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Background: Up to 30–50% of chronic heart failure patients who underwent cardiac

resynchronization therapy (CRT) do not respond to the treatment. Therefore, patient

stratification for CRT and optimization of CRT device settings remain a challenge.

Objective: The main goal of our study is to develop a predictive model of CRT outcome

using a combination of clinical data recorded in patients before CRT and simulations of

the response to biventricular (BiV) pacing in personalized computational models of the

cardiac electrophysiology.

Materials and Methods: Retrospective data from 57 patients who underwent CRT

device implantation was utilized. Positive response to CRT was defined by a 10%

increase in the left ventricular ejection fraction in a year after implantation. For each

patient, an anatomical model of the heart and torso was reconstructed from MRI and

CT images and tailored to ECG recorded in the participant. The models were used to

compute ventricular activation time, ECG duration and electrical dyssynchrony indices

during intrinsic rhythm and BiV pacing from the sites of implanted leads. For building a

predictive model of CRT response, we used clinical data recorded before CRT device

implantation together with model-derived biomarkers of ventricular excitation in the left

bundle branch block mode of activation and under BiV stimulation. Several Machine

Learning (ML) classifiers and feature selection algorithms were tested on the hybrid

dataset, and the quality of predictors was assessed using the area under receiver

operating curve (ROC AUC). The classifiers on the hybrid data were compared with ML

models built on clinical data only.

Results: The best ML classifier utilizing a hybrid set of clinical and model-driven data

demonstrated ROC AUC of 0.82, an accuracy of 0.82, sensitivity of 0.85, and specificity

of 0.78, improving quality over that of ML predictors built on clinical data from much

larger datasets by more than 0.1. Distance from the LV pacing site to the post-infarction
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zone and ventricular activation characteristics under BiV pacing were shown as the most

relevant model-driven features for CRT response classification.

Conclusion: Our results suggest that combination of clinical and model-driven data

increases the accuracy of classification models for CRT outcomes.

Keywords: cardiac resynchronization therapy, machine learning, cardiac modeling, electrophysiology, prediction,

heart failure, hybrid approach

1. INTRODUCTION

Cardiac resynchronization therapy (CRT) is one of the most
effective non-pharmacological therapies for patients with chronic
heart failure (CHF). It enhances the pumping function increasing
the left-ventricular (LV) ejection fraction (EF), promotes reversed
cardiac remodeling, and improves patients’ quality of life
(Abraham et al., 2002; Bristow et al., 2004). Nevertheless, 30–
50% of candidates for CRT have no significant improvement
after implantation (Vernooy et al., 2014), which points to the
importance of clarifying the criteria for patient selection and
optimizing the implantation procedure itself.

Lack of response to CRT is a multifactorial problem associated
with variability in individual characteristics, disease patterns,
and treatment (Mullens et al., 2009). Combined assessment
of multiple factors and individual patient characteristics can
improve prediction of response to CRT. With increasing
availability of electronic databases, Machine Learning (ML)
provides an opportunity to perform such assessment, improving
patient selection for therapy (Krittanawong et al., 2017; Lopez-
Jimenez et al., 2020). Recent studies using ML techniques
have achieved impressive results in preoperative clinical data
analysis for selecting patients for CRT. Predictive models have
been developed to estimate mortality or hospitalization risks
from the baseline clinical parameters (Kalscheur et al., 2018;
Tokodi et al., 2020, 2021), to assess improvements in EF
based on baseline indices and analysis of medical records
(Hu et al., 2019) and to stratify patients by an unsupervised
learning approach implementing ECG traces (Cikes et al.,
2019) and electrocardiography (Feeny et al., 2020). In a
recent study (Feeny et al., 2019), Feeny and co-authors using
supervised ML approaches selected 9 clinical features (QRS
morphology, QRS duration, New York Heart Association CHF
classification, LV EF and end-diastolic diameter (EDD), sex,
ischemic cardiomyopathy, atrial fibrillation, and epicardial LV
lead) that were sufficient to predict patient improvement with
fairly high accuracy.

In addition to advances inML approaches, significant progress

has been made in computer modeling of the heart (Auricchio

and Prinzen, 2017; Lee et al., 2018). Recent work has shown that

patient-specific computer models based on 12-channel ECG and
cardiac anatomy measurements are able to reproduce ventricular
activation (Potse et al., 2014; Lee et al., 2019; Lopez-Perez et al.,
2019; Camps et al., 2021). Moreover, such models may be used to
simulate the effect of CRT and study dyssynchrony characteristics
(Villongco et al., 2016; Lee et al., 2019).

In recent modeling studies, a combination of cardiac imaging
data, personalized models and ML techniques has demonstrated
greater accuracy in predicting the propensity for life threatening
cardiac arrhythmia in patients with coronary artery disease and
cardiac sarcoidosis as compared with current guidelines for ICD
implantation (Sung et al., 2020; Shade et al., 2021). Similar hybrid
approaches have been used to predict arrhythmia recurrence
after pulmonary vein ablation and to target successive ablation
procedures in patients with atrial fibrillation (Shade et al., 2020).
Our study is another facet demonstrating the relevance of using
personalizedmodels as a tool for patient stratification and clinical
decision-making.

In this retrospective proof-of-concept study we have
developed a new technique to predict CRT response prior to the
procedure. First, we developed personalized electrophysiological
models simulating ventricular activation and body-surface ECG
at the intrinsic activation pattern under left bundle branch
block (LBBB) and at BiV pacing mimicking the results of CRT
implantation. Then, we used preoperative clinical data along with
features derived from clinical image analysis and personalized
model simulations to create a supervised multivariable classifier
predicting the probability of patient improvement. To the best of
our knowledge this has been done for the first time.

The main hypothesis of our study is that personalized model
simulations are able to improve ML classification accuracy as
compared with pre-operative clinical data alone. Indeed, if
the coronary sinus anatomy is available for a patient (which
is possible to derive from CT data), one can predict an
accessible area for pacing electrode installation and use this area
in a personalized ventricular model to simulate BiV pacing.
Thus, simulations performed prior to clinical intervention
can be used to directly assess the effects of BiV pacing on
ventricular activation time, ECG biomarkers and electrical
dyssynchrony indices (subject, of course, to the accuracy ofmodel
approximation) and hence to estimate whether the goal of the
CRT procedure—synchronization of ventricular activation in a
particular patient—can be achieved. Importantly, such data can
not be derived from pre-operative clinical data itself. Simulated
BiV features can be used for patient classification (estimation of
CRT response probability) along with other available clinical data
and simulated LBBB features.

The study focuses on the following research aims: to assess
the contribution of simulated indices derived from personalized
modeling to the accuracy of ML predictive models; and to define
important clinical and model-derived features in the hybrid
dataset for CRT response prediction.
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For the first time, we used a hybrid combination of
clinical data and model-derived data on ventricular geometry
and electrical activation at both intrinsic LBBB pattern and
BiV pacing for the development of ML classifier of CRT
response. Here, simulated ECG and electrical dyssynchrony
features at BiV pacing were selected among the most significant
features by means of feature importance algorithms used for
classifier development. The ML classifiers on the hybrid dataset
outperformed classifiers built upon the clinical data.

2. METHODS

The schematic outline of the research pipeline, including patient
cohort selection, clinical indices’ acquisition, electrophysiological
modeling, feature selection, and machine learning model
training, is illustrated in Figure 1.

2.1. Clinical Data
2.1.1. Study Population
In this retrospective non-randomized single-center observational
study, we enrolled 57 CHF patients on optimal drug treatment
who underwent CRT device implantation at Almazov National
Medical Research Centre from August 2016 to August 2019.
Participants signed approved inform consent. The study protocol
was approved by the Institutional Ethical Committee.

The criteria for inclusion into the study were:

1. age over 18;
2. functional class (FC) II-IV of CHF according to the

classification of the New York Heart Association (NYHA) at
the outpatient stage of treatment;

3. LV EF ≤ 35% (Simpson);
4. QRS duration (QRSd) more than 120 ms;
5. sinus rhythm, left bundle branch block (LBBB);
6. optimal drug therapy.

The exclusion criteria were:

1. acute myocardial infarction, transient ischemic attack, acute
cerebrovascular accident less than 3 months before the start of
the study;

2. patients who were scheduled to undergo myocardial
revascularization or heart transplantation during the
observation period;

3. congenital and acquired defects, as well as heart tumors,
LV aneurysm, if scheduled for surgery during the
observation period;

4. active inflammatory and autoimmune diseases of
the myocardium;

5. thyrotoxicosis at the time of inclusion in the study;
6. anemic syndrome: blood hemoglobin level less than 90 g/l;
7. diseases limiting life expectancy to less than 1 year.

2.1.2. Data Collection
Patients were evaluated before CRT device implantation and
during the follow-up period of 12 months after implantation.
Patients underwent investigation according to standard pro

forma with some additional research methods appropriate for
this study.

Standard research methods include:

• clinical examination (complaints, medical history, and
physical examination)-before CRT and 1 year after CRT;

• general blood test, biochemical blood test (glucose, potassium,
sodium, creatinine, urea, total bilirubin and its fractions, total
cholesterol, total protein, AST, and ALT), general urinalysis-
before CRT;

• 12-lead ECG-before and 1 year after CRT; ECG monitoring
during CRT device programming and during the entire
observation period;

• echocardiographic studies before and 1 year after CRT to
assess LV reverse remodeling;

• stress tests to exclude/confirm coronary artery disease: stress
echocardiography, bicycle ergometry or treadmill test, where
clinically indicated;

• coronary angiography, where clinically indicated.

Additional research methods include:

• ECG recording in intrinsic rhythm and under BiV pacing,
while programming the CRT device within 7 days after
implantation.

• Electrocardiographic imaging using an Amycard system
(Amycard, EP Solutions SA, Yverdon, Switzerland). Prior to
ECG imaging, a maximum of 224 unipolar body surface
mapping electrodes were placed on the patient’s torso,
followed by computed tomography (CT) imaging of the heart
and thorax (Somatom Definition 128, Siemens Healthcare,
Germany). Subsequently, the electrodes were connected to
the model 01C multichannel electrophysiology laboratory
system (Amycard) for continuous ECG recordings during the
pacing protocol. CT data were imported into Wave program
version 2.14 (Amycard software) to reconstruct 3-dimensional
geometry of the torso and heart. Finally, epi/endo ventricle
models were manually built with marked active poles of RV
and LV leads for bi-ventricular pacing simulations.

• MRI (MAGNETOM Trio A Tim 3 T, Siemens AG or
INGENIA 1.5 T, Philips) with contrast (Gadovist or
Magnevist) before CRT to detect structural damage of
the myocardium.

• Tissue Doppler echocardiography to record ventricle
mechanical dyssynchrony. Analysis of interventricular
dyssynchrony (IVD) and intraventricular dyssynchrony in
the LV (LVD) was performed using biomarkers suggested
by Yu et al. (2009). IVD was assessed by the time difference
between the start of systolic flows into the aorta and the
pulmonary trunk as measured by a pulse-wave Doppler, a
value of less than 40 ms was taken as an IVD normal value.
LVD was assessed using two biomarkers: dyssynchrony index
defined as the temporal difference between the maximal and
minimal peak systolic velocities between 12 LV segments
(Tsmax–Ts min, 105 ms was taken as threshold normal value),
and standard deviation in the peak systolic velocities for 12
LV segments (SD–12, 34 ms was taken as cutoff value). To
determine the peak systolic velocities, the technique of color
tissue Doppler ultrasonography was used.
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FIGURE 1 | The schematic outline of the data analysis and machine learning pipeline. The pipeline included three major steps: I. CRT patient cohort assembling II.

Preprocessing of clinical data and electrophysiological (EP) modeling III. Machine learning model development. In the clinical data preprocessing stage: features with

missing values were excluded, non-categorical data were normalized by subtracting mean and dividing by standard deviation, collinear features were removed from

the dataset by threshold > 0.85. EP modeling stage included: 1. CT data processing; 2. Segmentation of finite element meshes of the torso and lungs. 2*.

Personalization of the heart model: a) Heart segmentation; b) Assignment of myocardial fibers (Bayer et al., 2012); c) Infarction scar/fibrosis assignment, pacing

protocol selection (LBBB or BiV) and activation map calculation (stars indicate pacing sites), the infarction area is marked in red. 3. Calculation of torso potential map

and ECG signals deriving.

Baseline clinical data for the patients’ cohort is presented in
Supplementary Table S1.

2.2. Personalized Ventricular Models of
Electrophysiology
Patient-specific models were generated for each of the 57 cases.
Semi-automatic CT segmentation approach helped to extract

torso, lungs and ventricles (Figure 1 EP modeling, items 1–
2). Finite-element meshes were smoothed, refined and merged.
Average edge length was 15 mm for torso, 10 mm for lungs and 4
mm for heart.

Then, the LV myocardial tissue in the patient ventricular
model was further annotated as either normal tissue or
disease-induced remodeling area according to the expert’s MRI
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FIGURE 2 | Model validation. Example of a personalized ventricular model for patient #11. (A) Area of fibrosis in the interventricular septum (red zone). (B)

Comparison of model activation maps for LBBB (top) and BiV pacing (bottom). Star indicates LV pacing site for BiV pacing stimulation. The RV stimulating electrode

was located in the apex of the surface. (C) Calculated ECG signals (QRS complexes) for LBBB on the left and BiV pacing on the right. Green line-signals recorded in

the clinic. Blue line-simulated signals. The amplitude of the QRS signals is normalized to the maximum values of the signals. (D) Scatter plots showing correlations of

QRS complex duration for 57 patients. Dots denote individual patients. The blue line is the regression line, Pearson correlation coefficient for LBBB is 0.94 (p < 0.001)

for BiV pacing is 0.99 (p < 0.001).

examination report from the patient’s medical history. The
annotation was made as a schematic map of myocardial
damage (fibrosis/scar remodeling) using the conventional 17-
segment American Heart Association (AHA) model of the LV
(Cerqueira et al., 2002), split into three layers, endocardial,
mid-myocardial and epicardial, in which damaged regions were
highlighted. Each personalized LV geometry computational
model was also segmented into 17 x 3 regions (17 segments
and 3 layers) according to the AHA scheme. The described
areas of scar/fibrosis were labeled on a 17-segment LV
AHA model. The scar regions were then simulated as an
inexcitable area, and fibrosis regions were associated with a low
myocardial conductivity parameter. Supplementary Figure S1

an example of personalized ventricular model with assigned
fibrosis/scars. We also demonstrate a diagram with scar/fibrosis
distribution between the segments and the relative volume
of the infarct/fibrosis in every segment of AHA LV model
(Supplementary Figure S4).

The Infarct/fibrosis volume was calculated according to the
computational model. The relative volume vs. the myocardial
volume was also determined. The compact scar regions were then

simulated as an non-excitable area, therefore such zones were
excluded frommodel calculations. Fibrosis regions were assigned
a low constant conductivity value (1% of normal conductivity).
Figure 2A shows a ventricular geometry model for patient #11
with a zone of intramural fibrosis (red) located in the septum
(AHA segments 2,3,8,9).

For every patient-specific ventricular model, the electrical
activity in the myocardium and ECG on the body-surface
were simulated in several steps. We used an Eikonal model
(Keener, 1991) to calculate the activation time at each point
of the ventricular mesh. An Eikonal model is widely used
to simulate the cardiac activation map as one of the fastest
methods (Franzone and Guerri, 1993; Pullan et al., 2006;
Pezzuto et al., 2017; Camps et al., 2021). To assign fiber
direction at every point of the myocardium, a rule-based
approach was used (Bayer et al., 2012). Cardiac tissue was
simulated as an anisotropic medium with a conductivity ratio
of 4:1 along vs. across the myocardial fibers providing the
conduction velocity ratio 2:1 in the fiber and in the transverse
direction, respectively. A global value of the conductivity
along the fibers was set for the entire myocardial tissue
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and fitted against the clinical data as described in the
next section.

The QRS complexes in 12-lead ECG on the body surface
were computed from the activation time maps simulated by an
Eikonal model using the approach for fast phenomenological
cardiac models proposed by Pezzuto et al. (2017). In this
approach, a predefined cellular action potential is assigned
to each model element at corresponding activation time. The
potential from the myocardium is transformed on the body
surface by utilizing a pseudo-bidomain approach (Bishop and
Plank, 2011). To generate action potentials in cardiomyocytes,
we employed a widely used cellular ionic model TNNP (ten
Tusscher, 2006) for human ventricular cardiomyocytes. We
defined the locations of 12-lead ECG electrodes on the torso
surface and used simulatedQRS complexes of ECG signals for the
analysis (Figure 1 EP modeling, items 2-3). Using this approach
for ECG calculation, we achieved a high correlation between
simulated and experimental QRS durations for our personalized
ventricular models (see Figure 2).

2.2.1. Simulation of LBBB Activation Pattern and BiV

Pacing
We calculated model-driven indices with reference to two types
of ventricular pacing: LBBB activation pattern and BiV pacing.

For LBBB activation, RV sub-endocardial surface was
annotated and a Purkinje network was generated using standard
parameters from a Costabal model (Sahli Costabal et al., 2016).
The right bundle branch was set at about 40 mm length,
originating on the intraventricular septum, reaching the RV
apex, and then splitting into the Purkinje fiber system of RV
(Dobrzynski et al., 2013). His system was isolated from the
working myocardium and connected to it only at the ends of
the Purkinje fibers through Purkinje-myocardial junction points
(PMJs). We set the stimulation time in each PMJ according to the
distance to the origin node divided by the conduction velocity in
the His-Purkinje system, which we assumed to be 3mm/ms (Ono
et al., 2009).

We used a simulated LBBB ventricular activation map to
define an area on late activation time (LAT) in every patient
model. LAT zone is frequently considered as a target area for
LV electrode installation for the best ventricular synchronization
at BIV pacing (Stephansen et al., 2018; Zubarev et al., 2019;
Lahiri et al., 2020). We used the distance from LV active pole to
LAT zone as one of the model-derived features for training CRT
response classifiers.

The location of BiV pacing sites were derived fromCT images.
Active poles of RV and LV leads were annotated manually in
Wave program version 2.14 (Amycard software). For BiV pacing
simulations, we set a zero time delay between the RV and LV
pacing sites as programmed in patients.

The activation time at the stimulation points for LBBB and
BiV mode of activation was considered as a boundary condition
for solving the Eikonal equation.

2.2.2. Personalization of the Electrophysiological

Models
Patient-specific ventricular models in both LBBB and BiV pacing
protocols were fitted to reproduce individual data from recorded

ECG with the ventricular pacing mode switched off (intrinsic
rhythm with LBBB) and switched on (BiV pacing).

For each patient-specific model, we assumed a uniform
conductivity in the myocardial tissue in the entire ventricles and
solved an optimization problem to find a global conductivity
parameter minimizing the discrepancy between simulated and
clinical data recorded in the patient in either LBBB or BiV
stimulation protocol independently. The post-infarction scar
regions were excluded from the model tissue, and a low
conductivity of 1% of normal value was assigned to the fibrotic
tissue regions when solving the optimization problem. The global
conductivity parameter was fitted to minimize the difference
between the means of simulated and clinically measured QRSd
from the 12-lead ECG recorded in the patient. We used L-
BFGS-B algorithm built into SciPy.minimize routine to handle
optimization in the model.

Figures 2B,C shows the personalization results for patient #11
with intramural fibrosis located in the septum (AHA segments
2, 3, 8, 9 depicted in red in Figure 2A). Although the model
parameters were fitted to minimize the difference between the
means of simulated and clinical QRSd, the morphology of
the simulated QRS complexes corresponded well with clinical
ones (see Figure 2C, blue lines show model signals, green lines
show recorded clinical signals). The scatter plots in Figure 2D

demonstrate high correlations between simulated and clinical
QRSd for both LBBB and BiV modes. The higher correlation
coefficient for BiV pacing is explained by precise positioning
of the pacing sites derived from CT imaging data, while for
LBBB we used a synthetic model of ventricular activation that
does not reflect the morpho-anatomical characteristics of the RV
conduction system in a particular patient.

2.2.3. Model-Derived Biomarkers of Myocardial

Damage, Pacing Site Location, and Myocardial

Electrical Activity
Our patient-specific models allowed us to identify several
clinically important features affecting ventricular activation. The
first group of model-derived indices are based on CT and
MRI data coupled with electrophysiology model simulations.
Using a digital ventricular model, we were able to define the
volume of post-infarction scar and non-ischemic fibrosis and
their size relative to the myocardial tissue volume. Knowing RV
and LV active poles positions, we measured distance between
them (DLvRv). Furthermore, distances from LV pacing site
to the infarct/fibrosis area (DLvInfarct) and to the area of
LAT (DLvLATZ) under intrinsic rhythm were calculated. When
calculating distance biomarkers (see DLvLATZ, DLvLesion and
DLvRv in Supplementary Table S1), we solved an isotropic
Eikonal equation as a simplemethod to define the distance from a
certain point on the ventricular surface to the border of a specific
area. The latter distances mimic distances that can be directly
measured from CT or MRI data using a ruler.

The second group of model-derived indices was calculated
in LBBB and BiV mode of myocardial activation. We simulated
the time activation map for both chambers and 12-lead ECG
and calculated the following biomarkers derived from the time-
dependent signals for further analysis of CRT response: total
ventricular activation time (TAT), maximum QRS complex
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TABLE 1 | Model biomarkers.

Index Definition Explanation

TAT, ms TAT = ATmax − ATmin Total ventricular activation time, ATmin (ms) - activation start time, ATmax (ms) - late activation time.

QRSd, ms QRSd = max(TS − TQ) Maximum QRS complex duration in all leads - difference in the Q-S peaks time on the ECG signal.

ATRVLV , ms ATRVLV = ATmaxLV − ATmaxRV Interventricular dyssynchrony index - the difference between the time of late activation of LV and RV.

mATSTLV mATSTLV =
LVlatmean−STmean

TAT
LV activation dyssynchrony index, where LVlatmean (ms)- average activation time of LV free wall, STmean - average

activation time of septum.

IntAVSTLV , ms IntAVSTLV =
∫
|
AVLAT (t)
VLAT

−
AVST (t)
VST

|dt Integral index of LV activation dyssynchrony, AVST (t) - fraction of myocardial volume activated in septum at time t,

AVLAT (t) - fraction of myocardial volume activated in free wall at time t, VLAT - free wall volume, VST - septum volume.

duration, difference between the total LV and RV activation times
(ATLVRV ), relative difference between the mean activation times
of LV free wall and septum (mATSTLV ), integral index of LV
free wall and septum myocardial volume activation (IntAVSTLV ).
The last three indices characterizing inter- and intraventricular
electrical dyssynchrony of myocardial activation were used in
work of Villongco et al. (2016).

These simulated features were used as predictions of the
effects of BiV pacing on ventricular electrical synchronization.
Table 1 presents a complete list of the simulated characteristics
with related definitions and formulas. The average values of
all model-derived indices for our enrolled cohort are shown in
Supplementary Table S1.

Below, changes in feature values under BiV pacing against
the LBBB baseline are expressed in relative units. For clinical
characteristics, 1XCRT = (XCRT-XLBBB)/XLBBB, where XLBBB

and XCRT are feature values before and after CRT device
implantation, respectively. For simulated indices,1XBiV = (XBiV -
XLBBB)/XLBBB, where XLBBB and XBiV are feature values in the
LBBB activation mode and BiV pacing. For the indices that are
initially showed in relative units, e.g., EF and mATSTLV , the
response to pacing is expressed as an absolute increment in
the LBBB value: 1EFCRT = EFCRT-EFLBBB, and 1mATSTLVBiV =
mATSTLVBiV -mATSTLVLBBB.

For some features, we also used normalized characteristics,
i.e., the ratio of the value to the myocardial tissue volume (MTV).
Note, MTV should not be confused with the volume of the cavity
inside the ventricle. We can evaluate MTV using a digital model
of the ventricular geometry based on CT images. When using
such normalization, the volume of the preserved myocardium
only is taken into account, without allowing for the infarct area.
Since the scar tissue is not excited and does not contract, it is
excluded from the volume of the active ventricular myocardium.
Normalized features give a characteristic’s values per unit volume
of the myocardium (analogous to the values per mass unit of
the myocardium). For instance, TAT/MTV indirectly reflects a
reciprocal value of the average velocity of myocardium activation
in the ventricles.

2.3. A Predictive Model of Response to
CRT Based on Preoperative Clinical Data
and Electrophysiology Model Simulations
For classifier development, we applied several supervised
machine learning (ML) approaches to identify an optimal set
of features and learning algorithm combination showing the

best performance characteristics on hybrid data for our patient
cohort. The hybrid dataset for building the classifier contained
clinical and model-derived features as described above. At the
preprocessing step, features with missing values were excluded.
Non-categorical data were normalized by subtracting the mean
and dividing by standard deviation. Collinear features were also
removed from the dataset by threshold > 0.85.

Several criteria for CRT response definition were used for
classification. The primary criterion for responders was more
than 10% increase in LV EF (EF10) (Feeny et al., 2019). The
following criteria were also considered: a reduction in ESV >

15% (ESV15, see Foley et al., 2009; Park et al., 2012); a 5 and
15% increase in LV EF (Feeny et al., 2019), and combined EF10
and ESV15.

We evaluated several classification algorithms: logistic
regression (LR), linear discriminant analysis (LDA), support
vector machine (SVM) with linear kernel, random forest (RF)
classifier; each evaluated in combination with three different
feature sets obtained by feature selection methods. The following
algorithms were used for feature selection: random forest mean
decrease accuracy (MDA), univariate statistical testing (UST,
two-sample t-test for continuous variables and chi-squared test
for categorical variables), and L1-based feature selection (L1,
based on weights of LR). Features were selected in a cross-
validation loop for each subset. The top 8 features chosen by the
algorithms were used to construct the classifiers.

Feature selection and training of classification algorithms
was done using a Leave-One-Out cross-validation loop. Within
the loop, the ML classifier score for each test fold (hear each
consisting of just one observation) was calculated. These ML
scores were combined into one set to build the receiver operating
characteristic (ROC) curve and to calculate the area under the
ROC curve (AUC). The highest-performing combination of the
classifier with feature selecting algorithm was chosen to develop
the final classifier.

In addition, we used repeated stratified five-fold cross-
validation with 1,000 iteration in order to be confident
in assessing the quality of the classifier. We quantified
the classification performance of each feature set–algorithm
combination with ROC AUC across all folds and iterations. The
classifier with the highest ROC AUC was selected as the final
classifier for our hybrid dataset.

2.3.1. Software
Cardiac electrophysiology was modeled with the help of software
written at the Institute of Immunology and Physiology UB RAS
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based on FENICS library (for solving PDE problems) (Logg
and Wells, 2010) and VTK (for working with meshes). For the
machine learning pipeline (see Figure 1): classifier development,
statistical modeling, feature selection, cross validation, and ROC-
AUC calculation we used the sklearn library.

2.3.2. Statistics
Detailed analysis was performed using the IBM SPSS Statistics
23.0.0.0 software package (USA). For qualitative data, the
frequency and percentage of total patients in the cohort were
calculated. Quantitative data are presented as mean ± standard
deviation. Comparisons between two dependent groups were
made using Wilcoxon’s test for quantitative data and McNimar’s
test for qualitative data. Nonparametric Friedman’s two-way
ANOVA was applied to compare related groups. Comparison
between two independent groups was carried out using the
Mann-Whitney test for quantitative data and Pearson’s chi-
square test for qualitative data. Feature dependence was assessed
using the Spearman rank correlation test. The critical level of
statistical significance was taken equal to 0.05.

3. RESULTS

3.1. Responders vs. Nonresponders:
Analysis of Clinical Data Before and After
CRT Device Implantation and Model
Simulations in LBBB and BiV Pacing
We found an average positive response to BiV pacing in all
clinical indicators and corresponding simulated indexes of
the CRT outcome in the entire patient cohort (a summary
of statistics for clinical data, CT/MRI derived data and
model-driven biomarkers is presented in Section S.1,
Supplementary Table S1). High variability of the effects of
BIV pacing on biomarkers in both the clinical and simulated
data suggest a significantly nonuniform output among the
patients. Therefore, the patients were classified into two groups
of responders and nonresponders to the therapy.

We have used several conventional criteria to classify
responders and nonresponders to CRT in the patient cohort
based on clinical data on the post-operative LV reversed
remodeling. Primary classification was defined by a higher than
10% increase in the LV EF for responders (1EFCRT >10%
referred hereafter as EF10 criterion). This criterion was used
in clinical studies, and allowed us to compare qualitatively the
results of our predictive models for CRT response with the
findings reported recently by Feeny et al. (2019). Surprisingly,
the 10% cutoff for EF improvement in responders is close to the
average EF increase of 9 ± 8% observed in our patient cohort.
Classification results based on other CRT response definitions
are described in the Supplementary Materials and discussed in
the section 4.

Table 2 summarizes the clinical and model-derived variables
in the groups with or without LV EF improvement according
to the EF10 criterion. In our patient cohort, 23 (40%) patients
demonstrated an improved EF (referred to as CRT responders)
and 34 (60%) patients were classified as nonresponders. The ratio

seems biased toward nonrespondents, but we have intentionally
raised the LV EF improvement threshold in order to be more
confident in predicting true positive responses. Average EF
is raised in both groups, and the increase is significantly
higher in the responders vs. nonresponders (17 ± 5% vs.
3 ± 5%, respectively). The EF improvement after CRT is
accompanied by a prominent ESV reduction by 47 ± 19%
in the responder group against an insignificant diminishing
by 9 ± 37% in nonresponders. Similarly, a much higher
average EDV reduction is seen in the responders due to
LV postoperative reverse remodeling after CRT. Although
the average QRSd is decreased, no statistical significance
between the groups was found. No difference in the CRT
effect on the mechanical dyssynchrony indices was found
as well.

In consistency with the clinical data, the model simulations
revealed a decrease in both TAT and QRSd under BiV pacing
in each of the two sub-populations of models (Figure 3).
The electrical dyssynchrony indices also reveal a prominent
decrease in the groups, with the highest reduction in the inter-
ventricular dyssynchrony index ATRVLV (Figure 3). Meanwhile,
no difference in the relative decrease in the indexes between the
responder and nonresponder groups was observed (Table 2).

Analyzing CT/MRI derived geometry indexes, we figured out
no difference in the relative volume of infarct/fibrosis in LV
myocardial tissue between the groups (Table 2). At the same
time, we found a shorter distance from the LV pacing site to
the damaged zone in the nonresponder group (28 ± 27 mm in
nonresponders vs. 45 ± 28 mm in responders), suggesting less
effective pacing of the normal tissue in nonresponders. Interlead
spacing does not statistically differ between groups. No difference
in the distance from LV pacing site to the LAT area in LBBB
activation mode was found as well.

It is of note that most of the individual biomarkers in the
intrinsic LBBB activation pattern derived from either clinical, or
CT/MRI, or simulated data do not show a significant difference
in the distribution between the responder and nonresponder
groups. This means that no one single index could be considered
as a diagnostic feature for preoperative classification (Table 2).

Among the pre-operative clinical data, two features, i.e., LV
EFLBBB and the inter-ventricular mechanical dyssynchrony index
IVDLBBB, displayed differences between the groups classified
according to the EF10 criterion. Here, LV EF demonstrated
a bit higher average value along with a bit lower value
of IVD in the nonresponders than in responders. This is
consistent with a low negative correlation between EFLBBB before
and 1EFCRT after implantation (r = –0.48, p = 0.031, see
Supplementary Figure S7). However, high EF variation in each
group comparable with the difference between the group averages
did not allow us to find a valid threshold separating the groups.
The average accuracy of the Logistic Regression classification
with One-Leave-Out cross-validation based on EFLBBB was only
0.62 with rather low values of both sensitivity at 0.69 and
specificity at 0.55. A low positive correlation was also found
between IDVLBBB and 1EFCRT (r = 0.32, p = 0.029), suggesting
its possible predictive power for CRT response. However, we did
not have IDV and other mechanical dyssynchrony indices for all
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TABLE 2 | Clinical, imaging, model data and predictive model scores for responders and nonresponders defined by EF10 criterion.

Patient cohort n = 57

Variable Responders n = 23 (40%) Nonresponders n = 34 (60%)

Clinical data

Gender (male/female) 15/8 23/11

Age, year 64 ± 6 63 ± 7

BMI 27 ± 5 30 ± 5#

IHD/DCM 14 (61%)/9(49%) 22 (65%)/12(35%)

History of AF 4 (17%) 8 (24%)

LBBB CRT 1, % LBBB CRT 1, %

FC CHF : Decrease in FC 17 (70%) Decrease in FC 15 (44%)

I 0 (0%) 7 (30%)* 7 0 (0%) 3 (9%) 3

II 12 (52%) 12 (52%) 0 12 (35%) 19 (56%)** 7

III 11(48%) 2 (8%)* –9 22 (65%) 4 (12%)** –18

QRSd, ms 192 ± 20 143 ± 14** –25 ± 11 190 ± 26 145 ± 21** –22 ± 16

Echocardiography data

EDV, ml 301 ± 69 196 ± 68** –33 ± 22 290 ± 106 263 ± 138## –7 ± 33##

ESV, ml 231 ± 59 119 ± 48** –47 ± 19 207 ± 87 185 ± 118*## –9 ± 37##

EDD, mm 74 ± 8 62 ± 10** –16 ± 10 73 ± 7 69 ± 9 **## –5 ± 8 ##

ESD, mm 64 ± 9 48 ± 13** –26 ± 17 62 ± 9 57 ± 10 **## –7 ± 13##

EF, % 23 ± 5 40 ± 6** 17 ± 5 29 ± 6## 32 ± 7**## 3 ± 5##

IVD, ms (n = 34) 76 ± 17 46 ± 22** –38 ± 29 63 ± 19## 33 ± 14** –44 ± 27

1Ts, ms (n = 34) 82 ± 35 76 ± 34* –20 ± 39 87 ± 44 58 ± 33* –12 ± 78

SD12, ms (n = 34) 31 ± 14 27 ± 12 –20 ± 40 33 ± 16 23 ± 12** –15 ± 74

CT/MRI data

MTV,ml 332 ± 142 377 ± 143

InfarctV, ml 45 ± 39 54 ± 39

InfarctV/MTV 0.14 ± 0.08 0.16 ± 0.13

DLvRv,mm 108 ± 23 105 ± 25

DLvLATZ,mm 44 ± 16 58 ± 27

DLvInfarct,mm 45 ± 28 28 ± 27#

Model data

LBBB BiV 1, % LBBB BiV 1,%

TAT, ms 269 ± 109 141 ± 31** –45 ± 18 246 ± 130 138 ± 46** –45 ± 24

QRSd, ms 192 ± 21 143 ± 14** –30 ± 12 187 ± 24 152 ± 28** –22 ± 20

ATRVLV , ms 103 ± 65 26 ± 26** –75 ± 21 95 ± 79 20 ± 21** –76 ± 27

IntAVSTLV , ms 101 ± 57 34 ± 15** –51 ± 36 106 ± 59 33 ± 16** –53 ± 52

mATSTLV 0.36 ± 0.10 0.29 ± 0.14 –6 ± 20 0.36 ± 0.09 0.27 ± 0.13** –9 ± 17

Predictive model scores

Score by Feeny et al.

(2019)

0.63 ± 0.20 0.55 ± 0.23

MLCD score (EF10) 0.47 ± 0.23 0.37 ± 0.24

MLHD score (EF10) 0.58 ± 0.25 0.29 ± 0.22##

Mean ± SD.

*p < 0.05, **p < 0.01 LBBB vs. CRT or LBBB vs. BiV. Comparisons between two dependent groups were made using Wilcoxon’s test for quantitative data and McNimar’s test for

qualitative data.

#p < 0.05, ##p < 0.01 Responders vs Nonresponders. Comparison between two independent groups was carried out using the Mann-Whitney test for quantitative data and Pearson’s

chi-square test for qualitative data.

1 - Average change in indicator 1X = X CRT - X LBBB / XLBBB or 1X = XBiV - X LBBB / X LBBB. 1 is calculated as the absolute difference for normalized values (EF and mATSTLV )

and FC.

BMI, Body mass index; IHD, Ischemic heart disease; DCM, Dilated cardiomyopathy; AF, Atrial Fibrillation; FC CHF, functional class of congestive heart failure; IVD, interventricular

dyssynchrony; 1Ts, maximum temporary difference in peak systolic velocities between 12 LV segments; SD12, standard deviation of the peak systolic velocities of 12 LV segments;

MTV, myocardial tissue volume; LAT, late activation time; TAT, total ventricular activation time; QRSd, maximal duration of QRS complex on 12 leads; ATRVLV , difference of total LV and RV

activation time; IntAVSTLV , integral index of LV free wall and septum myocardial activation dyssynchrony; mATSTLV , difference between mean activation time of LV free wall and septum;

MLCD score (EF10), ML score on the clinical data for EF10 criterion; MLHD score (EF10), ML score on the hybrid data for EF10 criterion.
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FIGURE 3 | Simulation features in the LBBB activation mode and under BiV pacing for responders and nonresponders. Bar indicates mean. Error bar is SD.

Comparisons between two dependent groups (LBBB vs. BiV) were made using Wilcoxon’stest. No difference in the indexes between the responder and

nonresponder groups was observed. *p < 0.05 LBBB vs. BiV.

57 patients in our cohort and, therefore, decided against using
them in further analysis (see section 5).

Although in this proof-of-the-concept study some data used
for model building were recorded after operation, we consider all
CT/MRI and model-derived features as potentially pre-operative
because all of them can actually be assessed before operation
(see also section 5. on this issue). Among the data derived from
CT/MRI, we found only the distance between the LV pacing
site and the area of myocardial damage showing a significant
difference between the responders and nonresponders (Table 2).
However, this index did not show a significant correlation with
either 1EFCRT (see Supplementary Figure S7) as well.

In consistency with the absence of difference between
clinical QRSd in responders and nonresponders, none of
the simulated electrophysiological biomarkers showed any
significant difference between groups both in the LBBB mode of
activation and under BiV pacing either (Figure 3 and Table 2),
which also did not allow them to be considered as individual
classifying features.

Our dataset analysis suggested a hypothesis that the only
combination of the clinical and MRI/CT derived biomarkers
that can be evaluated before operation together with predictions
on the BiV response simulated using a personalized ventricular
model may increase the predictive power of such a hybrid dataset
for patient classification.

3.2. Predictive Models of CRT Response
Built on Hybrid Dataset of Clinical Data
Before Operation and Personalized Model
Simulations at LBBB and BiV Pacing
We used the hybrid input dataset containing 57 data entries with
features derived from clinical data recorded prior to operation,

CT/MRT derived data and simulated features calculated using
personalized models of ventricular excitation in LBBB and BiV
pacing activation modes for every patient from our cohort as

described in the previous sections. The complete list of features

fed to the feature selection algorithms when developing CRT
response classifiers is shown in Figure 4 (right) in descending

order of the feature importance. We trained supervised classifiers

using an EF10 criterion (1EF > 10%) of CRT response. To
choose the best classifier, we compared 4 different classification
models (classifiers) with Leave-One-Out and five-fold cross-

validation and 3 different feature selection methods inside a
cross-validation loop. A summary of the model ROC AUC
used to characterize the quality of the trained models is
shown in Table 3. It is seen that average ROC AUC vary
from a smallest value of 0.7 to the best one of 0.82 obtained
for SVM and LDA classifiers with Univariate approach for
feature selection.

Figure 4 (left) shows a ROC curve for the best SVM classifier

trained for the EF10 response criterion. Table 4 summarizes

the classifier characteristics. The best SVM classifier for CRT

response demonstrates a high accuracy of 0.82, sensitivity of 0.85,

and specificity of 0.78.
ML scores generated by the best SVM classifier correlate with

post-operational improvement in the EF (r = 0.46, p < 0.001,
see Figure 5). Moreover, the distributions of the average scores
in the responder and nonresponder groups in our patient cohort
significantly differ between each other with a significantly higher
average score in the responder vs. nonresponder group (0.58
± 0.25 vs. 0.29 ± 0.22, p < 0,01, see Figure 6 and Table 2).
A corresponding score threshold of 0.46 was defined for the
responders in our patient cohort for the best classifier according
to the EF10 response definition.
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FIGURE 4 | Best Machine Learning Classifiers for CRT response prediction from the hybrid dataset of clinical and model-drived data for 57 patients. Left panel shows

receiver operating characteristic (ROC) curves for the best classifiers based on the 1EF > 10% criterion of CRT response. Blue line shows ROC curve for Support

Vector Machine Classifier (SVM) using Leave-One-Out cross-validation on hybrid dataset. Yellow line shows a ROC curve with corresponding ROC AUC for a Logistic

Regression(LR) model trained on the data subset containing clinical features as suggested in Feeny et al. (2019). Values of the area under the ROC curve (ROC AUC)

for the models are shown on the panel. Right panel shows clinical and model-drived feature list in descending order of importance ranged using Univariate feature

selection approach for the best classifier.

TABLE 3 | Comparison of ROC AUC for different Machine Learning classifiers using leave-one-out and five-fold cross-validation and different feature selection algorithms

for EF10 criterion of CRT response.

Classifier Leave-one-out Five-fold

Feature selection method Feature selection method

L1 MDA Univariate L1 MDA Univariate

Logistic

regression
0.76 0.78 0.80 0.74 ± 0.15 0.76 ± 0.14 0.80 ± 0.14

Linear

discriminant

analysis

0.73 0.76 0.82 0.71 ± 0.15 0.76 ± 0.15 0.80 ± 0.14

Support vector

machine
0.70 0.73 0.82 0.72 ± 0.15 0.75 ± 0.15 0.80 ± 0.14

Random

forest
0.73 0.72 0.73 0.72 ± 0.16 0.70 ± 0.16 0.72 ± 0.16

L1, Logistic Regression feature selection; MDA, Mean Decrease Accuracy; Univariate, Univariate statistical testing: two-sample t-test for continuous variables and chi-squared test for

categorical variables. Bold text indicates the best classifier.

Figure 4 (right) shows a ranged list of feature importances
selected by the SVM classifier trained on the entire dataset
for the EF10 CRT response criterion. Eight most important
features colored in red were selected for the final classifier.
The pre-operative EFLBBB showed the highest importance
among other inputs, which is in line with our findings
on the correlation between 1EFCRT and EFLBBB. The other
two of the three clinical features contributing to the CRT
response were BMI and NYHA stage. Therefore, the majority
of the selected features were indices derived from CT/MRI
and simulated features in the LBBB and BiV modes of
activation. In particular, the distance between the LV pacing

site and the infarct/fibrosis area was the third in the feature
importance range, and a combination of TAT/MTVLBBB,
TAT/MTVBiV and QRSdBiV showed the highest importance
among simulated features. Corresponding coefficients at the
input variables in the terms of the best LR classifier are given in
Supplementary Table S2.

The yellow line in Figure 4 (left panel) shows the ROC curve
for an LR classifier trained on the clinical data only according to
the EF10 criterion. The sub-set of clinical features used here for
CRT response prediction was the same as selected in the article
by Feeny et al. (2019) for their best LR classifier (see the complete
feature list and corresponding coefficients at the input variables
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TABLE 4 | Performance of the classifiers on hybrid vs. clinical data.

SVM on hybrid dataset

1EF > +10%, cutoff = 0.46

Responder Non-responder

Model responder 18 5

Model Non-responder 5 29

Accuracy Sensitivity Specificity ppv npv

0.82 0.85 0.78 0.78 0.85

LR on hybrid dataset

1EF > +10%, cutoff = 0.46

Responder Non-responder

Model Responder 15 8

Model Non-responder 7 27

Accuracy Sensitivity Specificity ppv npv

0.74 0.65 0.79 0.68 0.77

LR on clinical dataset

1EF > +10%, cutoff = 0.51

Responder Non-responder

Model Responder 8 12

Model Non-responder 15 22

Accuracy Sensitivity Specificity ppv npv

0.53 0.65 0.35 0.40 0.59

Response score by Feeny et al. (2019)

1EF > +10%, cutoff = 0.62

Responder Non-responder

Model Responder 13 15

Model Non-responder 10 19

Accuracy Sensitivity Specificity ppv npv

0.56 0.56 0.57 0.46 0.65

SVM, Support Vector Machine; LR, Logistic Regression; ppv, positive predictive value; npv, negative predictive value.

in Supplementary Table S2). The average ROC AUC for this
predictive model appears to be 0.63 for our patient cohort, with
an average accuracy of 0.53, sensitivity of 0.65, and specificity of
0.35 (Table 4), which are much lower than the characteristics of
the ML model trained on the hybrid input dataset containing
a combination of clinical and model-driven features. Note that
this AUC is close to the AUC value of 0.62 we obtained for the
LR classifier trained on EFLBBB only, suggesting that the rest of
the clinical information does not contribute essentially to the
model predictions.

We compared also the accuracy of EF10 improvement
predictions from our ML classifier on the hybrid data with the
accuracy of predictions based on our patients’ clinical features
fed into a “ML score calculator” presented in Feeny et al. (2019)
(Table 4). This predictor showed an accuracy of 0.56, sensitivity
of 0.56, and specificity of 0.57 on our 57 patient dataset, which
are similar with the performance of the LR classifier trained on
the clinical data, but much lower that the performance of our ML
classifiers on hybrid data.

Figure 6 shows average ML scores generated by the classifier
on the hybrid data for the entire patient cohort and for the
responder and nonresponder groups according to the EF10

definition in comparison with the ML scores predicted by the
LR classifier trained on the clinical data from our patient cohort
and those from the calculator by Feeny et al. (2019). The average
ML score from Feeny et al. (2019) on the entire patient cohort
is seen to be higher than our ML scores, explaining lower
rates of true positive and true negative predictions from the
calculator on our patient cohort. Moreover, the only classifier
on hybrid data generates significantly higher ML scores in
the responder vs. nonresponder group, suggesting its higher
predictive performance. In contrast, the average ML scores did
not differ between responders and nonresponders according for
the LR classifier on the clinical data (0.47 ± 0.23 vs. 0.37 ± 0.24,
p= 0.111) and for the Feeny’s calculator from Feeny et al. (2019)
(0.63± 0.20 vs. 0.55± 0.23, p= 0.213) in our patient cohort (see
also Table 2).

These results clearly highlight the significance of model-
driven features for CRT response prediction.

4. DISCUSSION

The researchers sought ways to predict CRT response for
ensuring more effective patient stratification and different
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outcome end-points for improving state, increasing survival
period and preventing adverse effects (Lahiri et al., 2020). Despite
of intensive research performed in the field, the fraction of
patients with low response to the therapy remains as high as
30–50% depending on which criteria are used for assessing CRT
outcome. New artificial intellegence and ML based approaches to
data analysis have been extensively used in attempts to increase
the accuracy of patient differentiation (Kalscheur et al., 2018;

FIGURE 5 | Relation between the ML score on the hybrid data (MLHD score)

for EF10 criterion and the post-operational change in the EF. Solid line -

regression line 1 EF = 3 + 14 MLHD score; horizontal dotted line shows a

10% threshold for LV EF improvement; vertical dotted line is a MLHD score

cutoff of 0.46 for responders; r is the Spearman correlation coefficient; p is the

significance for the group difference.

Feeny et al., 2019, 2020; Tokodi et al., 2021). Computational
models based on clinical data are also employed to identify
mechanisms responsible for the poor efficacy and develop
approaches improving CRT outcomes (Lumens et al., 2015;
Huntjens et al., 2018; Lee et al., 2018; Isotani et al., 2020).
Recently, a new trend has emerged in this research area, which
uses a combination of clinical and model data together with ML
for solving challenging medical problems (Aronis et al., 2021;
Heijman et al., 2021). As far as we know, there have been no
reports of in-silico studies involving a hybrid approach to predict
CRT response in a cohort that would combine a dataset of
patient-specific features derived from clinical measurements and
simulations on personalized ventricular models.

4.1. Improvement of Classification Models
Built on Hybrid Data vs. Predictors on
Clinical Data
In this study, we combined the MR/CT-imaging and model
derived features with pre-operative clinical data used
conventionally to characterize patient’s state in a hybrid dataset
for building predictive models of CRT response in the patients
by ML techniques. A sub-set of simulated features containing
TAT, QRSd and three electrical dyssynchrony indices generated
by every of 57 patient-specific electrophysiology models under
LBBB and BIV pacing was used as an input to ML algorithms.
The personalized models were also used to define LAT zone
in the LV under LBBB mode of activation and to calculate the
distances between the pacing sites, and from the LV pacing site to
the LAT zone and to the LV infarct/fibrosis area, which were also
used as input features for ML classifiers. The basic hypothesis of
our study was that model-driven simulations of the response to
BiV pacing may essentially enhance the predictive power of the
hybrid dataset for CRT response evaluation.

FIGURE 6 | CRT response scores. Left panel: Average scores. Right panel: Average scores for responders and nonresponders. Score by Feeny et al. (2019);

MLCD–ML score on the clinical data for EF10 criterion; MLHD-ML score on the hybrid data for EF10 criterion. Bar indicates mean. Error bar is SD. Nonparametric

Friedman’s two-way ANOVA was used to compare related groups (Score by Feeny vs. ML scores). Comparison between two independent groups (responders vs.

nonresponders) was performed using the Mann-Whitney test.
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Despite the rather small size of the dataset used for ML
classifier development (57 entries in the entire dataset), we were
able to obtain ML classification models achieving high accuracy
in predicting the response to CRT (see Figure 4 andTable 3). The
ROC AUC value for the best SVM classifier is as high as 0.82 for
1EF > 10% cutoff for responders.

The most significant result of our study is that our best
classification models built on the hybrid dataset outperformed
the ML classifier trained on the pre-operative clinical data only
(see Figure 4 and Table 4). In the latter, we used a subset from
the same 57 patient dataset containing 9 clinical features for
each patient. The features were selected in recent study by Feeny
et al. (2019) as most important for training the best LR model
based on the clinical data from a thousand of patients. So, we
used the same clinical features to train similar LR classifier
on the data from our patient cohort. The best model built on
the clinical data demonstrated a ROC AUC of 0.63, and the
accuracy, sensitivity and specificity much lower than those for
the classifiers built on the hybrid dataset (see Figure 4 and
Table 4). Then we used the same 9 clinical features for every 57
patients as a testing dataset to fed to the ML score calculator
provided by Feeny ea (see the Supplementary Materials in
Feeny et al., 2019). It showed an accuracy of 0.56 for our
patient cohort. The performance of the ML score calculator
tested on the clinical data from our 57 patients is similar with
the performance of the LR classifier we trained on the same
data. Both classifiers showed lower performance as compared
with the classifiers trained on the hybrid data from the same
57 patients. Moreover, our hybrid data classifier outperformed
classifiers reported in Feeny et al. (2019) (see Table 3 ibidem),
which were trained on different sets of clinical data from about
thousand of patients. Note, the clinical data classifiers on a
large dataset demonstrated higher metrics than those built on
57 clinical data inputs. This supports our expectation of further
improvement of the hybrid data classifier with data-set extension.
Therefore, we may conclude that our ML classifiers built on the
combination of clinical and model-derived features significantly
improve CRT prediction quality with higher accuracy, sensitivity
and specificity.

In addition, we compared the average ML CRT response
scores in the responder and non-responder groups provided
by the best SVM classifier on hybrid data, the LR classifier on
the clinical data and that provided by the ML score calculator
from Feeny et al. (2019) (see Figure 6). Noteworthy, for the
SVM classifier based on the hybrid data, we found a significantly
higher average score in the responders vs. nonresponders
confirming the predictive power of the ML model. In contrast,
the average ML scores predicted by the LR classifier on the
clinical data and calculator from Feeny et al. (2019) did not differ
between responders and nonresponders in our patient cohort
(see Table 2).

Therefore, our results clearly show significant
advantages ensured by the use of hybrid data combining
clinical data with simulated features from personalized
electrophysiology models for building ML predictive models of
CRT response.

4.2. Feature Selection for Classification
Models From Hybrid Data
During classifier development, we tested several feature selection
methods for different classifiers and different numbers of features
to define the final model with best characteristics (see Figure 4).
Note that we did not predetermine input features for classifiers
based on prior analysis. Instead, the features were automatically
selected inside the cross-validation loop as described in section
2. The final feature lists selected for the best predictive models
contain 8 inputs. Importantly, the most important feature set
contained fewer clinical features compared with model-derived
ones. In consistency with ESC guidelines on the significance
of pre-operative baseline LV EFLBBB for CRT response, it was
selected as themost important feature for the classificationmodel
based on the EF10 definition (see Figure 4). Interestingly, BMI
was selected at the second position in the feature chart. The latter
result is in line with study by Hsu et al. (2012), who demonstrated
that BMI < 30 kg/m2 predicted LV EF super-response.

We also tested the importance of model-driven characteristics
extracted from the CT/MRI data coupled with model
simulations. In our study, LV myocardial damage volume
(both absolute and relative to the survival myocardium volume)
did not reveal high importance by itself, but the distance from
the LV pacing site to the infarct/fibrosis area was selected as
the third most important feature for classifiers (see Figure 4).
We found no significant correlations between this distance
and the post-operative values of LV EF improvement 1EFCRT
or ESV reduction 1ESVCRT (see Supplementary Figure S7).
However, the role of the distance from the LV pacing site
to the infarct/fibrosis area in CRT response prediction was
supported by a positive correlation between the ML score
and the distance (r = 0.445, p = 0.001). As expected, much
higher average distance in the responder vs. nonresponder
group (45 ± 28 vs. 28 ± 27 mm, p = 0.02, see Table 2)
was found.

Our findings are consistent with the results of clinical studies
which assessed the significance of myocardial infarct size for CRT
response. The extent of scar core and gray zone was automatically
quantified using cardiac MRI analysis (Nguyên et al., 2018a). The
highest percentage of CRT response was observed in patients
with low focal scar values and high QRS area before operation.
Such area was calculated using vector-cardiography. In study by
Marsan et al. (2009) MRI was performed in candidates to derive
LV mechanical dyssynchrony and the extent of scar tissue to
predict CRT response. Higher LV dyssynchronies were strongly
associated with echocardiographic response to CRT, while the
total extent of scar correlates with non-response. Importantly, a
univariable logistic regression analysis showed that the presence
of a match between the LV lead position and a transmural scar
was also significantly associated with non-response to CRT. The
location of scar in the posterolateral region of the LV, which is
empirically thought to be a target site for LV lead implantation,
was associated with lower response rates following CRT (Chalil
et al., 2007). In study by Pezel et al. (2021), no difference was
found in presence and extent of scar between CRT responders
and non-responders. However, in non-responders, the LV lead
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was more often over an akinetic/dyskinetic area suggesting
the presence of tissue lesions, a fibrotic area, or an area with
myocardial thickness < 6 mm.

As seen in Figure 4, the distance from the LV pacing site to
LAT zone was selected as a 4-th feature in the importance list for
EF10 definition of CRT response. Accordingly, we revealed a low
negative correlation between the distance and ML classification
score (r = –0.263, p = 0.048) suggesting its possible role in CRT
response prediction. This was a bit surprising, as no difference
in this feature was found between the responders and non-
responders (see Table 2), as well as no correlation with LV EF
improvement in our patient cohort (r < 0.25, p> 0.05). However,
selection of this distance as an important feature for ML classifier
is in line with clinical studies, where the LAT zone was considered
as a target area for LV lead deployment (Chumarnaya et al., 2017;
Stephansen et al., 2018; Zubarev et al., 2019; Lahiri et al., 2020).
In particular, consistent with clinical data, our results indicate
that optimal electrode deployment should be guided by a kind of
minimum-maximum optimization with respect to the distances
from LAT and disease-induced remodeling area, respectively.
Preoperative model-based prediction of such optimal pacing site
location seems extremely valuable.

Although ventricular mechanical dyssynchrony was
considered with respect to CRT improvements (Duckett et al.,
2011; Heydari et al., 2012; Stankovic et al., 2014; Chumarnaya
et al., 2017), we did not use mechanical dyssynchrony indices
in developing our classifiers because not every patient had these
features indicated in the retrospective dataset. We did not find a
correlation between the ML response scores generated from the
selected hybrid data and the mechanical dyssynchrony indices
measured in 34 patients at the baseline (r < 0.25, p > 0.05
for IVD, Tsmax-Tsmin, SD12). This was not consistent with
a correlation between the IVD index and postoperative 1EF
in the patient cohort (r = 0.32, p = 0.029), and a significant
difference in the average IDV indices between responders
and nonresponders defined by LV EF improvement (75 ±

17 vs. 63 ± 19, p = 0.013, see Table 2). These controversial
findings did not allow us to disprove the possible importance of
mechanical dyssynchrony indices for ML response prediction,
and this hypothesis should be further evaluated on a dataset of
bigger size.

It is especially remarkable that each classification model
included simulated characteristics of myocardial activation and
ECG from the personalized electrophysiology models under
LBBB and BiV pacing selected among the most important
features. Our best SVM classifier for the EF10 response definition
selected three simulated features TAT/MTV under LBBB and
BiV pacing, and QRSd under BIV pacing among the 8 most
important ones for EF improvement prediction (see Figure 4).
In particular, two of the three features TAT/MTV and QRSd
under BIV pacing correlated with EF improvement (r =

0.27 and r = –0.31, p < 0.05, see Supplementary Figure S7),
supporting their importance for ML predictions. Note, the in-
silico indices of electrical dyssynchrony assessed in our study
were not selected as important for ML classifiers. These indices
were previously suggested by Villongco et al. (2016), who
demonstrated a correlation between the post-operational ESV

reduction and the change in the mATSTLV index of inter-
ventricular dyssynchrony under BiV pacing against the LBBB
baseline on data from 8 patients. In study by Lumens et al. (2015),
a combination of clinical data and personalized models of cardiac
mechanics and hemodynamics also demonstrated significant role
of inter-ventricular electrical dissynchrony in predicting CRT
response defined by an improved LV hemodynamic performance
assessed via increase in the maximal derivative of LV pressure
(dP/dtmax). In contrast, we found no significant correlations
between any of the simulated indices of electrical dyssynchrony
and echocardiographic CRT response in our cohort (r < 0.25, p
> 0.05). The role of such simulated indices needs further analysis
to be performed on a dataset of bigger size.

4.3. Hybrid Dataset Size and
Cross-Validation
It is noteworthy that the ML classifiers we developed to predict
LV EF improvement can be considered as powerful, especially
taking into account the database size of less than 60 entries. In
several studies, the ROCAUCwas shown to improve significantly
with increasing the dataset size from tens to thousands of entries
(Feeny et al., 2019). These results allow us to expect further
substantial improvement of the quality of the ML classifiers with
further increasing the training dataset size. Poor reproducibility
of ML results is known as a frequent problem with classifiers
developed on small samples. In our case, the restrictive size of
the dataset did not allow us to divide data into a conventional
80% training sub-set and 20% testing sub-set, so we had to use 57
Leave-One-Out combinations of data for classifier training.

To confirm the good quality of our classifiers, we tested
also a widely-used repeated stratified five-fold cross-validation
method with over 1,000 iterations. In this approach we chose
1,000 combinations of 45 training samples from our dataset
to train classifiers and the rest 12 samples to test the models.
The statistics of the ROC AUC for the five-fold cross-validation
approach is shown in Table 3 (right column) in comparison with
that of Leave-One-Out cross-validation (left column). It is seen
that average ROC AUCs at five-fold cross-validation are slightly
lower than those generated with the Leave-One-Out approach
but the latter values fall in the confidence interval of ROC
AUC distributions shown by five-fold cross-validation on our
dataset. Results demonstrate stability of the ML classifiers we
built on our hybrid dataset and confirm the robustness of the
ML predictions.

When developing our classifiers, we noticed that the list of
features in the cross-validation loop was not steady. This was
mainly due to the small sample size. However, even taking
this factor into account, we obtained a high accuracy of the
constructed classifiers. Testing the SVM classifier for EF10 with a
smaller number of features, we found that even for 5 features,
the classifier showed the same accuracy as for 8 features (for
other criteria of CRT response we observed a lower accuracy
with reduced input data dimension). This suggests that with any
further increase in the dimension, the classifier cannot converge
to optimal solution. Therefore, adding more features to such a
small size dataset does not make classifiers more accurate. We
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hope that with an increase in the size of dataset, the accuracy
of the classifiers will additionally increase due to a more stable
feature selection.

4.4. Classifiers for Various Definitions of
CRT Response
We used different CRT response definitions to build ML
classifiers for our hybrid dataset. Unfortunately, no consensus
has been achieved on how to define “response” to CRT Foley
et al. (2009), making it difficult to compare different clinical trials
and modeling studies. CRT response definition by markers of
LV reverse remodeling following device implantation is widely
used, and a more than 15% reduction in LV end-systolic volume
(1ESV< –15%) is the most widely accepted criterion (Park et al.,
2012). In consistency with that, an optimal cutoff value for1ESV
was defined at 13.5% (sensitivity = 0.719, specificity = 0.719)
for a 1-Year hierarchical clinical composite end point in patients
who underwent CRT (Uhm et al., 2019). Our earlier 278 patients’
study by Chumarnaya et al. (2021) revealed a 9% cutoff value for
ESV reduction for responders. Surprisingly, in our patient cohort,
the grouping by either 10% or 15% cutoff for ESV reduction for
responders was the same. Therefore, we used the latter definition
(ESV15) to determine a positive response to CRT.

A summary of the statistics for the hybrid dataset labeled
according to the ESV15 definition of CRT response is presented
in Supplementary Table S3. ML classifiers with leave-one-out
cross-validation on the hybrid data showed a high performance
with best ROC AUC of 0.74 (see Supplementary Figure S9), and
an accuracy of 0.70, sensitivity of 0.87, specificity of 0.37, ppv
of 0.73 and npv of 0.58. See also the classifier characteristics for
five-fold cross-validation in Supplementary Table S5. The ML
scores generated by the best classifier built on the ESV15 criterion
correlated with post-operational reduction in ESV (r = –0.27, p
= 0.039, see Supplementary Figure S10).

The results are slightly less powerful as compared with
classifiers built on the EF10 criterion. The latter showed higher
ROCAUCs, similar sensitivity, but higher specificity as compared
to ESV15 (see Figure 4 and Supplementary Figure S9, Table 3
and Supplementary Table S5). The ML scores based on ESV15
labeling are higher as compared with EF10 scores (0.69 ± 0.18
vs. 0.40 ± 0.35, p < 0.01, respectively) tending to overestimate
predictions for the negative response. Note that for both CRT
response criteria the average scores are significantly higher in
responders vs. nonresponders, indicating good predictive quality
of the ML classifiers.

Surprisingly, the sub-sets of 8 most important features
selected for classifiers on different response criteria almost
did not intersect. For the ESV15 criterion, the pre-operative
EDVLBBB showed the primary importance among other inputs
in consistency with its correlation with 1ESVCRT (r = –0.36, p
< 0.05). Another clinical feature selected for classification was
IHD/DCM index reflecting the etiology of CHF in patients (see
Supplementary Figure S9). The rest of the selected features were
indices derived from CT/MRI data and simulated features in
LBBB and BiV modes of activation. Similar to EF10, the distance
from the LV pacing site to infarct/fibrosis zone was the third

in the feature importance range, and simulated TAT/MTVLBBB

was selected for both ESV15 and EF10 criteria together with
other model-derived features different between the criteria (see
Figure 4 and Supplementary Figure S9).

Unexpectedly, we were not able to generate a predictive
model for ESV15 criterion from the clinical feature sub-
set suggested in Feeny et al. (2019) with ROC AUC > 0.5
on the dataset for our patient cohort. When we calculated
ML scores using the calculator from Feeny et al. (2019)
for our responders and nonresponders defined by ESV15
criterion, the average ML scores did not differ between the
groups, while the ML scores based on the hybrid data
were significantly different (see Supplementary Table S3). These
findings also point to the power of model-driven data in CRT
response prediction.

We also compared the accuracy of ML classifiers built on
the hybrid dataset for CRT response defined by 5, 10, 15%
LV EF improvement and by coupled EF10 and ESV15 criteria
(see Supplementary Tables S4, S5 in the Materials). For every
response definition, our best classifiers demonstrate improved
performance as compared with all clinical and ML predictors
reported in Feeny et al. (2019). Note again that our hybrid
data classifiers were trained on a dataset of much smaller size
than previously published (Feeny et al., 2019). Like in Feeny
et al. (2019), for different 1EF criteria an average accuracy
of the predictive models increases with the cutoff for the LV
EF improvement for CRT responders. However, the sensitivity
and predictive positive value of the models tend to decrease
with increasing the 1EF cutoff, while both the specificity and
predictive negative value increase. Thus, ML scores tend to
underestimate the probability of a super-response. The best
balance between sensitivity and specificity was shown for
the 1LV EF > 10% definition of CRT response which also
demonstrates the best ROC AUC among other criteria, thus
supporting the choice of this criterion for response evaluation
in patients.

4.5. Principal Coordinate Analysis and
Unsupervised ML Clustering for CRT
Response Prediction
The supervised multi-variable classifiers we discussed in the
previous sections were built using feature selection approaches
where input values are intrinsic functional characteristics of the
processes. Often, in ML algorithms principal component analysis
(PCA) is used for data dimension reduction, which allows more
objective exclusion of collinearity between the input features.
We tested the PCA in combination with Logistic Regression
using different numbers of PCs for classifier development. We
evaluated ROC AUCs using from 2 to 10 PCs, and obtained the
best ROC AUC of 0.70 for 5 PCs (Supplementary Figure S8, left
panel) with explainable variance of 0.58. This ROC AUC is much
lower than the best values demonstrated by other ML classifiers
we developed using row feature values.

As we showed in the previous section, classification results
depend on the positive CRT response definition used for
data labeling. Another ML approach is unsupervised ML
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data clustering based on their similarity without the help
of class labels. We performed clustering by K-means, used
in recent studies for CRT response evaluation (Cikes et al.,
2019; Feeny et al., 2020). Using K-means clustering on the
two first PCs, we differentiated our dataset into 2 clusters
(see Supplementary Figure S8, right panel). However,
mean 1EFCRT were not significantly different between the
groups (8.0 ± 8.6% vs. 10.7 ± 8.3%, p = 0.27), similar to
no difference in mean 1ESVCRT (−20 ± 38% vs. −34 ±

31%, p = 0.15). Moreover, distribution between the two
clusters of CRT responders and non-responders defined by
the EF10 criterion shows random assignment to the groups
(see Supplementary Figure S8, right panel). These findings
suggest that unsupervised learning on a small dataset does not
allow one to reliably differentiate pre-operational data into
groups clearly associated with CRT response characteristics. In
contrast, the supervised ML algorithms we developed provided
valuable predictions of CRT response showing the potential of
model-derived features.

5. LIMITATIONS

There are several limitations in our study that have to be
overcome to make our approach actually usable in clinic. First,
ventricular geometry in our personalized models was derived
from CT images obtained after CRT device implantation, not
before it. This was essential for this proof-of-concept study
because it allowed us to define the precise location of pacing
electrodes and to fit our models to both LBBB and BiV ECG
data for the same ventricular geometry thus demonstrating the
potential of our models for reproducing real clinical data. Despite
supposed difference in the ventricular geometry our simulated
ECGs in the LBBB mode had a high correlation with pre-
operative clinical ECGs (r = 0.84, p < 0.05), thus demonstrating
the effect of ventricular geometry as being secondary. Of course,
the reverse remodeling of the ventricles after CRT may affect
the difference in model simulations before and after operation.
That is why we primarily focused on the CRT response definition
based on the EF improvement which has low-to-moderate
correlation with ventricular remodeling in our patient cohort.
The main idea of using model-derived biomarkers for CRT
response prediction was the possibility to assess the primary effect
of ventricular synchronization itself on the electrophysiological
characteristics of activation, where changes in the geometry seem
less important.

The second limitation is that we used here a simplified
Eikonal equation allowing us to reproduce the QRS complex
of an ECG but not an entire ECG signal. Moreover, we used
a simplified approach to tailor the model to personalized data
focusing on the mean QRSd from 12-lead ECG as a target
for the parameter identification problem. Then we used the
maximal QRSd as a model biomarker for building a classificator.
The QRS morphology may provide much more information
for tailoring personalized electrophysiology models and then
for CRT response predictions. A recent study of Camps et al.
(2021) showed a way toward more accurate personalization

of the activation processes in ventricles based on the QRS
signals recorded in patients, which may be usefull for model
improvement. Feeny et al. (2020) also demonstrated the power
of the entire ECG signal for ML predictions of CRT response,
suggesting that the use of the entire simulated ECG under BiV
pacing may further improve ML predictors. In future studies,
we will use more adequate mono-domain models to reproduce
both activation and repolarisation of myocardium, and will assess
the contribution of entire ECG signals to the accuracy of CRT
predictive models.

Next, we have shown high importance of the distance from
the LV pacing site to the myocardial damage area in ML
predictions. In this study, we did not have access to raw MRI
data from patients to be able to derive accurate information
on post-infarction scar or fibrosis morphology. We used only
textual descriptions of the infarct zone location with a segment
accuracy within a 17-segment AHA LV model from an expert
who evaluated MRI data in patients. There are great examples
of using detailed morphology of myocardial remodeling area in
personalized cardiac models for predicting the risk of cardiac
arrhythmia and patient stratification (Lopez-Perez et al., 2019).
We think more objective information on the scar and fibrosis
morphology may improve predictive models of CRT response
as well.

In this study, for CRT response prediction we used simulated
characteristics of ventricular activation and ECG derived from
electrophysiological models. The use of the model features
characterizing ventricular excitation is justified by the essence
of the therapy, which ensures electrical synchronization of
ventricular activation, and the success of this synchronization
determines the outcome of the operation. However, the goal
of CRT implantation is the synchronization of ventricular
contraction and subsequent improvement in the mechanical
performance of the ventricles. This opens up a further direction
for studies using electromechanical models of cardiac activity
which are being developed in modeling community including
our group (Sugiura et al., 2012; Chabiniok et al., 2016; Isotani
et al., 2020) and which are able to predict directly EF, dP/dtmax
changes and other mechanical biomarkers of CRT response.
Such models were already used for clinical data analysis in
CRT patients by several groups (Sermesant et al., 2012; Okada
et al., 2017; Lee et al., 2018; Isotani et al., 2020), demonstrating
the power of such simulations for CRT response predictions.
In particular, we believe that reduced mechanical models using
regression or ML approaches to reproduce the behavior of
complex 3Dmodels such as developed with our participation (Di
Achille et al., 2018) would be the best choice in terms of possible
clinical application of model simulations.

In this study, the precise RV/LV pacing lead location was
determined from the post-operative CT scans for the patients.
Thus, the same pacing sites were used in our BiV model
simulations to exclude the effects of uncertainty in lead position
on the ML prediction results. This was the first step in the
validation of our new technique suggesting its high potential
in CRT response prediction. In real practice, however, patient
selection should be done before the clinical procedure. The
main advantage of using personalized computational models
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is the possibility to compute characteristics of ventricular
activation from any accessible pacing sites. Indeed, if the
coronary sinus anatomy is appropriate (which is possible to
derive from CT data), one can predict an accessible area for
pacing electrode installation. Hence, this area could be included
in a personalized ventricular model to simulate BiV pacing.
Moreover, RV/LV electrode locations can be varied throughout
the ventricle surfaces. Thus, simulations performed prior to
clinical intervention can be used to directly assess the effects of
BiV pacing on ventricular activation time, ECG biomarkers and
electrical dyssynchrony indices from various pacing sites. Also,
it might be helpful during selection the best possible electrode
location optimizing ventricular synchronization (or any other
optimized function) from model simulations. To sum up, the
next step of our approach development is the prediction of pacing
lead location prior to interventions by using features extracted
from the results of the simulations of BiV pacing.

A number of clinical and simulation studies paid great
attention to the possibility to target pacing lead implantation
(Bakos et al., 2014; Nguyên et al., 2018b; Sieniewicz et al.,
2018). Different criteria for optimal electrode location were
discussed in the literature, including optimization of electrical
synchronization characteristics, e.g., maximal narrowing of
QRSd, or minimization of interventricular dyssynchrony;
maximal proximity to the late activation zone or late contraction
zone; avoiding the match with infarct zone; or maximizing the
mechanical performance characteristics, e.g., dP/dtmax (Bakos
et al., 2014; Nguyên et al., 2018a; Isotani et al., 2020; Albatat et al.,
2021). The use of simulations from personalized models in CRT
response prediction opens the possibility to re-evaluate these
hypotheses and suggest a new strategy for implantation planning
with allowing for model-based prediction of optimal location for
pacing electrodes. We are going to test this hypothesis in a future
prospective study.

The long-term goal of CRT is to reduce morbidity and
mortality in heart failure patients with reduced left ventricular
function and intraventricular conduction delay. Several studies
tested ML approaches for predicting outcomes after CRT in
terms of patient survival and frequency of adverse events in
the longer term after operation (Kalscheur et al., 2018; Tokodi
et al., 2020). We had no sufficient data to perform such analysis
using simulated data, and this could be another new direction of
future studies.

Last but not least, in this study we had a limited data sample
from 57 patients. Of course, this number is quite small for ML
algorithms operating on thousands of entries with a possibility
to use separate subsets for training and testing. However,
our predictive models based on hybrid data from clinic and
computational models of cardiac activity have demonstrated high
performance with accuracy much higher than that demonstrated
by predictors developed on clinical data from a thousand of
patients. We used feature selection within the cross-validation
loop to eliminate any bias factors. The performance of the best
classifier was also higher than that of available classifiers based
on clinical data (which are based on much larger datasets).
In addition, in this study we used simple models that do
not tend to overfit on small datasets. Also, we didn’t do any

hyperparameter search, as a result of which the models could be
overfit. We believe that feature selection in the cross-validation
loop will be more stable on a larger dataset. This inspires
hope that a larger dataset and more informative data from
time-dependent simulated signals may further improve CRT
response predictions.

6. CONCLUSIONS

We have developed a new technology combing personalized
heart modeling and supervised ML techniques to predict CHF
patient improvement under CRT.We constructed 57multimodal
image-based personalized models of ventricular geometry and
myocardial damage area. The models were used to simulate
ventricular activation and ECG on the patient torso at LBBB and
BiV pacing. Supervised ML algorithms used features extracted
from the results of the simulations combined with additional
clinical indices and MRI/CT derived features.

Despite a limited dataset, we have developed several high-
performing ML classifiers from the hybrid dataset. The best SVM
classifier showed an accuracy of 0.82, sensitivity of 0.85, and
specificity of 0.78. The classifier on hybrid data outperformedML
predictors built on clinical data only.

The majority of the most relevant features selected from the
hybrid dataset for the ML classifiers were model-driven indices,
suggesting their great power for CRT response prediction.
Distance from the LV pacing site to the infarct/fibrosis area
and features extracted from simulations under BiV pacing were
shown as the most important features for patient classification.

The novel proposed approach has great potential clinical
implications suggesting patient care improvement. With an
ML classifier on hybrid data created and thoroughly validated,
one would be to assess with a high degree of accuracy the
likelihood of improvement in a particular patient’s condition
prior to a CRT procedure. In this way, ML scores would be
computed for the patient using personalized model simulations
for BIV pacing (or other type of stimulation) from various
accessible pacing site locations. The range of generated ML
scores would classify this patient as a potential responder
or nonresponder to the therapy, thus supporting individual
selection for it. At the same time, the best pacing site
location predicted from the model simulation results and
correspondingML scores could further be used to guide electrode
deployment during CRT procedure optimizing the patient
output. This technology would be especially effective in the
merging of detailed multimodal imaging data on the ventricular
geometry and structure of myocardial damage (infarct, fibrosis,
inflammation, adipose), coronary sinus anatomy, His-Purkinje
conduction system and information on cellular remodeling in the
myocardial tissue.
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