mori 
et  al., 2011; Nystoriak et  al., 2014; Yi et  al., 2014). It is worth 
noting that diabetic vascular BK channel dysfunction is a 
common finding in most vascular beds, but the results can 
vary in different species, animal models, and disease status 
(Mokelke et  al., 2003, 2005; Christ et  al., 2004; Pietryga et  al., 
2005; Burnham et al., 2006; Davies et al., 2007; McGahon et al., 
2007; Lu et  al., 2008; Borbouse et  al., 2009; Navedo et  al., 
2010; Mori et  al., 2011; Rueda et  al., 2013; Nystoriak et  al., 
2014; Nieves-Cintron et  al., 2017). It has been found that in 
freshly isolated coronary arterioles from patients with T2DM, 
BK channel sensitivity to Ca2+ and voltage activation was reduced, 
indicating that the intrinsic biophysical properties of BK channels 
were altered in diabetic patients (Figure  2; Lu et  al., 2019). 
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FIGURE 2 | Impaired vascular BK channel function in patients with T2DM. (A) Coronary arterioles of T2DM patients exhibit diminished BK channel Ca2+ 
sensitivity. Left panel: Representative tracings of inside-out single BK channel currents recorded at +60 mV in an excised patch of freshly isolated atrial 
coronary arteriolar myocytes from non-diabetic (Ctrl) and T2DM patients. With an increase in free Ca2+ concentration, BK channel open probability (nPo) was 
robust in controls but not in T2DM patients. Dashed lines indicate the closed state (c) of channel. Right panel: The nPo plotted against logarithm Ca2+ 
concentrations (nPo-log[Ca2+] curve) was fitted using the Hill equation. There were significant reductions in Ca2+ log[EC50] and BK channel maximal nPo in 
T2DM patients (n = 9) compared to those in non-diabetic controls (n = 12). A rightward shift on the normalized nPo-log[Ca2+] curve of T2DM patients. Data are 
presented as mean ± SEM. The BK channel maximal nPo and log[EC50] were significantly reduced in diabetic patients. (B) Impaired BK channel voltage 
sensitivity in the coronary arterioles of T2DM patients. Left panel: Representative tracings of inside-out single BK channel currents elicited at different testing 

(Continued)
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This finding supports the observation that the BK channel 
response to Ca2+ sparks was diminished in human diabetic 
vessels. The significance of coronary BK channel dysfunction 
in DM is underscored by the finding that ischemia–reperfusion-
mediated myocardial infarction is exacerbated in STZ-induced 
T1DM mouse hearts and can be  reproduced in non-diabetics 
hearts after exposure to the BK channel specific inhibitor, 
iberiotoxin (IBTX; Lu et  al., 2016). Since IBTX is membrane 
impermeable and cardiac myocytes do not have BK-a expression 
on the sarcolemma, this finding provides evidence of the role 
of coronary vascular BK channels on cardioprotection during 
ischemia–reperfusion insults, as well as the loss of its 
protection in DM.

Altered BK Channel Protein Expression in 
Diabetic Vessels
Altered coronary vascular BK channel expression is common 
in DM (Burnham et al., 2006; McGahon et al., 2007). However, 
diverse levels of vascular BK channel expression in DM 
have been observed. In most case, the protein expressions 
of BK channels are downregulated in coronary arteries 
(Burnham et  al., 2006; Dong et  al., 2008; Lu et  al., 2008, 
2017a; Zhang et  al., 2010a; Rueda et  al., 2013; Nystoriak 
et  al., 2014; Li et  al., 2017), but it was reportedly increased, 
despite impaired BK channel function in the coronary arteries 
of Ossabaw miniature swine with metabolic syndrome 
(Borbouse et al., 2009). Recently, human BK channel expression 
was examined in coronary arterioles obtained from atrial 
biopsies of patients who underwent coronary artery bypass 
grafting surgery. Protein downregulation was found in both 
BK-α and BK-β1  in patients with T2DM, compared to 
age-matched non-diabetic subjects (Lu et al., 2019). However, 
the mRNA levels of BK-β1 were (McGahon et  al., 2007) 
not reduced in the coronary arteries of STZ-induced T1DM 
rats (Zhang et  al., 2010a), db/db T2DM mice (Li et  al., 
2017) and HFD-induced diabetic mice (Lu et  al., 2017a). 
The varied reports of BK channel expression suggest that 
a complex assortment of mechanisms exist in the regulation 
of vascular BK channel expression and function in DM. 
Reduced BK channel expression leads to impaired Ca2+ sparks/
STOCs coupling, albeit the Ca2+ spark amplitudes and 
intracellular Ca2+ concentrations are known to be  elevated 
in diabetic vascular SMCs.

Impaired BK Channel Biophysical 
Properties and Kinetics in Coronary 
Arterial SMCs in DM
Ca2+-activated K+ channel currents (I) are determined by 
the number of activated channels (N), open probability (Po), 
and channel unitary conductance (i), where I = N*Po*i. BK 
channel current density is reduced in the coronary arteries 
of T1DM and T2DM animal models and in humans with 
DM (Lu et  al., 2005, 2008, 2010, 2012, 2016, 2017a, 2019; 
Pietryga et  al., 2005; Burnham et  al., 2006; McGahon et  al., 
2007; Dong et  al., 2008; Zhang et  al., 2010a; Nystoriak et  al., 
2014; Yi et  al., 2014; Li et  al., 2017; Nieves-Cintron et  al., 
2017; Tang et  al., 2017; Zhang et  al., 2020). BK channels 
are activated by intracellular free Ca2+ concentration and by 
membrane depolarization (Cox et  al., 1997; Lu et  al., 2008), 
and these are impaired in DM (Lu et  al., 2008, 2019). BK 
channel sensitivity to voltage- and Ca2+-mediated activation 
can be  measured by using inside-out patch clamp studies 
in which the excised cell membrane can be  clamped to 
various voltages and the cytoplasmic surface of the cell 
membrane directly exposed to bath solutions containing 
various free Ca2+ concentrations. In freshly isolated coronary 
arterial SMCs of ZDF rats at 8 months after the development 
of hyperglycemia, BK channels had a rightward-shifted Ca2+ 
concentration-dependent curve, with increased EC50 for Ca2+ 
activation and decreased Ca2+ cooperativity, compared to 
those of Lean control rats (Lu et  al., 2008). Moreover, BK 
channel activation by membrane depolarization was also 
abnormal in coronary arterial SMCs of ZDF rats. The channel 
open probability–voltage (Po-V) relationships were rightward 
and downward shifted, with the voltage at 50% maximal Po 
increased by 40 mV. These results indicate that a higher 
cytoplasmic Ca2+ concentration and a more depolarized 
membrane potential are required to activate BK channels in 
DM. Changes in the intrinsic free energy of Ca2+-binding 
(ΔΔCa2+) that contributes to BK channel activation can 
be  estimated based on the shift of Po-V relationship from 
0 to 1 μM free Ca2+ in Lean and ZDF rats using the equation: 
ΔΔCa2+ = −Δ(zeV0.5), where z is the number of equivalence 
charge movement, e is the elementary charge, and V0.5 is 
the voltage at half maximal activation (Shi et  al., 2002). 
There was a 62.3% decrease in the ΔΔCa2+ in ZDF rats, 
suggesting a less favorable condition for Ca2+ binding to 

FIGURE 2 | voltages in the presence of 200 nM free Ca2+ in freshly isolated coronary arteriolar smooth muscle cells (SMCs) from non-diabetic controls and 
T2DM patients. BK channel was activated by membrane depolarization with reduced effects in diabetes mellitus (DM). The dashed line indicates the closed 
state (c) of channel. Right panel: BK channel open probability and voltage (nPo–V) relationships were fitted using the Boltzmann equation. The maximal nPo 
and voltage at half of maximal channel activation (V0.5) were significantly decreased in T2DM patients (n = 9), compared with controls (n = 12). BK channel 
unitary current amplitude plotted against membrane voltages (i–V curves) were fitted using a linear equation. The unitary conductance of BK channels was not 
different between controls and T2DM patients. Data are presented as mean ± SEM. There was a significant decrease in BK channel maximal nPo and V0.5 in 
diabetic patients. (C) Altered BK channel kinetics in the coronary arterioles of T2DM patients. Typical histograms of BK channel open and closed dwell-time 
durations are illustrated. Data were obtained from inside-out patches at +60 mV in the presence of 200 nM free Ca2+ in the bath solution. Dwell-time 
distributions were best fitted by the sum of exponential probability density functions with three open time constant components (the slow τo1, the intermediate 
τo2, and the fast τo3) and four closed time constant components (the very slow τc1, the slow τc2, the intermediate τc3, and the fast τc4). Dashed lines 
represent the distribution of exponential components determined by the logarithm likelihood ratio test. The values of each time constant component and its 
relative weight (in parentheses) are given above each histogram. This figure was adapted from published results with the permission of Cardiovascular 
Research (Lu et al., 2019).
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vascular BK channel Ca2+ sensors in ZDF rats (Lu et  al., 
2008). Similar results were also observed in BK channels in 
freshly isolated coronary microvascular SMCs from the atrial 
appendages of patients with T2DM. Ca2+- and voltage sensitivity 
were significantly impaired in diabetic patients, with the 
maximal BK channel activity to free Ca2+ and voltage activation 
reduced by 70 and 50%, respectively (Figure  2; Lu et  al., 
2019). Such dysregulation contributed to a 27.4% attenuation 
in shear stress-mediated coronary arteriolar vasorelaxation 
in diabetic patients compared with non-diabetic controls (Lu 
et al., 2019). In addition, single BK channel current amplitudes 
were unaltered in DM, indicating that the conductance 
property of vascular BK channels is normal in DM.

Vascular large conductance Ca2+-activated K+ channel gating 
kinetics contain multiple components of open and closed states 
and dwell-times (McManus and Magleby, 1988, 1991). In 
coronary arterial SMCs, the open and closed dwell-time 
histograms of single BK channels were best fitted with three 
open-time constants: fast (τo1), intermediate (τo2), and slow 
(τo3), along with four closed-time constants: fast (τc1), 
intermediate (τc2), slow (τc3), and very slow (τc4). DM affects 
both channel open dwell-times and channel closed dwell-times. 
The BK channel mean closed-time constant and the individual 
closed-time constants were significantly prolonged. At the same 
time, the channel mean open-time constant and individual 
open-time constants were significantly reduced in DM. These 
findings were seen in both ZDF rats and in diabetic patients 
(Lu et  al., 2008, 2019). These changes in BK channel gating 
kinetics suggest that channel openings are abbreviated, and 
closures prolonged in DM, with reduced channel Po and 
maximal activation. Hence, diabetes not only affects BK channel 
expression, but also alters the intrinsic biophysical properties 
of the channel.

KCBMA1 and KCNMB1 Variations 
Associated With Obesity and DM
Genome-wide association studies (GWASs) are a powerful 
tool to find genetic variations associated with diseases. Results 
from a few studies have shown a strong association between 
KCNMA1 splicing variants and the incidence of obesity or 
DM. The results from case–control cohorts involving 4,838 
obese and 5,827 control subjects suggested that the KCNMA1 
rs2116830*G variant was associated with obesity with a p 
value of 2.82 × 10−10 (Jiao et al., 2011). A recent study reported 
that a de novo missense variant in KCNMA1 (c.1123G > A) 
was identified in an adult male patient with a plethora of 
developmental phenotypes including neonatal DM. This loss-
of-function polymorphism (p. G375A) of BK channel is 
located in the S6 transmembrane domain of BK channel 
(Liang et  al., 2019). In addition, it is well known that BK-α 
and BK-β1 undergo extensive alternative pre-mRNA splicing 
and that these splice variants have significant changes in 
BK channel intrinsic properties and surface expression (Poulsen 
et  al., 2009). However, the pathophysiological roles of BK 
channel variants in the development of BK channelopathy 
in DM are largely unexplored and warrant further investigation.

SIGNALING MOLECULES AND 
PATHWAYS MEDIATING VASCULAR BK 
CHANNEL DYSFUNCTION IN DM

Effects of Reactive Oxygen Species on 
Vascular BK Channel Redox Modification
Increased reactive oxygen species (ROS) production is a hallmark 
of diabetic pathophysiology, and the role of ROS on vascular 
dysfunction has been extensively reviewed (Inoguchi et  al., 
2003; Konior et  al., 2014). ROS is represented by a group of 
highly reactive molecules that include superoxide anion (O2

•–), 
peroxide ion (O2

2−), hydrogen peroxide (H2O2), and peroxynitrite 
(ONOO−). In vascular SMCs, multiple enzymatic systems such 
as the NADPH oxidases (NOXs), xanthine oxidase (XO), nitric 
oxide synthases (NOS), and the mitochondrial electron transport 
chain are known to produce O2

•– and H2O2 (Taniyama et  al., 
2004; Byon et  al., 2016). The NOXs, in particular NOX1 and 
NOX4, are the most important because they are commonly 
expressed in vascular cells and are the major source of ROS 
generation in vessels (Clempus and Griendling, 2006; Konior 
et  al., 2014; Burtenshaw et  al., 2017). O2

•– is converted to 
H2O2 by superoxide dismutases (SODs) or reacts with nitric 
oxide (NO) to form ONOO−. H2O2 is further reduced to H2O 
by catalase (CAT) and glutathione peroxidase (GPx; Taniyama 
and Griendling, 2003). Oxidative stress due to ROS production 
outweighing their scavenging is implicated in vascular dysfunction 
associated with T1DM and T2DM. It is well documented that 
elevated glucose increases the production of intracellular advanced 
glycation end-products (AGEs), stimulates the protein kinase 
C (PKC)-dependent activation of NOX1 and NOX4 (Inoguchi 
et  al., 2000; Lu et  al., 2006; Deluyker et  al., 2017), and reduces 
the activity and bioavailability of antioxidant enzymes, such 
as SODs, GSH, CAT, and GPx, which results in higher ROS 
levels in both vascular ECs and SMCs in DM 
(Szaleczky et  al., 1999; Lu et  al., 2012; Tiwari et  al., 2013).

Reactive oxygen species triggers many signaling pathways 
and promotes redox-mediated protein posttranslational 
modification. We  found that redox modification is involved 
in BK channel dysfunction through hyperglycemia. High glucose 
culture of HEK293 cells stably expressing BK-α resulted in 
altered BK-α activity and channel kinetics that were mimicked 
by the effects of exogenously applied H2O2 in BK-α expressing 
cells cultured in normal glucose (Lu et  al., 2006). A 1-week 
culture with 22 mM glucose markedly downregulated the protein 
expression of CAT and CuZn-SOD in HEK293 cells, leading 
to a 3.3-fold increase of H2O2 concentration to the 10−3 M 
range. Consequently, high glucose culture produced a 50% 
reduction of BK-α current density, prolonged the channel 
activation and deactivation time constants (τA and τD), and 
upward shifted the τ-V curve, indicating that BK-α activation 
is suppressed in high glucose conditions (Lu et  al., 2006). The 
effects of high glucose on BK-α voltage-dependent activation 
were mimicked by acute exposure to 2 mM H2O2. Furthermore, 
the cysteine residue at 911 (C911) in BK-α is particularly 
vulnerable to H2O2-mediated regulation (Tang et  al., 2001), 
and a single substitution of C911 by alanine (C911A) eliminated 
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most of the inhibitory effects of BK-α under high glucose 
conditions and to exogenously applied H2O2 (Lu et  al., 2006). 
In addition, acute exposure to ONOO− (5–100 μM) significantly 
suppressed BK channel activity in vascular SMCs (Brzezinska 
et  al., 2000; Liu et  al., 2002), but did not alter BK-α voltage-
dependent activation (Lu et  al., 2006), suggesting that the 
molecular mechanisms underlying BK channel regulation by 
H2O2 and ONOO− are different. Further studies revealed a 
3- to 4-fold increase of 3-nitrotyrosine levels on BK-α protein 
in freshly isolated aortas from STZ-induced T1DM rats compared 
to non-diabetic controls, suggesting that ONOO−-induced 
modification of BK-α may be mediated through protein tyrosine 
nitration rather than protein oxidation (Lu et  al., 2010). The 
precise amino acid residue(s) in BK-α modified by ONOO− 
has not been identified. Nevertheless, an increase of ROS 
accumulation is the culprit for the development of BK channel 
dysfunction in DM.

Angiotensin II Signaling and Vascular BK 
Channel Regulation
Angiotensin II (Ang II) is an oligopeptide hormone, exerting 
its physiological and pathophysiological effects through binding 
to Ang II type 1 (AT1R) and type 2 (AT2R) receptors and 
activating their downstream signaling pathways (Dasgupta and 
Zhang, 2011). In vascular SMCs, where AT1R is predominantly 
expressed, Ang II causes vasoconstriction and promotes vascular 
wall remodeling (Ribeiro-Oliveira et  al., 2008). In contrast, 
activation of AT2R produces vasodilatation and impairs vascular 
remodeling, effects opposite to those of AT1R (Danyel et  al., 
2013). AT1R is a G-protein-coupled receptor, which is coupled 

to Gαq, Gβγ, Gαi, and β-arrestin (Kawai et  al., 2017; Wang 
et  al., 2018). Binding of Ang II to AT1R in vascular SMCs 
activates Gαq which in turn activates the phospholipase C 
(PLC)-dependent inositol-1,4,5-triphosphate (IP3)/diacylglycerol 
(DAG)-mediated Ca2+ signaling cascades, causing an increase 
in protein kinase C (PKC) activity (De Gasparo et  al., 2000; 
Touyz and Schiffrin, 2000). Activation of PKCβ stimulates 
NOXs with ROS overproduction under hyperglycemic conditions 
(Inoguchi et  al., 2000; Evcimen and King, 2007) and is a 
cause of impaired vascular BK channel function in diabetic 
vessels (Figure  3; Zhou et  al., 2006; Lu et  al., 2012; Zhang 
et  al., 2020). In addition to redox-mediated modification of 
BK-α, it has been shown that PKC-induced serine 
phosphorylation at 695 (S695) and 1151 (S1151) in the 
C-terminus of BK-α inhibits BK channel current density by 
50%, and S1151 phosphorylation by PKC also abolishes BK-α 
activation by protein kinase A (PKA) and protein kinase G 
(PKG; Zhou et al., 2001, 2010). On the other hand, the activity 
of tyrosine-protein kinase is regulated by Gαi and β-arrestin 
upon AT1R stimulation, causing BK channel dysfunction (Ma 
et  al., 2000; Alioua et  al., 2002; Fessart et  al., 2005; Tian et  al., 
2007). Another study reported that the C-terminus of AT1R 
physically interacts with the C-terminus of BK-α in heterologous 
expression system, and such protein–protein interaction between 
AT1R and BK-α directly inhibits BK-α activity, independent 
of G-protein mediated processes (Zhang et  al., 2014).

However, AT1R expression, Ang II bioavailability, and tissue 
sensitivity to Ang II are upregulated in diabetic vessels (Arun 
et al., 2004; Kawai et al., 2017). The pathophysiological importance 
of Ang II-mediated BK channel regulation in diabetic coronary 

FIGURE 3 | Regulation of BK channels by AT1R signaling and caveolae compartmentalization. In DM, AT1R expression, and caveolae formation are upregulated in 
vascular SMCs. Upon Ang II activation, AT1R translocates to caveolae, where G-proteins, BK-α, NOX-1, and c-Src are colocalized. In caveolae, AT1R interacts with 
Gαq to activate PKC and NOX-1 through IP3/DAG signaling pathway, leading to an increase of ROS production. Meanwhile, the Gαi and β-arrestin complex induces 
c-Src activation. As a result of AT1R activation, BK-α protein oxidation, tyrosine phosphorylation, and tyrosine nitration are enhanced. In addition, AKT 
phosphorylates FOXO-3a, which in turn suppresses FOXO-3a nuclear translocation and reduces its transcriptional activities. With high glucose, increased ROS 
production inhibits AKT function, which promotes FOXO-3a nuclear translocation and facilitates Cav-1 expression. Since BK-β1 is not present in the caveolae, an 
increase in BK-α compartmentalization in caveolae may lead to physical uncoupling between BK-α and BK-β1 in vascular SMCs. The symbols “n,” “o,” and “p” 
represent protein nitration, oxidation, and phosphorylation, respectively.
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arteries is supported by the evidence that cardiac infarct size 
induced by experimental ischemia/reperfusion in STZ-induced 
T1DM mice was twice as large as non-diabetic mice (Lu et  al., 
2016). The effects of DM on myocardial ischemia/reperfusion 
injury can be  reproduced by infusion of 2 μM Ang II or 0.1 μM 
membrane impermeable BK channel inhibitor, IBTX, but attenuated 
by the BK channel activator, NS-1619 (Lu et  al., 2016). Similar 
results were observed in Akita T1DM mice with exacerbated 
cardiovascular complications and cardiac and vascular dysfunction, 
from an imbalance of Ang II/AT1R signaling in DM (Patel 
et  al., 2012). Most importantly, the pathological roles of Ang 
II signaling are supported by clinical outcomes showing that 
treatment with AT1R blockers and ACE inhibitors reduced 
cardiovascular complications and cardiovascular death in patients 
with DM by 25–30% (Niklason et al., 2004; Abuissa et al., 2005; 
Cheng et  al., 2014; Lv et  al., 2018).

Caveolae Compartmentation and Vascular 
BK Channel Subcellular Distribution
Caveolae, which are nonclathrin-coated, flask-shaped 
invaginations of plasma membrane lipid raft subdomains, are 
characterized by their signature structural protein caveolin, 
with caveolin-1 (Cav-1) predominantly expressed in the 
vasculature (Gratton et  al., 2004; Krajewska and Maslowska, 
2004). Caveolae have emerged as a central platform for signal 
transduction in many tissues through the interaction between 
the Cav scaffolding domain and protein partners that contain 
a Cav-binding motif (ΦxΦxxxxΦ or ΦxxxxΦxxΦ, where Φ is 
an aromatic amino acid, and x is any amino acid; Okamoto 
et  al., 1998). Many signaling molecules that are associated 
with BK channel regulation, such as the β-adrenergic receptors 
(Bucci et  al., 2004), AT1R (Ushio-Fukai and Alexander, 2006; 
Basset et  al., 2009), NOX1 (Hilenski et  al., 2004; Wolin, 2004), 
cellular tyrosin protein kinase Src (c-Src; Zundel et  al., 2000; 
Lee et  al., 2001), guanylyl cyclase (Linder et  al., 2005; Vellecco 
et  al., 2016), PKA (Heijnen et  al., 2004; Linder et  al., 2005), 
protein kinase B (PKB or AKT; Sedding et  al., 2005), PKC 
(Zeydanli et al., 2011; Ringvold and Khalil, 2017), PKG (Linder 
et  al., 2005), NOS (Garcia-Cardena et  al., 1996; Vellecco et  al., 
2016), and prostacyclin (PGI2) synthase (PGIS; Spisni et  al., 
2001), are found in the low buoyant density, caveolae-rich 
membrane fractions of vascular ECs and SMCs. The significance 
of Cav-1 on vascular physiology is demonstrated by findings 
in Cav-1 knockout (KO) mice that show constitutively activated 
eNOS with elevated NO production as well as a failure to 
maintain a constant vasocontractile tone, resulting in the 
development of cardiovascular pathologies (Drab et  al., 2001; 
Razani et  al., 2001). Overgeneration of NO facilitates the 
production of ONOO− and contributes to vascular dysfunction 
with excessive H2O2 accumulation (Pacher et  al., 2007).

The consensus sequence of the Cav-binding motif is present 
in BK-α, but not in BK-β1. Indeed, only BK-α but not BK-β1 
is detected in the caveolae-rich fractions of SMCs (Lu et  al., 
2016). Moreover, BK-α is colocalized in the caveolae with other 
ion channels (Wang et  al., 2005; Riddle et  al., 2011; Howitt 
et  al., 2012; Lu et  al., 2016), especially those associated with 
Ca2+ spark/sparklet generation, such as L-type Ca2+ channels 

(Suzuki et  al., 2013; Saeki et  al., 2019), T-type Ca2+ channels 
(Hashad et  al., 2018), TRPV4 (Goedicke-Fritz et  al., 2015; Lu 
et  al., 2017b), TRPC1, TRPC3, and TRPC6 (Bergdahl et  al., 
2003; Adebiyi et  al., 2011; Grayson et  al., 2017) in vascular 
ECs and SMCs. The close proximity of BK channels with Ca2+ 
entry molecules leads to Ca2+ spark-coupled STOCs. However, 
it has been reported that Cav-1 interacts with BK channels 
and inhibits BK channel activities in coronary ECs (Wang 
et  al., 2005; Riddle et  al., 2011). Cholesterol depletion by 
methyl-β-cyclodextrin and silencing of Cav-1 by small 
interference RNA enhance BK currents, while exposure to the 
scaffolding domain peptide of Cav-1 (AP-CAV) inhibits BK 
currents (Wang et  al., 2005; Riddle et  al., 2011). Hence, the 
presence of caveolae may exert an inhibitory effect on BK 
channel activity.

Increased Cav-1 expression has been found in most diabetic 
vessels (Hillman et  al., 2001; Bucci et  al., 2004; Pascariu et  al., 
2004; Elcioglu et  al., 2010; Uyy et  al., 2010; Li et  al., 2014). 
Cav-1 expression is directly upregulated by the Forkhead Box 
O (FOXO) transcription factor (Sandri et  al., 2004; Van Den 
Heuvel et  al., 2005). The FOXO-3a phosphorylation levels are 
significantly reduced in STZ-induced T1DM rat arteries and in 
cultured human coronary arterial SMCs (Zhang et  al., 2010a). 
This explains the underlying mechanism that leads to Cav-1 
upregulation in DM (Figure  3). Furthermore, in STZ-induced 
T1DM rats, our results in co-immunoprecipitation experiments 
show that AT1R, c-Src, and BK-α are enriched in the low buoyant 
density, caveolae-rich membrane fractions of aortas, compared 
to non-diabetic rats (Lu et  al., 2010). Infusion  with Ang II 
(0.05 μg/kg) results in markedly enhanced AT1R protein 
translocation to the low buoyant density fractions of aortas after 
1 h (83.4% of total membrane AT1R in STZ-induced T1DM rats 
vs. 28.5% in controls), suggesting enhanced AT1R translocation 
into caveolae-rich lipid rafts upon agonist activation in diabetic 
vessels, consistent with previous report in cultured vascular SMCs 
(Ishizaka et al., 1998). However, the precise mechanism underlying 
AT1R translocation is currently unclear. The levels of vascular 
BK-α protein oxidation, tyrosine phosphorylation, and tyrosine 
nitration are significantly increased in STZ-induced T1DM rats, 
likely due to the co-localization of NOS, NOX1 and c-Src in 
the caveolae. Since BK-α but not BK-β1 is present in caveolae, 
BK-α translocation into the caveolae of arteries in STZ-induced 
T1DM mice may promote the physical dissociation of BK-α and 
BK-β1 (Lu et  al., 2016), which may explain the uncoupling of 
BK-α and BK-β1  in diabetic vessels. A working framework has 
emerged in caveolae targeting of BK channel regulation, in which 
caveolae compartmentalize BK-α with AT1R, NOS, NOXs, and 
c-Src to form BK-α-receptor-enzyme microdomain complexes in 
vascular SMCs (Figure  3). Such caveolae compartmentation is 
enhanced in diabetic vessels, which facilitates the redox modification 
of BK-α. Of note, because BK-β1 does not translocate into 
caveolae, such subcellular distribution of BK-α and BK-β1 may 
contribute to BK-α and BK-β1 functional uncoupling, thereby 
exacerbating BK channelopathy in diabetic vessels (Figure  3). 
Additionally, caveolae take part in endosomal trafficking and 
regulating surface expression of many membrane proteins (Elkin 
et al., 2016). Taking into account the consequences of upregulation 
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of caveolae formation in the vascular SMCs in DM, BK-α caveolae 
translocation may have important pathophysiological implications 
for vascular BK channel dysfunction in DM.

Ubiquitin Proteasome System and 
Vascular BK Channel Protein Degradation
Protein homeostasis with a balanced regulation between synthesis 
and degradation is essential for the maintenance of normal 
cellular function. Cellular proteins are degraded mainly through 
the lysosomes and the ubiquitin proteasome system (UPS; 
Ciechanover, 2005). Lysosomal protein degradation occurs 
through fusion with endocytotic vesicles. This mechanism of 
protein degradation is non-specific, and all proteins are digested 
indiscriminately at the same rate. UPS-mediated protein 
degradation accounts for 80–90% of protein degradation in 
mammalian cells and it is substrate-specific (Powell, 2006; 
Schapira et al., 2019). This process is facilitated by three distinct 
enzymatic steps that involve an ubiquitin-activating enzyme 
(E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin 
ligase (E3). E1 interacts with ubiquitin through an E1-ubiquitin 
thioester bond in an ATP-dependent manner. It transfers the 
activated ubiquitin molecule to a cysteine residue on the E2 
enzyme to form an E2-ubiquitin thioester-linked intermediate. 
The E3 ligase facilitates transfer of the E2-ubiquitin moiety 
to the substrate protein via an amide bond between the carboxy 
terminus of ubiquitin and a lysine side chain of the substrate 
protein. The E3 ligase is substrate-specific, allowing repeated 
positioning of the distal end of ubiquitin molecule for ubiquitin 
chain assembly with high precision. The poly-ubiquitinated 
protein is then recognized for enzymatic degradation in the 
26S proteasome (Powell, 2006; Schapira et  al., 2019). Hence, 
the E3 reaction is critical for determining the turnover of 
specific proteins. There are 617 E3 ligases functionally annotated 
in the human genome (Li et  al., 2008). It is known that F-box 
(FBXO) proteins are a key component of the Skp1-Cullin-F-box 
(SCF)-type ubiquitin ligase complex (SCFFBXO) and serve as 
sites for enzyme-substrate interaction (Kipreos and Pagano, 
2000). FBXO proteins contain several functional domains such 
as the F-box domain, the LRRs, and the WD40 repeats for 
protein-protein interaction. Two muscle-specific FBXO proteins, 
FBXO-9 and FBXO-32 (also known as atrogin-1), have been 
found to be upregulated in diabetic vessels. They mediate BK-β1 
protein ubiquitination in coronary arterial SMCs (Zhang et al., 
2010a). The molecular basis of FBXO-32 and BK-β1 interaction 
was identified using site-directed mutagenesis and 
co-immunoprecipitation approaches, which showed that the 
PDZ-binding motif (ETSV) on BK-β1 is critical for FBXO-
32-dependent ubiquitination (Zhang et  al., 2010a). Deletion 
of the consensus sequence of the PDZ-binding motif in BK-β1 
significantly decreases BK-β1 protein ubiquitination (Figure  4; 
Zhang et  al., 2010a). Activation of FBXO proteins reduces 
BK-β1 expression, while knockdown of FBXO and proteasomal 
inhibition enhances BK-β1 levels, suggesting that accelerated 
UPS-mediated degradation of BK-β1 is an important mechanism 
of BK channel regulation in DM.

The muscle RING-finger protein 1 (MuRF1) is another E3 
ligase involved in UPS-dependent vascular BK-β1 degradation 

(Yi et al., 2014). Nuclear factor-κB (NF-κB) sites in the MuRF1 
promoter are required for transcriptional activation, while FOXO 
sites are not (Wu et  al., 2014). Overexpression of MuRF1 
downregulates BK-β1 expression, impairs BK-β1-mediated BK 
channel activity, and reduces BK channel-induced vasodilation 
in mouse coronary arteries. We  found that the N-terminus of 
BK-β1 and the coiled-coil region of MuRF1 are necessary for 
BK-β1 and MuRF1 interaction (Yi et  al., 2014). Importantly, 
the protein expressions of FBXO-9, FBXO-32, and MuRF1 are 
unregulated in the arteries of STZ-induced T1DM animals 
and in primary human coronary arterial SMCs cultured with 
high glucose (Zhang et  al., 2010a, 2020; Lu et  al., 2012; Yi 
et al., 2014). Such upregulation of FBXO expression is mediated 
through the suppression of PI3K/AKT-dependent 
phosphorylation in FOXO-3a, thereby promoting FOXO-3a 
nuclear translocation and binding to the consensus sequence 
[GTAAA(C/T)A] in the promoter of Fbxo gene, activating its 
transcription (Furuyama et  al., 2000). However, activation of 
MuRF1 is due to an increase of NF-κB-mediated Trim63 
(encoding MuRF1) transcription (Wu et  al., 2014). In DM or 
hyperglycemia, the activity of AKT is reduced (Okon et  al., 
2005), while that of NF-κB is augmented (Narayanan et  al., 
2014), thereby promoting FBXO and MuRF1 expression 
(Figure 4). Indeed, inhibition of PKCβ activity by ruboxistaurin, 
NF-κB activity by TPCA-1, and proteasomal activity by MG132 
downregulates BK-β1 ubiquitination, preserves BK-β1 expression, 
and improves BK channel function in coronary arterial SMCs 
(Zhang et  al., 2010a; Lu et  al., 2012; Yi et  al., 2014).

BK-α protein expression is also regulated by lysosome and 
UPS degradation (Wang et  al., 2013; Liu et  al., 2014; Leo 
et  al., 2015; Song et  al., 2018). It has been found that the 
CRL4A and its substrate cereblon (CRBN) complex (CRL4ACRBN) 
serves as the ubiquitin ligase that interacts with the C-terminus 
of BK-α and induces BK-α protein degradation in neurons 
(Liu et  al., 2014). A recent study reported that both CRBN 
and BK-α proteins were targeted by SCFFBXO-7 ubiquitin ligase 
complex for ubiquitination and proteolysis, controlling BK-α 
function and regulating the learning and memory processes 
in the brain (Song et  al., 2018). However, the specific E3 
ligase(s) responsible for BK-α protein ubiquitination in blood 
vessels is unknown, and how the BK-α-specific E3s are regulated 
in DM remains to be  determined.

Effects of Nuclear Factor Erythroid-2-
Related Factor 2 Signaling on Vascular BK 
Channel Expression
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays a critical 
role in the maintenance of intracellular redox homeostasis by 
regulating multiple downstream antioxidant enzymes and phase 
II detoxifying enzymes, which include NADPH dehydrogenase 
quinone 1 (NQO1), glutathione-disulfide reductase (GSR), 
glutathione translocase (GSTA), thioredoxin (TXN), thioredoxin 
reductase 1 (TXNRD1), heme oxygenase-1 (HO-1), SODs, CAT, 
and GPx (Gao and Mann, 2009; Chen et  al., 2014). In addition, 
Nrf2 negatively regulates the expression of NOXs (McSweeney 
et  al., 2016). The function of Nrf2 is principally regulated by 
the kelch-like ECH-association protein 1 (Keap1), which mediates 
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Nrf2 ubiquitination and subsequent proteasomal degradation 
(Canning et  al., 2015; Suzuki and Yamamoto, 2015). In the 
nuclei, Nrf2 binds to the promoters of antioxidant response 
elements (AREs) and electrophile response elements (EpREs) 
through interaction with the Nrf2-binding motif [TGA(G/C)
xxxGC], where x represents any amino acid (Chorley et  al., 
2012). Both the KCNMA1 and KCNMB1 genes contain the 
consensus sequences of Nrf2-binding motifs in their promoter 
regions. Using promoter luciferase reporter assays, we confirmed 
that Nrf2 binds to the ARE of the KCNMA1 promoter, but not 
to that of KCNMB1 promoter. Mutation of the Nrf2-binding 
motif in the KCNMA1 promoter abolishes the transcription 
response to Nrf2 (Sun et  al., 2020). In addition, adenoviral 
expression of Nrf2 significantly augmented the mRNA levels of 
BK-α and BK-β1  in coronary arterial SMCs (Lu et  al., 2017a; 
Sun et al., 2020). These results suggest that Nrf2 facilitates BK-α 
mRNA expression through activation of KCNMA1 transcription, 
whereas the stimulatory effect of Nrf2 on BK-β1 mRNA expression 
is indirect and may be achieved by activating other transcription 
factor(s) or signaling mechanisms that upregulate KCNMB1 
transcription and expression in vascular SMCs.

Nuclear factor erythroid-2-related factor 2 deficiency has 
been implicated in diabetic complications including those 
associated with the heart (Tan et  al., 2011; Bai et  al., 2013), 

blood vessels (Ungvari et  al., 2011; Miao et  al., 2012; Li et  al., 
2017; Lu et  al., 2017a), kidneys (Zheng et  al., 2011; Cui et  al., 
2012), and the brain (Pu et  al., 2018; Tarantini et  al., 2018). 
The expression of Nrf2 and its downstream genes is slightly 
increased in the cardiovascular systems of STZ-induced T1DM 
mice at 2–3 months after the onset of hyperglycemia, but then 
becomes significantly downregulated at 5–6 months after the 
development of hyperglycemia (Tan et  al., 2011; Miao et  al., 
2012; Bai et  al., 2013), suggesting the burnout of an important 
redox protective mechanism in the advanced stages of DM. 
In db/db and HFD-induced diabetic mice 6 months after the 
development of hyperglycemia, BK channel activity and BK 
channel-mediated vasodilation in coronary arteries are impaired, 
accompanied by a remarkable reduction in Nrf2 and its associated 
antioxidant enzymes (Li et  al., 2017; Lu et  al., 2017a). Nrf2 
KO mice show excessive ROS production, as well as diminished 
BK channel expression and function in vascular SMCs (Ashino 
et al., 2013; Sun et al., 2020). Both mRNA and protein expression 
of BK-α are downregulated, whereas BK-β1 proteins but not 
mRNA levels are decreased in the arterial SMCs of Nrf2 KO 
mice, consistent with the notion that Nrf2 regulates BK-α via 
transcription, and BK-β1 through posttranscriptional mechanisms 
(Figure  4; Sun et  al., 2020). Administration of dimethyl 
formamide (DMF, an FDA-approved Nrf2 activator) preserves 

FIGURE 4 | Regulation of BK channel expression by ubiquitin proteasome system (UPS) and nuclear factor erythroid-2-related factor 2 (Nrf2) signaling. FBXO and 
MuRF1 are the E3 ligases targeting BK-β1 protein degradation via the UPS in vascular SMCs. FBXO is one of downstream targets of FOXO-3a. FOXO-3a activity is 
negatively controlled by AKT-dependent phosphorylation, while MuRF1 expression is controlled by NF-κB/p65. Under baseline conditions, p65 is bound to an 
inhibitory subunit, IκB that keeps it sequestered in an inactive state in the cytoplasm. Phosphorylation of IκB by IκB kinase promotes IκB degradation through the 
UPS, which in turn releases p65 and facilitates nuclear translocation. Under hyperglycemic conditions, overproduction of ROS inhibits AKT and activates 
NF-κB/p65, which in turn promotes FBXO and MuRF1 expression, leading to BK-β1 ubiquitination and accelerated degradation in vascular SMCs. Nrf2 is the 
master regulator of the antioxidant response. Under normal conditions, each molecule of Nrf2 interacts with two molecules of Keap1 resulting in UPS-mediated 
degradation. ROS modifies specific cysteine residues in Keap1 and releases Nrf2 from binding with Keap1. The unbound Nrf2 translocates into the nucleus and 
binds to the promoter region of target genes. Nrf2 directly upregulates BK-α mRNA expression via binding to the promoter region of KCNMA1. However, BK-β1 
mRNA expression is not regulated by Nrf2 but by other transcription factor(s). In DM, Nrf2 expression and function is significantly downregulated, leading to a 
decrease in BK-α expression through reduced transcription and a decrease in BK-β1 expression through accelerated UPS degradation. The symbols “u” and “p” 
represent protein ubiquitination and phosphorylation, respectively.
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BK channel protein expression, BK channel activity, and BK 
channel-mediated vasodilation in the coronary arteries of db/
db and HDF-induced diabetic mice (Li et  al., 2017; Lu et  al., 
2017a). Currently, Nrf2 activators such as DMF and sulforaphane 
(SFN) are being used in clinical trials for cardiovascular diseases 
and metabolic disorder (Yagishita et  al., 2020), but it has not 
been administered for diabetic patients with coronary heart 
disease (Houghton, 2019). Whether the beneficial effects of 
Nrf2 activators observed in animal studies would translate into 
better outcomes in diabetic patients with cardiovascular 
complications needs to be  determined.

Effects of Calcineurin-Nuclear Factor of 
Activated T Cells Cytoplasmic 3 Isoform 
Pathway on BK-β1 Transcription
Nuclear factor of activated T cells cytoplasmic 3 isoform (NFATc3) 
belongs to the nuclear factor of activated T cells (NFAT) family 
of transcription factors that were originally discovered in resting 
T cells and is important in immune response (Rao et  al., 1997). 
NFATc3 is also involved in the development of skeletal muscle 
and of the cardiovascular systems (Crabtree and Olson, 2002). 
The activity of NFATc3 is modulated by the Ca2+/calmodulin-
dependent phosphatase, calcineurin. Elevation of the intracellular 
Ca2+ concentration activates calmodulin and promotes its binding 
to calcineurin, leading to calcineurin activation. Activated 
calcineurin dephosphorylates NFATc3, which in turn induces 
NFATc3 nuclear translocation. Calcineurin binds to the scaffolding 
protein A-kinase anchoring protein 150 (AKAP150), corresponding 
to AKAP79  in humans, which also anchors PKA and L-type 
Ca2+ channel to form a dynamic Ca2+ signaling complex (Oliveria 
et  al., 2007). AKAP79/150 strongly suppresses PKA-mediated 
L-type Ca2+ channel phosphorylation and is required for the 
activation of NFAT by local Ca2+ influx through L-type channels 
(Oliveria et  al., 2007).

Nuclear factor of activated T cells share a conserved 
DNA-binding domain that specifically binds to the DNA core 
sequence [(A/T)GGAAA] at the promoter region of target 
genes, activating gene transcription (Rao et  al., 1997). Human 
and mouse KCNMA1 and KCNMB1 contain at least one NFAT-
binding motif in their promoters. Inhibition of vascular BK 
channels by NFATc3 has been reported, while upregulation of 
NFATc3 expression by Ang II results in decreased BK channel 
activity in mouse arteries due to the downregulation of BK-β1 
mRNA expression (Nieves-Cintron et  al., 2007). The effects of 
NFATc3 on BK channel activity and BK-β1 mRNA expression 
are abolished by calcineurin inhibitors, FK506 and cyclosporin 
A, in the presence of Ang II, a finding that has been confirmed 
in NFATc3 KO mice (Nieves-Cintron et  al., 2007). AKAP150 
also participates in NFATc3-mediated BK channel downregulation 
in HFD-induced diabetic mice (Figure  5; Nystoriak et  al., 
2014). In HFD-induced diabetic mice, the activity of the 
AKAP150-NFATc3 signaling pathway is upregulated, contributing 
to impaired BK channel function with reduced BK-β1 expression 
and increased vascular tone in the mesenteric arteries. However, 
in AKAP150 KO mice with HFD consumption, the deleterious 
effects of HFD on BK channels are not observed 

(Nystoriak et  al., 2014). Recently, in vivo administration of a 
NFATc3 inhibitor (A285222, Abbott Labs) in Akita T1DM mice 
is found to improve vascular endothelial function, enhance 
eNOS activity and NO production, reduce endothelin-1 secretion, 
lower blood pressure, and improve survival (Garcia-Vaz et  al., 
2020). The beneficial effects of NFATc3 inhibitors on coronary 
BK channel function in DM warrant further investigation.

Arachidonic Acid and Its Metabolites on 
BK Channel Regulation
Arachidonic acid (AA), a polyunsaturated omega-6 fatty acid, 
is abundant in normal human diet and in membrane phospholipids. 
It is an important precursor to a wide range of bioactive mediators 
and eicosanoids that regulate a multitude of essential functions 
in the body (Tallima and El Ridi, 2018). AA is metabolized by 
three major enzyme systems: It is converted by 12-lipoxygenase 
(12-LOX) into leukotrienes and 12-hydroxyeicosatetraenoic acid 
(12-HETE), by cytochrome P-450 (CYP-450) epoxygenase into 
epoxyeicosatrienoic acids (EETs), and by cyclooxygenases (COX) 
into prostaglandins, including PGI2 and thromboxane A2  
(TXA2; Brash, 2001; Vila, 2004). Additionally, AA can  
be  metabolized by CYP-450 omega-hydroxylase to produce 
20-hydroxyeicosatetraenoic acid (20-HETE).

Arachidonic acid (Lu et  al., 2005; Kur et  al., 2014; Martin 
et  al., 2014, 2021) and its metabolites (EETs, PGI2, 12-HETE, 
and 20-HETE; Li and Campbell, 1997; Yamaki et al., 2001; Zhang 
et  al., 2001; Zink et  al., 2001; Lauterbach et  al., 2002; Morin 
et  al., 2007) are known to activate vascular BK channels and 
promote vasodilation through endothelium-dependent 

FIGURE 5 | Regulation of BK-β1 expression by NFATc3 signaling. Calcineurin 
is a Ca2+/calmodulin (CaM)-activated phosphatase. In the membranes of 
vascular SMCs, AKAP150 proteins anchor calcineurin (CaN) with PKA and 
L-type Ca2+ channels (Cav1.2) to form dynamic Ca2+ signaling complexes. 
L-type Ca2+ channel activity is upregulated by PKA, which increases Ca2+ influx. 
Upon Ca2+ binding to calmodulin, calcineurin is activated, which then 
dephosphorylates NFATc3 and promotes NFATc3 nuclear translocation, 
inhibiting BK-β1 mRNA expression. In DM, the activity of the AKAP150-NFATc3 
signaling pathway is upregulated, resulting in enhanced suppression of BK-β1 
expression and impaired BK channel function in vascular SMCs. The symbol 
“p” represents protein phosphorylation.
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hyperpolarization mechanisms. Direct exposure to 10 μM AA 
robustly increases BK channel activity in inside-out excised patches 
from human umbilical arterial SMCs, suggesting activation of 
BK channels directly by AA (Martin et  al., 2021). Extracellular 
application of AA results in BK channel activation and 
hyperpolarization of resting membrane potentials in vascular SMCs 
(Kur et al., 2014; Martin et al., 2021). These changes can be blocked 
by LOX, CYP, and COX inhibitors, suggesting that AA metabolites 
affect BK channels. The effects of AA on BK channels require 
the presence of BK-β1 (Sun et  al., 2007; Martin et  al., 2021).

The activation of vascular BK channels by PGI2 is associated 
with cAMP-dependent, PKA-mediated phosphorylation. EETs 
and their metabolites dihydroxyeicosatrienoic acids (DHETs) 
are also potent BK channel activators and vasodilators, including 
the human coronary microvessels and internal mammary arteries 
(Quilley et al., 1997; Archer et al., 2003; Feletou and Vanhoutte, 
2006; Larsen et  al., 2006). Several different mechanisms of 
EET- and DHET-mediated BK channel activation have been 
proposed, including direct activation (Wu et al., 2000; Lu et al., 
2001), ADP-ribosylation of Gsα (Fukao et  al., 2001; Li et  al., 
2002), and stimulation of PKA-mediated phosphorylation 
(Dimitropoulou et  al., 2007; Imig et  al., 2008). However, 
AA-induced vasodilation of coronary arterioles via BK channel 
activity is impaired in high glucose conditions and DM (Lu 
et  al., 2005; Zhou et  al., 2005, 2006; Yousif and Benter, 2007; 
Tsai et al., 2011). PGI2 and EET levels are decreased in patients 
with cardiovascular diseases (Theken et  al., 2012; Mokhtar 
et  al., 2013; Schuck et  al., 2013) and DM (Lane et  al., 1982; 
Kazama et  al., 1987; Migdalis et  al., 2001; Duflot et  al., 2019). 
As a result of these findings, AA metabolites and analogues 
have been developed as potential therapeutic agents for 
cardiovascular diseases and diabetic vascular complications 
(Campbell et  al., 2017; Wang et  al., 2021).

FUTURE DIRECTIONS IN DIABETIC BK 
CHANNEL RESEARCH

Studies of the regulation of BK channel function and expression 
have greatly advanced our understanding on the role of BK 
channels in diabetic cardiovascular complications. DM involves 
a plethora of signaling abnormalities including those pertaining 
to insulin, ROS generation, Ang II signaling, and Ca2+ regulation. 

Thus, it is not surprising that DM affects vascular BK channel 
expression and function in many different ways, including 
transcription, translation, post-translation, surface trafficking, 
and channel degradation. Whether surface trafficking 
dysregulation of BK channel subunits contributes to BK 
channelopathy of the vascular SMCs in DM is unknown. 
Moreover, BK channels do not exist as isolated proteins but 
are assembled in membrane microdomains of vascular ECs 
and SMCs. Studies of BK channel organization by scaffolding 
proteins in close proximity with receptors, enzymes, and Ca2+ 
sources in blood vessels will provide further insights into BK 
channel physiology and into the molecular mechanisms 
underlying BK channelopathy in DM. In addition, our knowledge 
on BK-γ1  in diabetic BK channel dysregulation is very limited. 
Little is known about the regulation of vascular BK-γ1 expression 
and function in hyperglycemia and DM. Since the results of 
BK channel pathology from diabetic animal models are diverse, 
it is critical to study vascular BK channel biology and dysfunction 
using human tissues, which serve as the gold standard for 
diabetic BK channel research.

Ca2+-activated K+ channels are important regulators of vascular 
physiology and are critical determinants coronary circulation 
and cardioprotection. Preservation of BK channel expression 
and activities protects vascular function in DM. Hence, a better 
understanding of BK channelopathy and prevention of BK 
channel abnormalities in DM may lead to better vascular 
therapeutics and care for patients with DM.
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