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The aim of this review is to give an outline of the blood clearance function of the liver
sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions
of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the
constituents of the blood. These cells are equipped with high-affinity receptors and
an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery
for removal of large molecules and nanoparticles from the blood, thus contributing
importantly to maintain blood and tissue homeostasis. We describe here central aspects
of LSEC signature receptors that enable the cells to recognize and internalize blood-
borne waste macromolecules at great speed and high capacity. Notably, this blood
clearance system is a silent process, in the sense that it usually neither requires or
elicits cell activation or immune responses. Most of our knowledge about LSECs arises
from studies in animals, of which mouse and rat make up the great majority, and
some species differences relevant for extrapolating from animal models to human are
discussed. In the last part of the review, we discuss comparative aspects of the LSEC
scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular
beds and in different vertebrate classes. In conclusion, the activity of LSECs and other
SECs prevent exposure of a great number of waste products to the immune system,
and molecules with noxious biological activities are effectively “silenced” by the rapid
clearance in LSECs. An undesired consequence of this avid scavenging system is
unwanted uptake of nanomedicines and biologics in the cells. As the development
of this new generation of therapeutics evolves, there will be a sharp increase in the
need to understand the clearance function of LSECs in health and disease. There is
still a significant knowledge gap in how the LSEC clearance function is affected in
liver disease.

Keywords: blood clearance, liver, sinusoid, endothelial cell (EC), scavenger receptor, mannose receptor, Fc-
gamma receptor IIb, scavenger endothelial cells

Abbreviations: acLDL, acetylated low density lipoproteins; AGE, advanced glycation end-products; FcγRIIb2, Fc-gamma
receptor IIb2; FSA, formaldehyde-treated serum albumin; HCC, hepatocellular carcinoma; LSEC, liver sinusoidal endothelial
cell; LSECtin, liver and lymph node sinusoidal endothelial cell C-type lectin; L-SIGN, liver/lymph node-specific ICAM-
3 grabbing non-integrin; LYVE-1, lymphatic vessel endothelial hyaluronan receptor-1; NPC, non-parenchymal liver cells;
oxLDL, oxidized low density lipoprotein; RES, reticuloendothelial system; SEC, scavenger endothelial cell; scRNA-seq, single
cell RNA sequencing; SR, scavenger receptor; tPA, tissue plasminogen activator; VLP, virus-like particle.
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INTRODUCTION

The aim of the present review is to give an outline of the
blood clearance function of the mammalian liver sinusoidal
endothelial cells (LSECs), which constitute one of the two
cellular arms of the hepatic reticuloendothelial system (RES).
It is generally accepted today that the hepatic RES consists
of two types of specialized clearance cells, namely the liver
macrophages, or Kupffer cells, that are geared to take up particles
(>200 nm) via phagocytosis, and the non-phagocytic LSECs
that are specially equipped for clearance of macromolecules
and colloids by receptor-mediated endocytosis (Seternes et al.,
2002). This understanding is the result of a scientific evolution
that has taken place over more than a century, starting with
the discovery of the macrophage (Metchnikoff, 1884, 1968),
and the use of vital stains to locate the anatomical sites of
uptake of blood-borne exogenous and endogenous waste material
(Kiyono, 1914; Aschoff, 1924). Uptake of vital stains (a type
of colloidal particles) occurred in so-called “reticuloendothelial
cells” (Aschoff, 1924), which are endothelial cells with high
scavenging activity (Seternes et al., 2002). Readers who wish
to look deeper into the historical backdrops and the scientific
evolution of the development of the RES concept are referred to
Smedsrød (2004) and Sørensen et al. (2012).

A series of experiments during the 1980s established that
soluble macromolecules and nanoparticles of various kinds were
rapidly cleared from the circulation of mammals mainly by
specialized endothelial cells in the liver sinusoids, with negligible
uptake in the Kupffer cells (Smedsrød et al., 1990b). Violating
the paradigm at the time, that the Kupffer cells alone constituted
the RES (Van Furth et al., 1972), these findings came as a
surprise. We know today that the LSECs are characterized by a
remarkably active receptor-mediated endocytosis making them
an important part of the hepatic RES (Smedsrød et al., 1990b;
Sørensen et al., 2012).

Tissue Turnover Processes and Waste
Clearance
The story about LSECs and other scavenger endothelial
cells (SECs) is largely about how the body deals with
own and foreign waste products. The metabolic processes
in our tissues and cells generate a constant release of
all kinds of biological macromolecules. For instance, our
connective tissues continuously release considerable amounts of
large fragments of matrix macromolecules, such as collagens,
procollagen propeptides, and connective tissue polysaccharides,
e.g., hyaluronan and chondroitin sulfate proteoglycans. A small
portion of these molecules are endocytosed and degraded by
local connective tissue cells, whereas the majority are transported
with lymph to the lymph nodes, where specialized cells scavenge
them (Laurent et al., 1986a; Østgaard et al., 1995; Fraser et al.,
1997). The proportion that escapes clearance in lymph nodes
are released to the general circulation, where they are finally
effectively cleared and degraded by the LSECs (Smedsrød et al.,
1985a, 1989, 1990a; Laurent et al., 1986a; Smedsrød, 1988, 1990;
Melkko et al., 1994; Østgaard et al., 1995; Malovic et al., 2007;

Figure 1 and Table 1). Of note, bone lacks lymph capillaries,
and the large amounts of collagen and waste from collagen
production that are released from bone tissue are released
directly to the blood circulation. Thanks to the LSEC scavenger
and mannose receptors these molecules are very effectively
removed from the circulation. A different group of waste
products that must be removed rapidly from the circulation
include the powerful fibrinolytic tissue plasminogen activator
(tPA), which is cleared mainly by the LSEC mannose receptor,
and to a lesser extent by the galactose receptor of hepatocytes
(Smedsrød and Einarsson, 1990). LSECs also participate in
elimination of circulating small soluble immune complexes via
the Fc-gamma receptor IIb2 (FcγRIIb2) (Mousavi et al., 2007).
Moreover, macromolecules released from cells under normal or
pathophysiological conditions (e.g., lysosomal enzymes and poly-
and oligonucleotides) are effectively cleared from the circulation
by LSECs (Martin-Armas et al., 2006; Elvevold et al., 2008a)
(reviewed in Sørensen et al., 2015). The receptors involved
and the speed of clearance observed with several of the waste
macromolecules that are eliminated by LSECs are presented
in Table 1 and will also be dealt with in more detail in the
following sections.

Clearance of Virus and Other
Nanoparticles From the Circulation
In addition to their significant function of removing endogenous
waste material, LSECs also play a role in blood clearance
of exogenous ligands such as virus and other nanoparticles.
Studies challenging mice with intravenous administration of
adenovirus (Ganesan et al., 2011), BK and JC polyomavirus-
like particles (VLPs) (Simon-Santamaria et al., 2014) and
human immunodeficiency virus (HIV)-VLPs (Mates et al.,
2017) showed a rapid and efficient clearance from blood
with liver being the main responsible organ and with
high uptake in LSECs. Liver was also found to be the
main organ for clearing simian immunodeficiency virus in
Rhesus monkeys (Zhang et al., 1999). The hepatic clearance
was predominantly in LSECs with approximately 90% of
eliminated blood-borne adenovirus or HIV-VLPs associated
with this cell type, while the remaining associated with
Kupffer cells (Ganesan et al., 2011; Mates et al., 2017).
Mates and coworkers calculated that the liver sinusoids
possessed an astonishing clearance rate of more than 100
million HIV-VLPs per minute (Mates et al., 2017). In vitro
experiments have also shown that rat LSECs endocytose
and degrade T4 bacteriophages (Øie et al., 2020). This
efficient viral uptake suggests that LSECs may have an
important role in the innate immune defense against viral
infections. The receptors responsible for viral endocytosis
in LSECs are not yet identified. Other receptors expressed
by LSECs (L-SIGN, liver/lymph node-specific ICAM-
3 grabbing non-integrin; and LSECtin, liver and lymph
node sinusoidal endothelial cell C-type lectin) have been
shown to interact with surface glycoproteins of Ebola
virus, HIV, SARS coronavirus (CoV), and hepatitis C virus
(HCV) (Shetty et al., 2018), and recently with SARS-CoV-2

Frontiers in Physiology | www.frontiersin.org 2 October 2021 | Volume 12 | Article 757469

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-757469 October 5, 2021 Time: 17:59 # 3

Bhandari et al. LSEC Scavenger Function

FIGURE 1 | Fate of extracellular matrix turnover products, the dual cell principle of waste clearance and the role of liver scavenger cells in waste clearance.
(A) Molecular fragments are continuously released during the constant turnover of the extracellular matrix. Some of the degradation products are digested locally but
a large proportion is drained to lymph nodes where they are endocytosed by macrophages and sinusoidal endothelial cells (Laurent et al., 1986a; Fraser et al.,
1997). The fragments that escape uptake in lymph node cells leak to the blood circulation (Østgaard et al., 1995), and are removed from blood by endocytosis in
liver scavenger cells. (B) Liver sinusoidal endothelial cells (LSECs) and Kupffer cells, which together make up the largest population of scavenger cells in the body,
share the scavenging workload in the liver (Seternes et al., 2002). LSECs are specialized on effective clathrin-mediated endocytosis of soluble macromolecules and
nanoparticles, whereas larger particles, such as bacteria and dead and dying cells are cleared by the Kupffer cells, illustrating “the dual cell principle of waste
clearance” (Sørensen et al., 2012). (C) The uptake of soluble macromolecules in LSECs are mediated by a range of endocytic receptors, with the mannose receptor,
stabilin-1, stabilin-2, and FcγRIIb2 being the most investigated. *Other endocytic receptors may also contribute to the effective waste clearance performed by
LSECs. Figure created with BioRender.com.
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TABLE 1 | Tissue turnover products cleared from blood mainly by LSECs*, the endocytosis receptor involved in the LSEC uptake, examples of rate of blood clearance of ligands taken up by LSECs following i.v.
administration of the ligand, and species examined.

Ligand LSEC receptor References Examples of injected material
(dose, inj. site)

Species Decay of plasma/blood
radioactivity (% eliminated)

References

Hyaluronan Stabilin-2a Smedsrød et al., 1984;
McCourt et al., 1999; Zhou
et al., 2000; Politz et al.,
2002

[3H]-hyaluronan (30–32 µg, marginal
ear vein)

Rabbit t1/2 = 2.5–4.5 min (88% uptake in liver
at 19 min after injection)

Fraser et al., 1981

125 I-tyramine cellobiose (TC)-labeled
hyaluronan (MW = 2.5 × 105) (tail vein)

Rat t1/2α = 0.9 min (79% uptake in liver at
30 min after injection)

Dahl et al., 1988

[3H]-hyaluronan (60–130 µg, cubital
vein)

Human t1/2 = 2.6-5.5min (90% was eliminated
from blood after 10 min)

Fraser et al., 1984

Chondroitin sulfate Stabilin-2a Smedsrød et al., 1985b;
Harris and Weigel, 2008

[3H]-chondroitin sulfate (CS) and
125 I-CS proteoglycan

Rat Clearance rate not examined but the
main uptake was in LSECs

Smedsrød et al.,
1985b

Heparin Stabilin-2b Harris et al., 2008, 2009;
Øie et al., 2008

125 I-FITC-labeled unfractionated
heparin (0.1 IU/kg, tail vein)

Rat t1/2 = 1.71 min (71% was recovered in
liver after 15 min)

Øie et al., 2008

Nidogen SR Smedsrød et al., 1989 125 I-TC-nidogen (trace amounts, tail
vein)

Rat t1/2 = 2-3 min (78% was recovered in
liver after 1 h)

Smedsrød et al.,
1989

Alpha chains of types I–V and XI
collagen

Mannosec

receptor
Smedsrød et al., 1985a;
Smedsrød, 1990; Malovic
et al., 2007

125 I-FITC-labeled heat-denatured
collagen (50 µg, tail vein)

Rat t1/2α = 0.8 min (75%) t1/2β = 3.7 min
(25%)

Hellevik et al., 1996

125 I-DTAF-collagen (heat-denatured)
(0.04 mg/kg, tail vein)

Mouse t1/2α = 0.51 min (90.25%)
t1/2β = 36.9 min (9.75%)

Malovic et al., 2007

N-terminal propeptide of types I
and III procollagen (PINP and
PIIINP)

SR. Stabilin-2 Smedsrød, 1988; Melkko
et al., 1994

125 I-TC-PINP (5 µg, tail vein) Rat t1/2α = 0.59 min (78.5%)
t1/2β = 3.3 min (21.5%)

Melkko et al., 1994

C-terminal propeptide of type I
procollagen (PICP)

Mannose
receptor

Smedsrød et al., 1990a 125 I-TC-PICP (10 µg, tail vein) Rat t1/2 = 8.7 min Smedsrød et al.,
1990a

Tissue plasminogen activator (tPA) Mannose
receptor

Smedsrød and Einarsson,
1990

125 I-tPA (1 µg, tail vein) Rat t1/2α = 0.6 min (65%) t1/2β = 6.4 min
(35%)

Smedsrød and
Einarsson, 1990

Lysosomal enzymes Mannose
receptor

Hubbard et al., 1979;
Isaksson et al., 1983;
Elvevold et al., 2008a

125 I-cathepsin (10 µg, tail vein) Mouse t1/2α = 0.9 min (63%) t1/2β = 8.9 min
(37%)

Elvevold et al.,
2008a

125 I-glycosyl asparaginase (trace
amounts, tail vein)

Rat t1/2α = 0.7 min (63%) t1/2β = 3.3 min
(37%)

Smedsrød and
Tollersrud, 1995

125 I-α-mannosidase (trace amounts,
jugular vein)

Pig t1/2 = 5 min (about 60% was recovered
in liver, and 18% in lung after 1 h)

Nedredal et al.,
2003
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(Kondo et al., 2021). The function of these receptors in LSECs is
however, not well known.

Liver Sinusoidal Endothelial Cell Clearance as a
Challenge to Delivery of Nanopharmaceuticals
As outlined in Sørensen et al. (2012) and Figure 1 LSECs
are geared to take up and metabolize several types of
macromolecules and nano sized material <200 nm, a size
range that includes most types of nanotherapeutics. Although
critical for homeostasis maintenance, the powerful capability
of LSECs to remove own and foreign substances from the
circulation poses a serious challenge for the development of
large size/nano pharmaceuticals. Thus, targeting LSECs with
nano sized material is clearly a physiological default system, and
focus is therefore commonly on finding ways to avoid uptake
of nanopharmaceuticals in these cells. The last decades have
seen a surge in the development of the new generation nano
drugs. Although promising, with the potential to remedy diseases
(e.g., cancer, viral infections, and genetic disorders) for which
no cure presently exists, the successful development of these
compounds are hampered by the lack of understanding of how
to achieve control over the hepatic uptake. It is not possible
to cover all aspects of the field in this short paragraph. The
use of nanoparticles as carriers of RNA therapeutics, and the
challenge of controlling liver uptake can serve as an example. For
more literature on nanoparticles that are taken up in LSECs, the
reader is referred to Kamps et al. (1997), Sigfridsson et al. (2017),
Campbell et al. (2018), Hunt et al. (2018).

One reason for using nanocarriers is to protect RNA
therapeutics from being degraded by blood plasma RNases
following their intravenous administration. Although chemical
modifications of oligonucleotides have been developed to make
them resistant to degradation in plasma, the problem of
uncontrolled LSEC uptake still exists (Godfrey et al., 2017; Shen
and Corey, 2018). Renal filtration also contributes importantly
by efficient filtration of material smaller than 6 nm (Choi
et al., 2007). In addition, uncontrolled accumulation of these
compounds may result in hepatotoxic reactions (Godfrey et al.,
2017). Hence, siRNA for silencing of gene expression, or
mRNA for gene expression are loaded in nanoparticles to
carry these oligonucleotides past the LSECs and the liver
and bring them intact to the cellular site of their intended
therapeutic activity. Much effort is therefore spent to generate
nanoparticles that carry therapeutic RNA to the intended cellular
site. Out of a plethora of different types of nanoparticles that
have been previously tested as vehicles for therapeutic RNA
and other drug candidates, it appears that specially designed
lipid nanoparticles have particularly attractive properties. This
includes ease of manufacture, reduced immune responses,
multidosing capabilities, larger payloads, and flexibility of design
(Kulkarni et al., 2018). Although much effort is directed toward
designing nanoparticles that reach the intended target cells
with high precision and enable the RNA cargo to enter the
intracellular compartment, the true “elephant in the room,”
that is uncontrolled clearance by LSECs, is still a serious
challenge that must be overcome. A few of those nanoparticle-
carried RNA therapeutics that have made it successfully to
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the market include gene correction drugs that target the
hepatocytes (Roberts et al., 2020). The LSECs allow passage
of these nanoparticles (50 nm) through their fenestrae (i.e.,
open pores of diameter 100–150 nm). Circulating ApoB binds
to these lipid nanoparticles, which mediate binding to the
hepatocyte low density lipoprotein (LDL) receptor (Akinc et al.,
2010). The same authors showed that conjugation of the
particle surface with N-acetylgalactosamine (GalNAc), a ligand
for the GalNAc receptor [aka asialoglycoprotein receptor, or
Ashwell-Morell receptor, (Morell et al., 1971)] that are present
on hepatocytes, but not on LSECs, strengthened the uptake
of these lipid nanoparticles to the hepatocytes. Despite the
success in using lipid nanoparticles as vehicles for transfer of
RNA therapeutics to hepatocytes, the difficulty in achieving
efficient delivery to target organs and tissues other than the
liver is still a major obstacle preventing widespread usage of
oligonucleotide therapeutics. One of the keys to solve this
problem would be more precise knowledge on how to avoid
unwanted uptake in LSECs.

Factors Contributing to the Effective
Blood Clearance Activity in Liver
Sinusoidal Endothelial Cells
Nowadays it is widely appreciated that blood clearance is a central
physiological function of LSECs. Moreover, there is general
agreement that special endocytosis receptors endow LSECs with
their scavenger function. Of note, several additional factors must
be taken into consideration to explain the role of LSECs as major
blood clearance cells (Table 2).

The anatomical location clearly plays a role: lining the
hundreds of millions of liver sinusoids and covering a total area of
approximately 210 m2, i.e., nearly that of a tennis court [Sørensen
and Smedsrød (2020); calculated from Blouin et al. (1977)], the
LSECs of the human liver are optimally located to effectively
survey the large amount of blood that passes every minute.
LSECs further make up the largest part of the liver sinusoidal
cells, outnumbering the Kupffer cells by about a factor of 2.5
(Pertoft and Smedsrød, 1987).

In addition, a physiological factor contributing to effective
interaction of LSECs with the blood is the reduced blood flow

TABLE 2 | Factors contributing to the remarkably effective blood clearance
activity of LSECs.

Factors concerning the LSECs proper:

• Expression of dedicated waste clearing receptors with high receptor ligand
affinity

• Extremely fast shuttling (recycling) time of clearance receptors between the
cell surface and the early endosomal compartment

• Well-developed apparatus for intracellular trafficking and degradation of
endocytosed cargo

• Content of endocytic organelles higher than in most other cell types

Anatomical and physiological considerations:

• Strategically located for optimal possibility to survey the blood

• Large total surface facing the blood

• Slow sinusoidal blood flow that allows optimal chance for ligands to
encounter clearance receptors

through the sinusoids, giving the LSEC clearance receptors ample
possibility to remove blood-borne waste macromolecules and
colloids that are incompatible with homeostasis. Not only is
the sinusoidal blood flow velocity slow, the flow in individual
sinusoids is characterized by temporal heterogeneity, which
differs between the sinusoidal zones (MacPhee et al., 1995). The
intermittence of sinusoidal blood flow varies from fast, slow,
stopped, or even reversed. These different flow conditions create
very different microenvironments for the liver cells, including
LSECs, in zone 1 vs. zone 3. This temporal zonal flow fluctuation,
which offers greatly different opportunities for LSECs to survey
and bind blood-borne waste macromolecules, needs to be further
studied to learn more about the regulation of the clearance
activity along the hepatic sinusoid.

Several studies have been published on the expression and
ligand specificity of the special LSEC endocytosis receptors,
some of which are sufficiently unique to be used as LSEC
specific markers at both mRNA and protein levels (Sørensen
et al., 2015; Pandey et al., 2020; Sørensen and Smedsrød, 2020).
When the goal is to study the LSEC role as blood clearance
cells, it appears that not only anatomical aspects and the
receptor expression and specificity must be included; the entire
endocytic pathway in LSECs must be explored. A literature
survey on this topic reveals that major cell physiological
events spanning from receptor-mediated ligand internalization
to lysosomal ligand processing, are more active in LSECs than
in other liver cells and endothelial cells. First, the mode of
endocytosis reported for ligands taken up via LSEC scavenger
and mannose receptors is via the clathrin-mediated pathway
(Smedsrød et al., 1988; Eskild et al., 1989; Esbach et al., 1994;
Hellevik et al., 1998; Kjeken et al., 2001; Hansen et al., 2005).
Soluble immune complexes are also internalized via clathrin-
coated pits after binding to the LSEC FcγRIIb2 (Mousavi et al.,
2007). This distinguishes LSECs as a unique member of the
family of endothelial cells, since it is generally held that caveolae-
mediated endocytosis is a characteristic of endothelial cells.
LSECs express caveolin-1 (Yamazaki et al., 2013) but endocytosis
via caveolae has not been described, and fluid-phase endocytosis
is also of little importance for the scavenger function of LSECs
(Kjeken et al., 2001).

Abundance of clathrin-coated pits and vesicles has been
reported repeatedly in LSECs (Wisse, 1970, 1972; Kjeken et al.,
2001; Falkowska-Hansen et al., 2007). These were described as
“bristle-coated pits and vesicles” in the early, epoch-forming
ultrastructural studies of LSECs by Wisse (1970, 1972); clathrin
was first described by Pearse (1976). Morphometric analyses of
rat liver showed that the density of coated pits at the plasma
membrane was about twice as high in LSECs compared to
Kupffer cells and hepatocytes (Kjeken et al., 2001). LSECs are
highly porous cells with open fenestrae allowing direct passage
of plasma proteins and lipoproteins to the subendothelial space
of Disse (Wisse, 1970; Wisse et al., 1985; Fraser et al., 1995). The
observation that coated pits are present both on the abluminal
and adluminal aspects of the sinusoidal lining (Figure 2; Sørensen
et al., 2012, 2015), although more abundant toward the sinusoidal
lumen, indicates that endocytosis can take place on both sides of
the LSEC in vivo allowing capture also of filtrated ligands.
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FIGURE 2 | Distribution of a soluble scavenger receptor ligand in the hepatic
lobule, and ultrastructure of a liver sinusoid. (A) Uptake of FITC-FSA
(formaldehyde-treated serum albumin) in mouse liver, 10 min after intravenous
administration (dose 2 µg/g bodyweight). Arrows points to FITC-FSA (bright
green) located along the sinusoids (S), in a pattern typical of uptake in LSECs.
PV, portal vein. (B) Transmission electron micrograph of a rat liver sinusoid.
The inserted image is a magnification of part of the LSEC in the main image.
Arrows point to coated pits and arrow heads to fenestrae. LSEC, liver
sinusoidal endothelial cell; SD, space of Disse; HC, hepatocyte. Scale bar
5 µm.

Receptors that internalize ligands via the clathrin pathway
recycle to the cell surface. The half-life for internalization of
receptor-ligand complexes is reported to be 17 and 10 s, for LSEC-
mediated endocytosis via scavenger receptors (SRs; Eskild et al.,
1989) and the mannose receptor (Magnusson and Berg, 1989),
respectively. This is about 15–35 times as fast as internalization of
ligand via the galactose receptor of hepatocytes [calculated from
table 2 in Eskild et al. (1989)]. This very rapid receptor recycling
in LSECs additionally explains the extremely effective clearance
of ligands following intravenous administration. Similarly, in vivo
the circulatory half-life of the ligands removed from blood via
LSEC receptors are only a few minutes (Table 1).

Following receptor-mediated delivery of ligand to early
endosomes, the ligands are transported along the endocytic
pathway to the lysosomes for degradation. It is worthy of note
that LSECs express very high amounts of Rab5, Rab7, clathrin,
α-adaptin, β-adaptin, and rabaptin-5 (Juvet et al., 1997), which
are all involved in this pathway. Comparison of the rat LSEC
and Kupffer cell transcriptome and proteome further showed

higher expression of genes associated with endocytic function,
vesicle transport, and positive regulators of endocytosis in LSECs
(Bhandari et al., 2020). This adds to the observations that
LSECs are highly specialized to perform rapid endocytosis.
Additional aspects supporting the notion of LSECs as specialized,
professional scavenger cells, is the observations that the cells
contain high amounts of lysosomes. Although the LSECs make
up only 3.3% of the total liver cell volume, the cells contain
impressively 45% of the organ’s endocytic vesicles and 17% of
the lysosomal volume (Blouin et al., 1977). Yet another factor
contributing to the efficient scavenging activity of LSECs is the
specific activity of several lysosomal enzymes which is higher in
LSECs than in hepatocytes and Kupffer cells (Knook and Sleyster,
1980; Elvevold et al., 2008a).

In the following sections, we will focus on the major
endocytosis receptors of LSECs and the ligands that they remove
from the circulation. In addition, we will include information
about zonation of receptor expression, species differences, and
known changes in receptor expression and clearance function
in disease. Finally, we include a section on comparative aspects
of clearance function of LSEC-like cells in other organs, and in
non-mammalian species.

SCAVENGING RECEPTORS IN LIVER
SINUSOIDAL ENDOTHELIAL CELLS

Liver sinusoidal endothelial cells express a wide range of
endocytosis receptors, recently reviewed by Pandey et al. (2020)
in this review series. Of these, the main receptors involved
in clearance of waste molecules produced in normal turnover
processes and disease include stabilin-1 and stabilin-2 (belonging
to the LSEC SRs), the FcγRIIb2, and the mannose receptor
(Sørensen et al., 2012, 2015).

Liver Sinusoidal Endothelial Cell
Scavenger Receptors
The term “scavenger receptor” (SR) originally described a
macrophage receptor which mediates the endocytosis of a
broad range of polyanionic molecules (Goldstein et al., 1979).
However, this definition needs some refinement as several new
SRs and their ligand specificities have been characterized since
the definition was first launched. The wide range of ligands to
which SRs bind, include: (i) chemically modified proteins such
as acetylated and oxidized lipoproteins, maleylated bovine serum
albumin (m-BSA), and formaldehyde-treated serum albumin
(FSA); (ii) certain polysaccharides such as dextran sulfate; (iii)
advanced glycation end-product (AGE) proteins; (iv) amino
terminal procollagen propeptides; (v) four stranded, but not one
or two stranded, polynucleotides such as poly-inosinic acid and
poly-guanylic acid; and other ligands such as anionic lipids on the
surface of damaged or apoptotic cells, endotoxin and lipoteichoic
acid on pathogenic microorganisms, and crocidolite asbestos
(Brown and Goldstein, 1983; Nagelkerke et al., 1983; Blomhoff
et al., 1984; Krieger et al., 1993; Krieger and Herz, 1994; Melkko
et al., 1994; Smedsrød et al., 1997; Yamada et al., 1998).
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The physiological role of SRs is to clean up cellular debris
and serve as a part of host defense, but they also play a
pathophysiological role in, for example, the accumulation of
oxidized LDL (oxLDL) in macrophages leading to the formation
of foam cells in atherosclerosis. However, acetylated LDL
(acLDL), which does not occur naturally, is a commonly used
ligand in the study of SRs. Dextran sulfate is another non-
endogenous polyanion used in the study of SRs. This ligand
does not discriminate between SRs and mannose receptors, and
is therefore regarded as a nonspecific inhibitor of receptor-
mediated endocytic pathways (Jansen et al., 1991).

Liver sinusoidal endothelial cells possess significant SR activity
responsible for clearing AGE-proteins (Smedsrød et al., 1997;
Hansen et al., 2002b), oxLDL (Van Berkel et al., 1991), acLDL
(Nagelkerke et al., 1983), hyaluronan (Eriksson et al., 1983;
Smedsrød et al., 1984), chondroitin sulfate (Smedsrød et al.,
1985b), amino-terminal procollagen propeptides (Smedsrød,
1988; Melkko et al., 1994), nidogen (Smedsrød et al., 1989), and
FSA (Blomhoff et al., 1984) from the circulation. FSA is a well-
established model ligand used to assess SR activity in LSECs
(Figure 2), as well as determining identity and purity of LSEC
preparations (McCourt et al., 1999; Sørensen et al., 2015; DeLeve
and Maretti-Mira, 2017). This LSEC SR activity is independent of
that attributed to the macrophage scavenger receptor (MSR1, aka
SR-A1), which is also expressed in LSECs (Hansen et al., 2002a).

The SRs are a growing family [currently 12 different classes
(Alquraini and El Khoury, 2020)] of structurally unrelated
proteins that have a common affinity for polyanionic molecules.
The nomenclature follows the classification defined in PrabhuDas
et al. (2017), namely SR-A to SR-L. Of these, LSECs express
receptors belonging to class SR-A, SR-B, SR-E, SR-H, SR-J, SR-
K, and SR-L (reviewed in Pandey et al., 2020). Despite the
expression of several SR subclasses on LSECs, the main work-
horse SR on this cell type appears to be SR-H2/stabilin-2, possibly
together with SR-H1/stabilin-1 (McCourt et al., 1999; Sørensen
et al., 2012). It remains to be determined if the SR-E members
LOX-1 and the mannose receptor on LSECs have a role in
clearance of the “classical polyanionic” SR ligands. However, the
LSEC mannose receptor clearly plays an important role in the
clearance of circulating collagen alpha chains (Malovic et al.,
2007), C-terminal propeptide of type-1 procollagen (Smedsrød
et al., 1990a), tPA (Smedsrød and Einarsson, 1990), and lysosomal
enzymes (Elvevold et al., 2008a) (discussed in section “The
Mannose Receptor”).

An important difference between human and rodent LSECs
regarding SR expression is that CD36 (SCARB3) is widely
expressed in human LSECs, and can thus be used as a marker
for these cells in tissue sections (Strauss et al., 2017). However,
comparative transcriptomic and proteomic profiling of (Sprague
Dawley) rat LSECs and Kupffer cells revealed very low CD36
expression in LSECs compared to Kupffer cells (Bhandari et al.,
2020), as was also reported in (Li et al., 2011).

The identification and characterization of SRs involved in
blood clearance in the LSEC has been a long and winding road
in part due to the belief that the LSEC hyaluronan receptor and
the receptor referred to as “the LSEC scavenger receptor” were
two separate entities. This issue was finally resolved in 1999 when

the hyaluronan receptor and a SR on LSECs were found to be one
and the same (McCourt et al., 1999), although there was already
an indirect suggestion this was the case in 1986 when chondroitin
sulfate (a ligand for the hyaluronan receptor) partially inhibited
the uptake of a SR ligand (Eskild et al., 1986).

Hyaluronan is a widely distributed negatively charged
polysaccharide, first isolated from the vitreous humor (Meyer
and Palmer, 1934). It has been attributed with many biological
functions such as space filling and joint lubrication, as well as
other more specific effects on cell function. Fraser et al. (1981)
reported the fate of hyaluronan injected into the blood of rabbits,
using 3H-hyaluronan, which was labeled on acetyl groups. After
19 min, 88% of the label was detected in the liver, where it
was found almost entirely in the non-parenchymal cell (NPC)
fraction after Percoll fractionation of liver cells. Some radiolabel
was also found in the spleen. The only metabolite detected in
the blood or urine was 3H2O, suggesting complete degradation
of the polysaccharide. A subsequent whole body study of the
distribution of radioactivity in mice injected intravenously with
14C-hyaluronan showed that the polysaccharide was taken up by
liver, spleen, bone marrow, and lymph nodes (Fraser et al., 1983).

Eriksson et al. (1983) demonstrated that LSECs, and not
Kupffer cells, were the main sites of uptake of hyaluronan by
the liver. Smedsrød et al. (1984) performed further studies with
primary cultures of parenchymal cells and NPCs to test their
ability to bind hyaluronan (at 4◦C) and internalize and degrade
the ligand (at 37◦C), and confirmed that LSECs (and not Kupffer
cells or hepatocytes) were able to bind hyaluronan with high
specificity and affinity. It was shown that the rates of hyaluronan
uptake were highest in LSEC cultures, with degradation products
appearing in the supernatant within 30 min of addition of 3H-
hyaluronan; steady state levels of internalized 3H-hyaluronan and
degradation products occurred 60–75 min into the incubation.
The above results were confirmed in vivo with whole body
autoradiography studies determining the fate of 3H-hyaluronan
10 min after injection into rats; approximately 90% of the injected
radioactivity was found in the cytoplasm of LSECs, while none
was found in Kupffer cells (Fraser et al., 1985).

The avidity of the endocytic hyaluronan receptor for its ligand
increases with the length of the polysaccharide; the dissociation
constant ranges from 1.4 µM for octasaccharides to 9 pM
for hyaluronan of 6.4 × 106 Da (Laurent et al., 1986b). The
smallest hyaluronan fragment that can bind is a hexasaccharide
(Smedsrød et al., 1984). The rat receptor also has a threefold
greater affinity for chondroitin sulfate than for hyaluronan of the
same chain length, but had no affinity for heparin or heparan
sulfate (Smedsrød et al., 1984; Laurent et al., 1986b). Chondroitin
sulfate, as free chains and as proteoglycan and, to a lesser
extent, dermatan sulfate can inhibit the uptake and binding of
hyaluronan by LSECs (Smedsrød et al., 1984). Dextran sulfate, a
synthetic polysaccharide not found in nature, can also inhibit the
binding by LSECs (Raja et al., 1988; McGary et al., 1989).

Studies of digitonin permeabilized LSECs in suspension and
culture revealed that 50–75% of the hyaluronan binding sites
were intracellular (Raja et al., 1988). The hyaluronan receptors
are not degraded after internalization and replaced by newly
synthetized receptors, as cycloheximide, an inhibitor of protein
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synthesis, had no effect on the endocytosis of hyaluronan by
cultured LSECs. Instead the receptors are recycled during the
continuous endocytosis of hyaluronan, proposed to be via a
coated pit pathway (McGary et al., 1989).

The “fusion” of the LSEC hyaluronan receptor and LSEC
SR activities resulted from a fortuitous discovery by McCourt
et al. (1999). The LSEC hyaluronan receptor had previously
been wrongly identified as ICAM-1 (McCourt and Gustafson,
1997), so a new attempt was made to purify both the LSEC
hyaluronan receptor and the LSEC SR simultaneously from
the same LSEC extract. The authors found instead that a
Sepharose affinity column coupled with an SR ligand (amino
terminal pro-peptides of type I procollagen, PINP) depleted a
putative LSEC hyaluronan receptor from 125I surface labeled
rat LSEC extracts, and vice versa, demonstrating that the LSEC
hyaluronan receptor and an LSEC SR were one and the same.
A polyclonal antibody to the affinity purified protein blocked
LSEC hyaluronan uptake by 80%, and SR ligands by over 50%
(McCourt et al., 1999), including AGE-proteins (Hansen et al.,
2002b). Amino acid sequence data obtained from the purified rat
protein (McCourt et al., 1999) lead to the cloning of the mouse
form (Politz et al., 2002). In the latter study, the protein was
named stabilin-2 due to its homology to stabilin-1. Both stabilin-1
and stabilin-2 are expressed on LSECs and are constitutively
associated with the early endocytic pathway, irrespective of ligand
binding (Hansen et al., 2005), but stabilin-1 does not bind
hyaluronan (Politz et al., 2002; Prevo et al., 2004).

Stabilin-1 [STAB1, aka FEEL-1 (Tamura et al., 2003),
CLEVER-1 (Irjala et al., 2003)], and stabilin-2 [STAB2, aka FEEL-
2 (Tamura et al., 2003), HARE (Zhou et al., 2003)] bind a number
of other ligands in common, including AGE proteins (Tamura
et al., 2003; Hansen et al., 2005) and oxLDL (Li et al., 2011).
However, it appears that stabilin-2 has a greater affinity for AGE
proteins than stabilin-1 when expressed in CHO (Tamura et al.,
2003) and HEK293 (Hansen et al., 2005) cells, while in HEK293
cells stabilin-1 has the greater affinity for mildly oxidized oxLDL
and stabilin-2 has the greater affinity for heavily oxidized oxLDL
(Li et al., 2011). There are other differences in stabilin-1/2 ligand
binding. As mentioned above stabilin-2 (but not stabilin-1) binds
hyaluronan (Politz et al., 2002; Prevo et al., 2004), while stabilin-1
(but not stabilin-2) binds SPARC (secreted protein acidic and rich
in cysteine) (Kzhyshkowska et al., 2006). Interestingly, human
stabilin-2 binds heparin (Harris et al., 2008), while the rat form
did not (Smedsrød et al., 1984; Laurent et al., 1986b). Other
ligands bound by stabilin-2 include chondroitin sulfates A, C, D,
and E, dermatan sulfate and acLDL (Harris and Weigel, 2008).
For a more extensive list of ligands bound by stabilin-1 and
stabilin-2, see Pandey et al. (2020) in this review series.

Stabilin-2 is specifically expressed in LSECs among liver cells
both in rodents and human (McCourt et al., 1999; Politz et al.,
2002; Falkowski et al., 2003; Martens et al., 2006; Bhandari et al.,
2020) and is a recommended LSEC marker (Geraud et al., 2010;
Sørensen et al., 2015; DeLeve and Maretti-Mira, 2017). Immune
histochemistry shows staining along the entire length of the
hepatic sinusoid in rat (Bhandari et al., 2020), and the receptor
is also widely expressed in mouse (Falkowski et al., 2003), and
human sinusoids (Martens et al., 2006). In addition to liver, the

presence of rat, mouse, and human stabilin-2 is demonstrated
in sinusoidal endothelial cells of lymph nodes, spleen, and bone
marrow (only studied in mice) (Falkowski et al., 2003; Weigel
et al., 2003; Martens et al., 2006; Qian et al., 2009).

Stabilin-1 is expressed in the same organs as stabilin-2, but also
in alternatively activated macrophages (M2 phenotype), and the
two receptors show a similar staining pattern along the hepatic
sinusoid (Politz et al., 2002; Martens et al., 2006). A recent study
comparing the transcriptome and proteome of rat LSECs and
Kupffer cells confirmed that both stabilin-1 and stabilin-2 were
highly specific for LSECs (Bhandari et al., 2020).

Liver Sinusoidal Endothelial Cell Scavenger
Receptors in Development, Aging, and Disease
The stabilins have an interesting role in development and
physiology. During embryogenesis, all endothelial cells in the
developing (E13.5) rat liver express stabilin-2, but as the liver
develops further, the expression becomes restricted to the
sinusoidal endothelium (Yoshida et al., 2007). During aging,
there is some reduction in LSEC scavenging, but the level
of stabilin-1 and -2 expression in rat LSECs appears to be
unchanged regardless of the age of the donor animal (Simon-
Santamaria et al., 2010). Despite this age-related reduction in
LSEC scavenging, considerable scavenging capacity remained
in LSECs from older rats (Simon-Santamaria et al., 2010).
Interestingly, in old mice there is reduced endocytosis of stabilin
ligands (AGE-BSA) in centrilobular regions of the sinusoid, as
observed by in vivo microscopy (Ito et al., 2007), and a negative
shift in LSEC efficiency of degradation of the AGE proper was
observed already in young adult mice compared to prepubertal
mice (Svistounov et al., 2013).

In physiology, it was anticipated that the stabilins would be
essential for life given their roles in waste clearance. However,
stabilin-1 and stabilin-2 knockout mice were phenotypically
normal, while stabilin-1/2 double knockout mice exhibited
premature mortality and developed severe glomerular fibrosis,
while their livers showed only mild perisinusoidal fibrosis
without dysfunction (Schledzewski et al., 2011). This would
suggest that while the stabilins play a vital role in maintaining
health, there is considerable redundancy for their function,
possibly mediated by other SRs and hyaluronan receptors.
Loss of a single stabilin receptor (either stabilin-1 or stabilin-
2) was, however, recently reported to significantly alter the
mouse LSEC transcriptome and downregulate some genes
(Coll10, Lum, and Dec) coding for carbohydrate binding proteins
and defined as potential SRs, suggesting that loss of single
receptors may influence LSEC scavenger functions to some extent
(Olsavszky et al., 2021).

In certain disease states such as rheumatoid arthritis,
osteoarthritis, liver cirrhosis, scleroderma, Werner syndrome,
renal failure, psoriasis, and various malignancies the serum level
of hyaluronan is elevated (Laurent et al., 1996). This is due
either to overproduction of hyaluronan [e.g., in rheumatoid
arthritis (Engström-Laurent and Hällgren, 1985), scleroderma
(Engström-Laurent et al., 1985a), or psoriasis (Lundin et al.,
1985)] or to impaired clearance from the blood [e.g., in liver
cirrhosis (Engström-Laurent et al., 1985b)]. In the case of one
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malignancy, Wilms’ tumor, the overproduction of hyaluronan
is so great that it causes the blood to become overly viscous
(Tomasi et al., 1966; Wu et al., 1984) as well as causing
defects in blood clotting (Bracey et al., 1987). This last example
demonstrates the consequences of excessive levels of hyaluronan
in the circulation, and therefore the importance of its removal by
the LSEC stabilin-2.

The Fc-Gamma Receptor IIb2
Liver sinusoidal endothelial cells express the endocytic FcγRIIb2
(CD32b) and are the main carriers of this receptor in liver
(Mousavi et al., 2007; Ganesan et al., 2012). The FcγRIIb2 is
an inhibitory FcγR and mediates endocytosis of small soluble
immune complexes. These are formed in the blood circulation
when either antibody or antigen is present in excess (Nydegger,
2007), and their clearance in LSECs via the FcγRIIb2 provides
a way to remove IgG immune complexes without risk of pro-
inflammatory activation (Anania et al., 2019). Larger complexes
are phagocytosed by Fc receptors expressed on macrophages
(Skogh et al., 1985; van der Laan-Klamer et al., 1985, 1986a,b).

The formation of immune complexes is a normal part of the
immune defense against soluble antigens. However, deposition
of immune complexes in tissues can trigger inflammation
and contribute to pathology. Effective elimination is therefore
important to preserve homeostasis. The liver is the main organ
for clearance of circulating immune complexes (Arend and
Mannik, 1971), and uptake of immune complexes in liver was
reported more than 60 years ago (Benacerraf et al., 1959). Soluble
immune complexes of human serum albumin (HSA) and anti-
HSA IgG administered intravenously into rabbits were cleared
in liver, with only negligible amounts recovered in lungs, kidney
and spleen (Arend and Mannik, 1971). Uptake was independent
of circulating complement components, as the tissue distribution
was unchanged in complement depleted rabbits and assumed
to take place in macrophages. Similar observations were made
in mice, and doses known to induce glomerulonephritis could
saturate the liver uptake system (Haakenstad and Mannik, 1974).

The first indications that LSECs, and not only macrophages,
were involved in immune complex clearance came in the
beginning of 1980s, when it was found that freshly isolated
rat LSECs plated in serum-free media could avidly bind, but
not phagocytose, sheep red blood cells coated with anti-sheep
red blood cell IgG (Pulford and Souhami, 1981; Smedsrød
et al., 1982). Binding was effectively inhibited by soluble
complexes of heat-aggregated IgG and were not dependent
on complement, suggesting the expression of FcγRs also in
LSECs. Skogh et al. (1985) then reported that radiolabeled
large, soluble immune complexes of dinitrophenylated (DNP)-
conjugated HSA complexed by IgG distributed to Kupffer cells,
whereas smaller complexes of lightly DNP-conjugated HSA
complexed with IgG were taken up mainly by LSECs in rats
(Skogh et al., 1985). The uptake of large immune complexes in
Kupffer cells and small immune complexes in LSECs was also
reported by others (van der Laan-Klamer et al., 1985, 1986a,b).

Using peroxidase-anti-peroxidase immune complexes as
ligands, Muro et al. (1987, 1988) provided functional evidence of
the presence of Fc receptors on Kupffer cells and LSECs both in

mouse, rat, and human liver. Immune complexes were equally
distributed along the sinusoidal wall, but absent in portal veins
and arteries, and in central veins. Interestingly, the immune
complexes were found to bind both on the luminal and abluminal
aspects of the sinusoidal lining, but more frequently on the
luminal side. Also, more binding was observed on LSECs than
on Kupffer cells (identified by uptake of 0.5 µM latex beads),
and were not present on stellate cells and hepatocytes (Muro
et al., 1988). Morphometrical analyses of liver tissue short time
after intravenous injection of small-sized BSA/anti-BSA IgG
complexes in mice further suggested that LSECs rather than
Kupffer cells were the major site for removal of these complexes
from the circulation (Kosugi et al., 1992, 1993). However, a
substantially higher total uptake in Kupffer cells than in LSECs
has also been reported (Johansson et al., 1996). The discrepant
findings may depend on the immune complex model system.

LSECs have previously been reported to carry FcγRII and
III (Løvdal and Berg, 2001). However, Mousavi et al. (2007)
showed by PCR that FcγRIIb2, a splice variant of FcγRIIb,
was the only FcγR expressed in rat LSECs. The rat FcγRIIb2
has the same structural and regulatory functions as the mouse
receptor and mediates a slow rate of endocytosis. By using an
inhibitory antibody to FcγRII/CD32, the authors further proved
that FcγRIIb2 was responsible for binding and uptake of soluble
immune complexes in rat LSECs. FcγRIIb2 is also the only FcγR
in mouse LSECs (Ganesan et al., 2012). The latter study further
reported that 72% of total body FcγRIIb2 is expressed in liver,
with approximately 90% of the liver receptors in LSECs and
10% in Kupffer cells. The dominating expression of this receptor
in liver endothelial cells was also observed in a comprehensive
single cell RNA sequencing (scRNA-seq) study which compared
the transcriptomes of endothelial cells from 11 mouse tissues
(Kalucka et al., 2020).

FcγRIIb has two major forms arising from mRNA splicing
(Anania et al., 2019). The difference between the splice variants
FcγRIIb1 and FcγRIIb2 is that the cytoplasmic tail of FcγRIIb2
contains a domain needed for accumulation in coated pits, and
this domain is disrupted by a 47 amino acid insertion in RIIb1
(Miettinen et al., 1989). Therefore, only FcγRIIb2 can mediate
endocytosis and internalization via coated pits (Miettinen et al.,
1989). In addition to small soluble IgG immune complexes,
ligands for the FcγRIIb2 include fibrinogen-like protein 2
(FGL2) (Liu et al., 2008) and measles virus nucleocapsid protein
(Ravanel et al., 1997).

The FcγRIIb2 is partly associated with lipid rafts and uses
the clathrin pathway for immune complex uptake (Miettinen
et al., 1989; Mousavi et al., 2007). In LSECs, internalization via
FcγRIIb2 is slower than via scavenger and mannose receptors
(Løvdal et al., 2000; Mousavi et al., 2007), which was partly
explained by the association of the receptor with lipid rafts.
The FcγRIIb2 is a constitutively recycling receptor and traffics
through lysosomal integral membrane protein-II (LIMPII)
containing compartments to the LSEC plasma membrane both
with and without bound ligand (Mousavi et al., 2007). The
intracellular transport of immune complexes to lysosomes in
LSECs is slow compared to transport of ligands that are taken
up via scavenger and mannose receptors (Løvdal et al., 2000)
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and was suggested to be partly due to repeated recycling of
receptor-ligand complexes. An interesting observation was that
the kinetics of endocytosis via SRs in LSECs was unaffected
by the simultaneous uptake of immune complexes, whereas
the degradation of immune complexes occurred in the same
lysosomes as ligands for SRs (Løvdal et al., 2000).

The distribution of FcγRIIb2 along the hepatic sinusoid shows
a different pattern in rodents and human. Immune staining of
rat liver sections using the monoclonal SE-1 antibody (Ohmura
et al., 1993; Tokairin et al., 2002), which specifically recognizes
FcγRIIb2 in rat LSECs (March et al., 2009), showed expression
along the entire length of the sinusoid (Tokairin et al., 2002;
Bhandari et al., 2020). Similarly in mice, the monoclonal 2.4G2
antibody (Unkeless, 1979), reported to be specific for mouse
LSECs in liver sections (Ganesan et al., 2011), stained the entire
sinusoidal lining (Ganesan et al., 2012). However, in human liver,
immune staining experiments showed low or absent expression
of the receptor in the periportal areas (Strauss et al., 2017). This is
in accordance with older functional studies showing continuous
presence of uptake/binding of immune complexes (interpreted as
presence of active Fc receptors) in all sinusoids of rodents, but low
or absent binding/uptake close to the portal triad in human liver
(Muro et al., 1987, 1988, 1993b).

Expression and Role of the Liver Sinusoidal
Endothelial Cell FcγRIIb2 in Disease
Containing the immunoreceptor tyrosine-based inhibitory motif
(ITIM), FcγRIIb is the only inhibitory Fc receptor and controls
many aspects of immune and inflammatory responses. Variations
in the FCGR2B gene or lack of functional receptor are associated
with susceptibility to autoimmune disease, particularly systemic
lupus erythematosus (Smith and Clatworthy, 2010). FcγRIIb
deficiency also increases the severity of collagen-induced arthritis
(Smith and Clatworthy, 2010; increased collagen-specific IgG
titres). Furthermore, since 72% of the FcγRIIb2 in mice is in the
liver, and 90% of this is in LSECs, it has been speculated that
inadequate expression or function of this receptor in LSECs may
be a cause of serum sickness and other diseases associated with
high levels of soluble immune complexes (Ganesan et al., 2012).
Moreover, the high expression of FcγRIIb2 in LSECs, together
with studies showing that mice lacking this receptor tend to
develop systemic lupus erythematosus (Yajima et al., 2003) is
additional evidence that LSECs may play a role in the aetiology
of this disease.

Fc-gamma receptors are reported to be downregulated or lost
in liver cirrhosis (Muro et al., 1990, 1993b) and in states of
proliferation after partial hepatectomy (Muro et al., 1993a), as
well as in hepatocellular carcinoma (HCC) (Geraud et al., 2013).
A comprehensive single cell transcriptomics study of normal
and cirrhotic mouse livers revealed zone specific alterations of
LSEC receptor expression in liver cirrhosis induced by CCl4
(Su et al., 2021). The study revealed three clusters of LSEC
populations corresponding to hepatic zones 1–3. Expression of
genes associated with capillarization such as Cd34, was most
prominent in the pericentral zone (zone 3) in this disease
model and was associated with downregulation of Fcgr2b
(Cd32b) and other receptors. Moreover, the relative share of

non-LSEC vascular endothelial cells and lymphatic endothelial
cells increased in cirrhotic mice with LSECs constituting 89%
of the endothelial cells in normal mouse liver, and 73% in
cirrhotic livers. This may lead to decreased immune complex-
clearance in LSECs, and rats with CCl4-induced liver cirrhosis
showed delayed clearance of immune complexes and a weakened
reactivity to the ligand in the cirrhotic areas (Muro et al., 1990).

A slight reduction in CD32b expression was noted in aging
rat liver but not in human liver (Maeso-Diaz et al., 2018).
Interestingly, plasma levels of FGL2, a ligand for FcγRIIb and
FcγRIII (Liu et al., 2008) was reported to be elevated in patients
with non-alcoholic fatty liver disease (Colak et al., 2011), and
in patients with liver cirrhosis and HCC (Sun et al., 2014),
suggesting a link to decreased receptor expression.

CD32b, together with stabilin-1, stabilin-2, and lymphatic
vessel endothelial hyaluronan receptor-1 (LYVE-1), were
sequentially lost during tumor progression in mice with
inducible HCC (AST model), as well as in human HCC patients
(examined in tissue microarrays) (Geraud et al., 2013). The
four LSEC markers were also lost to varying degree in the
peritumoral tissue. Interestingly, loss of stabilin-2 and CD32b
in the peritumoral tissue of human HCC correlated with
significantly increased survival, and the authors suggested
that loss of stabilin-2 and CD32b may be markers for subsets
of HCC that modify the surrounding microenvironment in
a different way.

The Mannose Receptor
The mannose receptor (MRC1, CD206, or SR-E3), a type I
transmembrane protein, is a member of the C-type lectin family
and the SR-E family. This receptor is truly a multi-ligand
clearance receptor since it has binding affinity for many different
ligands in three distinct ligand binding domains. A C-type (Ca2+-
dependent) carbohydrate binding (aka C-type lectin) domain
in eight copies recognizes mannose, N-acetylglucosamine, and
L-fucose in the ultimate position of the glycosyl chains of
glycoproteins (Ezekowitz et al., 1990; Taylor and Drickamer,
1992; Taylor et al., 1992). A second domain, characterized by
a single fibronectin type II repeat, binds specifically to alpha
chains of types I–IV collagen (Martinez-Pomares et al., 2006;
Napper et al., 2006). A third domain, rich in cysteine, binds with
high affinity to sulfated N-acetyl-galactosamine (GalNAc-4-SO4)
residues (Fiete et al., 1998). The two latter domains do not depend
on Ca2+ for ligand binding.

The mannose receptor is expressed on macrophage subgroups,
perivascular microglia cells and several other cell types, including
sinusoidal endothelial cells of liver, spleen, and lymph nodes
(Linehan et al., 1999). LSECs are the main carrier of the mannose
receptor in the liver of mouse, rat, and pig (Magnusson and Berg,
1989; Elvevold et al., 2004, 2008a; Linehan, 2005; Linehan et al.,
2005; Malovic et al., 2007; Bhandari et al., 2020), with lower or
absent expression in Kupffer cells (Magnusson and Berg, 1989;
Linehan et al., 2005; Elvevold et al., 2008a; Sørensen et al., 2015).
Although less explored in human liver, the mannose receptor is
reported to be specifically expressed in LSECs along the sinusoids
(Martens et al., 2006). Recently, a 30-gene (human) LSEC
fingerprint was established based on GFP+ liver endothelial cells
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from Tie2-GFP mice using genes with human orthologs (de Haan
et al., 2020). The mannose receptor (Mrc1) was ranked top three
of the LSEC markers measured by microarray quantification;
expression in human liver was confirmed on the protein level.
In contrast, scRNA-seq of human liver did not identify MRC1
amongst the top differentially expressed genes in neither LSECs
nor Kupffer cells (MacParland et al., 2018), and a recent bulk
proteome and transcriptome profiling comparing rat LSECs
and Kupffer cells revealed abundant expression of the mannose
receptor (Mrc1) in both cells, with the highest expression in
LSECs (Bhandari et al., 2020). From the reviewed literature we
conclude that the mannose receptor is stably and highly expressed
in LSECs in all species examined but that expression in liver
macrophages can vary.

Differential expression and distribution patterns along the
sinusoids have been described for several LSEC markers in
human liver, with immunofluorescence microscopy studies
establishing distinct populations of LSECs in periportal and
pericentral areas (Strauss et al., 2017). Likewise, scRNA-
seq of human liver revealed heterogeneity within different
hepatocellular populations, with 806 out of 1,198 expressed genes
in LSECs exhibiting significant zonation (Aizarani et al., 2019).
However, detailed information about the mannose receptor is
not highlighted in these studies. The mannose receptor is not
reported to be differentially expressed along the liver sinusoid,
and immune histochemical studies indicate uniform expression
along sinusoids of mouse and human liver (Martens et al.,
2006; Ganesan et al., 2011; Simon-Santamaria et al., 2014).
Interestingly, mannose receptor scavenging activity was shown to
be zonated in an IL-1β dependent way in mice (Asumendi et al.,
1996). In this study, periportally located “Type I” endothelial
cells significantly increased their uptake of the mannose receptor
ligand ovalbumin following IL-1β treatment compared with
“Type II” endothelial cells located close to the central vein.

The mannose receptor is a clearance receptor of high
versatility. Several of the ligands recognized by this
physiologically important receptor in LSECs is constantly
released to the circulation as result of normal tissue turnover
processes, and at higher rate during inflammatory episodes.
They are then swiftly and silently removed from the blood by
LSEC-mediated clearance. The receptor plays an important
role in removing collagen fragments from the circulation.
Carboxyterminal propeptides of procollagen type I, released
during the formation of collagen fibers, are cleared by LSECs
after binding to the mannose receptor C-type lectin domain
(Smedsrød et al., 1990a). Moreover, free alpha chains of type
I collagen, which are released to the circulation as a result of
the ongoing connective tissue remodeling of bone and other
connective tissues, were reported more than 30 years ago to be
removed from the circulation in rat via a specific receptor in
LSECs (Smedsrød et al., 1985a; Smedsrød, 1990). Receptor-ligand
competition studies indicated that this receptor was distinct
from other clearance receptors known at the time (Smedsrød
et al., 1985a), and it was therefore named the LSEC collagen
receptor. However, in 2007 the receptor was found to be identical
to the mannose receptor (Malovic et al., 2007), recognizing the
collagen type I alpha chains through binding to its fibronectin

type II domain. The early LSEC studies further showed that
alpha chains of types I, II, III, and IV collagen were internalized
via the same receptor specificity (Smedsrød, 1989). This is
compatible with results obtained from studies using mannose
receptor transfection in fibroblasts, revealing that alpha chains
of types I, III, and IV collagen bind to the fibronectin type II
domain of the mannose receptor (Napper et al., 2006). The
binding affinity of free collagen type I alpha chains to LSECs
is considerably higher than the affinity to native, triple helical
collagen (Smedsrød et al., 1985a; Smedsrød, 1990; Malovic
et al., 2007). This makes physiological sense, since the cleavage
products from the breakdown of native collagen by vertebrate
collagenase, which generates the enzymatic clip that initiates
extracellular degradation of native matrix collagen, readily
denature at 37◦C, and fall apart to free alpha chains (Sakai and
Gross, 1967). The result is that free alpha chains, but not native
collagen triple helices represent the blood-borne waste products
of collagen. Moreover, this receptor binding preference ensures
that the LSEC mannose receptor ignores the intact collagen triple
helix structures in the space of Disse. It can be calculated that
as much as 0.5 g collagen fragments are released daily to the
circulation (Ellis, 1961; Christenson, 1997). This illustrates the
importance of the LSEC mannose receptor in the clearance of
collagen alpha chains from the circulation.

Another example of blood-borne molecules that are cleared
by the LSEC mannose receptor is lysosomal enzymes, which
contain mannose in terminal position of their glycosylation side
chains. These enzymes are initially glycosylated with mannose-
6-phosphate residues in the terminal position, which serves
as a signal for transfer from the Golgi apparatus to the
endosomal/lysosomal compartment. Once inside the lysosomes,
acid phosphatase cleaves off the phosphate residues. Hence, when
lysosomal enzymes leak out from cells, which takes place both
under normal conditions, and at increased rates in inflammation,
these molecules are effectively cleared from the circulation by
binding to the LSEC mannose receptor (Hubbard et al., 1979;
Isaksson et al., 1983; Elvevold et al., 2008b). There are strong
indications that the very high specific activity of lysosomal
enzymes in LSECs can be partly ascribed to recruitment of
these enzymes from the circulation (Elvevold et al., 2008a).
This hypothesis is supported by studies in mannose receptor
deficient mice showing that LSECs depend on the mannose
receptor for recruitment of lysosomal enzymes to maintain
normal degradation capacity (Elvevold et al., 2008a).

Tissue plasminogen activator (tPA), a key hemolytic factor,
is normally present in the circulation at very low levels. This
is mainly due to clearance via the mannose receptor in LSECs
and to a lesser extent by uptake in hepatocytes (Smedsrød
and Einarsson, 1990). This physiologically important mechanism
restricts the powerful fibrinolytic activity of tPA to act only at
fibrin clots where it binds and performs its enzyme activity by
activating the proenzyme plasminogen to fibrinolytic plasmin.

The N-terminal cysteine-rich domain of the mannose receptor
recognizes and mediates the clearance of pituitary sulfated
glycoprotein hormones, such as lutropin and thyrotropin, from
the circulation. This is an important mechanism to control the
level of these hormones (Simpson et al., 1999).
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Role of the Liver Sinusoidal Endothelial Cell Mannose
Receptor in Inflammation and Disease
In addition to being responsible for the housekeeping clearance of
waste substances, the mannose receptor on LSEC is also involved
in the clearance of molecules such as lysosomal enzymes, tPA
and myeloperoxidase released during the inflammatory response
(Gazi and Martinez-Pomares, 2009). Thus, the mannose receptor
contributes to restore homeostasis after inflammatory episodes,
a function that links LSECs tightly to the resolution phase of the
inflammatory response.

Through its recognition and binding of exogenous molecules
such as virus, bacteria and fungi by the C-type lectin domains,
the mannose receptor is considered to be an important pattern
recognition receptor (PRR) involved in host defense (Stahl and
Ezekowitz, 1998). Interestingly, mannose receptor deficiency
did not translate into increased susceptibility to infection with
Candida albicans, Pneumocystis carinii, or Leishmania spp. in
mice (Lee et al., 2003; Swain et al., 2003; Akilov et al., 2007),
but variations in the mannose receptor gene (MRC1) may be
associated with increased susceptibility to chronic inflammatory
diseases such as asthma and sarcoidosis in humans (Hattori et al.,
2009, 2010). In liver disease, the soluble mannose receptor is used
as a macrophage activation marker to predict disease severity and
prognosis in conditions such as alcoholic liver disease, primary
biliary cholangitis, and Hepatitis B (Sandahl et al., 2017; Li et al.,
2019; Bossen et al., 2020).

Due to their anatomical location, LSECs are the first cell type
to encounter blood-borne antigens reaching the liver. Hence, it is
not surprising that these cells have important innate and adaptive
immunological functions (Shetty et al., 2018). In addition to the
silent removal of waste molecules, endocytosis of ligands by some
SRs, including the mannose receptor, may promote potent pro-
inflammatory and anti-inflammatory signaling (Canton et al.,
2013). Several receptors highly expressed by LSECs have been
shown to interact with different viruses (Lin et al., 2003; Marzi
et al., 2004; Gramberg et al., 2005; Lai et al., 2006; Li Y. et al., 2009)
and the mannose receptor may mediate dengue virus infection of
human macrophages (Miller et al., 2008). Many viruses are highly
mannosylated (Zhang et al., 2004), which makes them a likely
ligand for the mannose receptor; however, the contribution of the
mannose receptor to viral uptake in LSEC is unknown. LSECs
can also cross-present antigens to CD8+ T cells by the help of the
mannose receptor which takes up, processes and transfers antigen
to MHC class I molecules (Limmer et al., 2000; Burgdorf et al.,
2007), a process that has been shown to promote CD8+ T cell
tolerance in mice (Schurich et al., 2009).

Other C-Type Lectins and Receptors
With Suggested Roles in Liver Sinusoidal
Endothelial Cell Blood Clearance
Besides the mannose receptor, LSECs express several other
receptors in the c-type lectin family, including L-SIGN
(DC-SIGNR and CLEC4M), and LSECtin (CLEC4G)
(Bhandari et al., 2020).

In a study comparing the sequenced mRNA transcriptome
and proteome of LSECs and Kupffer cells from Sprague Dawley

rats, L-SIGN was highly expressed in LSECs only, and low in
Kupffer cells (Bhandari et al., 2020). L-SIGN is also strongly
and constitutively expressed in human (Pohlmann et al., 2001)
and mouse LSECs and can be upregulated in response to
treatment with cytokines (Lai et al., 2006). The functional role
of the receptor on LSECs is however, not well known, but
L-SIGN on other endothelial cells can bind viruses such as HCV
(Gardner et al., 2003) and HIV (Pohlmann et al., 2001). Recently,
human L-SIGN was shown to act as a receptor for SARS-
CoV-2 (Kondo et al., 2021) and the hypothesis was presented
that L-SIGN mediated SARS-CoV-2 infection in LSECs, and
subsequent activation of the sinusoidal endothelium contributes
to COVID-19-associated coagulopathy in patients.

Liver and lymph node sinusoidal endothelial cell C-type
lectin is related to L-SIGN and is expressed predominantly by
sinusoidal endothelial cells of human liver and lymph nodes (Liu
et al., 2004). In a study establishing a 30-gene (human) LSEC
signature (de Haan et al., 2020), LSECtin/CLEC4G was ranked
as the most highly expressed LSEC marker protein in mouse
liver tissue. Expression was also high in rat LSECs compared to
Kupffer cells (Bhandari et al., 2020).

High mRNA expression of LSECtin/CLEC4G, as well as
L-SIGN/CLEC4M, has also been shown in human LSECs by
single cell sequencing of liver cells (Aizarani et al., 2019).
CLEC4G was further found on the list of the top 20 most
differentially expressed genes in the human liver endothelial
cell cluster hypothesized to correspond to “Type-2” LSECs
(midzonal and pericentral area), while not appearing on the
list of differentially expressed genes in the endothelial cluster
corresponding to “Type-1” LSEC (periportal area) (MacParland
et al., 2018), indicating a similar zonated pattern as reported
for LYVE1 (Strauss et al., 2017). The LSECtin receptor binds to
mannose, N-acetylglucosamine (GlcNAc) and fucose, and has
been reported to act as a receptor for different viruses such as
the Japanese encephalitis virus (Shimojima et al., 2014), filovirus
(Ebola), SARS Coronavirus (Gramberg et al., 2005), Lassa virus
(Shimojima et al., 2012) and the lymphocytic choriomeningitis
virus glycoprotein (Shimojima and Kawaoka, 2012). The
contribution by LSECtin in viral uptake is not well known, but
the receptor is potentially involved in the regulation of immune
responses toward HCV through interaction with L-SIGN (Li Y.
et al., 2009). Although possibly mediating viral uptake, the role of
LSECtin in LSEC endocytosis is so far unknown.

Lymphatic vessel endothelial hyaluronan receptor (LYVE-1)
is a hyaluronan receptor initially believed to be predominantly
located in lymphatic endothelial cells (Banerji et al., 1999;
reviewed in Jackson, 2004). Constitutive expression of LYVE-1 is
also found in LSECs (Mouta Carreira et al., 2001) and sinusoidal
endothelia of human lymph nodes and spleen (Banerji et al.,
1999), as well as in vascular endothelial cells of murine lung,
adrenal gland, and heart (Zheng et al., 2016) and subsets of
tissue macrophages (Schledzewski et al., 2006). Immune labeling
of tissue sections show that the distribution of the receptor in
human liver is zonated along the sinusoids with LSECs in the
periportal area (hepatic zone 1) being negative or low for LYVE-
1 while LSECs in midzonal and pericentral areas (hepatic zones
2 and 3) have a high expression of LYVE-1 (Strauss et al., 2017).
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Differential expression of LYVE1 in distinct populations of liver
endothelial cells was also confirmed by scRNA-seq of human liver
cells (MacParland et al., 2018). A zonated expression pattern of
LYVE-1 is also reported in mouse liver with the strongest signal
observed in the midzonal sinusoids (Mouta Carreira et al., 2001).

Putative functions of LYVE-1 are hyaluronan clearance from
the lymph (Prevo et al., 2001) and regulation of leukocyte
adhesion and migration within the lymphatic circulation
(reviewed in Jackson, 2004). Stabilin-2 is considered the major
endocytic receptor for hyaluronan in LSECs (McCourt et al.,
1999; Zhou et al., 2000; Harris and Baker, 2020), leaving the
relative contribution of LYVE-1 in this process to be unknown.
The contribution of LYVE-1 to endocytosis of other endogenous
ligands, as well as elimination of foreign particles circulating in
the blood, is not fully explored, but mRNA expression of Lyve1
in murine liver and lung was increased within 4–8 h after LPS-
stimulation (Zheng et al., 2016). Endocytosis of 20 nm latex
particles by endothelial cells was also increased following LPS-
stimulation, but only observed in the lung. LYVE-1 is further
suggested to have a role in wound healing and tumor formation
(Schledzewski et al., 2006).

The expression of some of these receptors has been reported
to be affected by pathological conditions, with LYVE-1 (along
with stabilin-1, stabilin-2, and FcγRIIb) being downregulated in
human liver cancer (HCC) and cirrhosis (Mouta Carreira et al.,
2001; Geraud et al., 2013), and LSECtin being downregulated in
HCC (Aizarani et al., 2019).

LIVER SINUSOIDAL ENDOTHELIAL CELL
SUBPOPULATIONS AND
HETEROGENEITY

An increasing number of studies show spatial heterogeneity
of hepatic cells (including hepatocytes, LSECs, hepatic stellate
cells, and Kupffer cells) along the porto-central axis (Strauss
et al., 2017; Felmlee et al., 2018; Aizarani et al., 2019; Ben-
Moshe and Itzkovitz, 2019; Blériot and Ginhoux, 2019; Ma et al.,
2020; Koch et al., 2021; Payen et al., 2021). Historically, Wisse
et al. (1983) reported an increase in the frequency of fenestrae
in LSECs from the portal tract toward the central vein (Wisse
et al., 1983). Continual studies on this aspect during the 1990s
expanded our knowledge about the differential LSEC response
along the sinusoids against various stimuli, substantiating the
notion of some functional heterogeneity along the sinusoid
(Scoazec et al., 1994; Asumendi et al., 1996; Dini and Carla,
1998). Recently, two LSEC subtypes were reported to exist along
the human hepatic sinusoid, based on immune histochemistry
of normal human liver, with low or absent expression of
CD32 and LYVE-1 periportally (Strauss et al., 2017). The
application of single-cell sequencing protocols in addition
to conventional methods allows information about tissue
complexities (cellular compositions) and cellular heterogeneity,
the phenotype of a rare cell population, or the disease-associated
cellular phenotype. Recently, several scRNA-seq studies have
unraveled the complexity of the liver tissue and comprehensively
characterized the hepatic cell types at the molecular level.

ScRNA-seq studies have undoubtedly strengthened the evidence
and validated the complex labor division among various hepatic
cell types, heralding the tremendous spatial heterogeneity and
complexity within liver lobules (Halpern et al., 2017, 2018;
MacParland et al., 2018; Aizarani et al., 2019; Ben-Moshe
et al., 2019; Ramachandran et al., 2019). Studies suggest that
more than 50% of the expressed genes within hepatocytes, as
well as in LSECs, show zonation (Halpern et al., 2018; Ben-
Moshe et al., 2019). So far, few of these gene expressions have
been validated with complementary techniques at single cell
levels, and functional studies will be needed to understand how
differences in gene expression along the sinusoids may affect
LSEC scavenger functions.

SCAVENGER ENDOTHELIAL CELLS IN
OTHER VASCULAR BEDS

The important clearance function of LSECs is well documented
(Sørensen et al., 2012). It is noteworthy, however, that specialized
endothelial cells exhibiting LSEC-like clearance activity are
present also in some organs other than liver. The early vital
stain investigators observed accumulation of stains like lithium
carmine in several organs in addition to the hepatic RES; ample
uptake was reported in the “reticuloendothelium” of spleen,
lymph nodes, bone marrow, adrenal cortex, and pituitary anterior
gland (Kiyono, 1914; Aschoff, 1924). Although the investigators
at the time had no means to accurately identify the RES cells
of these organs, the conclusion nearly a century later that
intravenously administered lithium carmine is cleared mainly by
the LSECs in liver (Kawai et al., 1998), indicates that the cells
in other organs that were noted to take up this vital stain, were
LSEC-like SECs, in addition to macrophages.

Studies on clearance of physiological waste macromolecules in
extra-hepatic RES organs are scarce. In mice, specialized SECs
of the bone marrow, which line the sinusoids of this organ,
express functional stabilin-1 and stabilin-2, enabling these cells
to take up ligands (FSA, AGE-products) that are also avidly taken
up via these receptors by LSECs (Qian et al., 2009). Likewise,
alpha chains of type I collagen, a physiological ligand for the
LSEC mannose receptor, were also cleared by the bone marrow
SECs, suggesting the presence of both stabilin-1 and -2 and
mannose receptors in these cells (Qian et al., 2009). In pig, uptake
of FSA and the mannose receptor ligand α-mannosidase were
observed in lung endothelium, in addition to uptake in LSECs
(Nedredal et al., 2003).

Lymph nodes and spleen, two other extrahepatic organs
suggested by the early vital stain scientists as RES members,
express several of the same signature clearance receptors as
those found in LSECs (Martens et al., 2006). Human lymph
node and spleen tissue analyzed by gene profiling and immune
histochemistry here demonstrated the presence of stabilin-1,
stabilin-2, LYVE-1, and the mannose receptor in sinusoidal
endothelial cells of these organs.

Choriocapillaris endothelial cells (CCEs) have recently been
implicated as SECs, employing stabilin-2 to clear waste molecules
generated in the metabolically active retina (Li R. et al., 2009). It
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FIGURE 3 | Species differences in the localization of main populations of scavenger endothelial cells (SECs). The figure illustrates the organs that harbor the main
populations of specialized SECs in different vertebrate classes. #SECs are localized in special gill arteries in hagfish, lamprey (both Agnatha), and ray (Chondrichthyes)
(Seternes et al., 2002). § In adult bony fish (Osteichthyes) SECs constitute the endothelium of the venous sinusoids in the kidney hematopoietic tissue in crucian carp
(Seternes et al., 2002) and salmonid fish (Dannevig et al., 1990, 1994; Smedsrød et al., 1993; Seternes et al., 2002), and the atrial and ventricular endocardium in
Atlantic cod (Smedsrød et al., 1995; Sørensen et al., 1997, 1998, 2001; Seternes et al., 2001a, 2002). In all higher vertebrate classes LSECs represent the major
SEC population, studied in frog (Seternes et al., 2002), lizard (Seternes et al., 2002), chicken (Seternes et al., 2002), rodents (Smedsrød et al., 1990b; Seternes
et al., 2002; Sørensen et al., 2015), and pig (Nedredal et al., 2003; Elvevold et al., 2004). & In addition to the central scavenger function of LSECs in mammals,
studies in rabbit and rodents also show scavenging function of the sinusoidal endothelium in spleen, bone marrow, and lymph nodes (Fraser et al., 1983; Qian et al.,
2009; Simon-Santamaria et al., 2014), and in pig, scavenging activity is reported in lung endothelium, in addition to LSECs (Nedredal et al., 2003).

was proposed that CCEs play a significant role in the clearance of
AGE products, that – if allowed to accumulate – may contribute
to the generation of age-related macular degeneration. The study
was done with cells from bovine eyes, and studies in human CCEs
is needed to follow up the hypothesis.

Phylogenetic Aspects – Scavenger
Endothelia in Other Vertebrate Classes
The findings by the early vital stain scientists suggested that
not only mammals, but also species belonging to the other
classes of the vertebrate kingdom, were equipped with a RES
that accumulated vital dyes (Kiyono, 1914). However, animal
species of phylogenetically older vertebrates displayed a distinct,
yet different RES distribution than in the land-based vertebrates.
Hypothesizing that this distribution might reflect the distribution
of SECs, a study was carried out to investigate if ligands reported
to be taken up by LSEC clearance receptors in mammals could be
used to determine the distribution of RES in vertebrate classes
other than mammals (Seternes et al., 2002). The result of this
screening study, summed up in Figure 3, revealed that ligands
for the mammalian signature LSEC clearance receptors stabilin-
2 and the mannose receptor, were indeed cleared from the
circulation in the RES organs reported by the early vital stain
scientists. In addition, the finding that particles large enough to be
cleared exclusively by phagocytosis accumulated in macrophages,
revealed the presence of a pan-vertebrate dual cell principle
of blood clearance, with particles >200 nm taken up mainly
in macrophages, while macromolecules and colloids <200 nm

were cleared mainly by uptake in SECs (Seternes et al., 2002).
The ligand distribution screening was performed by recording
the anatomical site of ligand uptake following intravenous
administration of selected (fluorescence- or radiolabeled) soluble
SR and mannose receptor ligands. It is noteworthy that the
endocardially located SECs of Atlantic cod (Gadus morhua)
responsible for the blood clearance of the tested ligands in this
species, express stabilin-2, as shown by western blot analysis
revealing that lysates from purified cod endocardial endothelial
cells, and pig and rat LSECs all reacted with an antibody to whole
rat stabilin-2 (Sørensen et al., 2012).

Moreover, recent studies in embryonic zebrafish (Danio rerio)
showed ample uptake of hyaluronan in SECs located in the caudal
vein and vein plexus. This uptake was completely abolished in
mutants lacking functional stabilin-2 (Campbell et al., 2018).
These findings in the Atlantic cod and zebrafish show that
stabilin-2 is well conserved over the considerable phylogenetic
time span from bony fishes to mammals. A similarly high
degree of phylogenetic conservation is also suggested for the
mannose receptor, which is present not only in mammals.
It has also been cloned and characterized in the zebrafish
(Wong et al., 2009; Zheng et al., 2015). The expression of
mannose receptor mRNA was much higher in kidney than in
other organs of the zebra fish. Although the role of the zebrafish
mannose receptor in the clearance of the same physiological
waste molecules as in mammals has not yet been confirmed,
the deduced amino acid sequences shared highly conserved
structures with the corresponding mammalian receptor and
contains a cysteine-rich domain, a single fibronectin type II
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domain, and eight C-type lectin domains. This strongly indicates
that this receptor in the zebrafish serves the same blood clearance
function as in mammals.

Stabilin-1 is also expressed in zebrafish and is required
for clearance of small (6–30 nm) anionic nanoparticles
from the circulation, whereas a combined contribution of
stabilin-1 and stabilin-2 is required for clearance of larger
(approximately 100 nm) anionic nanoparticles. This finding
represents significant information about the influence of the size
of anionic nanoparticles for targeting the mammalian LSECs
(Arias-Alpizar et al., 2021).

A recent study in 5-day-old zebrafish embryos showed that
brain lymphatic endothelial cells (BLECs) play an important
role as SECs in the brain, taking up waste substances such as
proteins, polysaccharides and virus particles (Huisman et al.,
2021). Interestingly, it was found that BLECs and microglia
(brain macrophages) work side by side to remove extracellular
components from the brain, thus maintaining homeostasis in
the brain meninges. In this collaborative function, BLECs, like
LSECs and other vertebrate SECs, are particularly active in the
clearance of macromolecules and nano particles up to a certain
size, whereas the microglia are more active in the uptake of
larger material, e.g., bacteria. This collaborating arrangement
of the two clearance cells of the brain is another striking
example of the vertebrate dual cell principle of waste clearance
(Sørensen et al., 2012).

At variance from the observation in mammals that hyaluronan
and other waste macromolecules administered subcutaneously
or intramuscularly are largely taken up in SECs of local
lymph nodes, with only low amounts being cleared by LSECs,
radiolabeled hyaluronan injected subcutaneously in the Atlantic
cod was taken up mainly in the endocardial SECs (Sørensen
et al., 1997). The lack of lymph nodes in fish explains this
observation, demonstrating the importance of blood clearance of
waste macromolecules in the main SEC organs of these species.
Following development of a method for isolation and culture
of primary cod endocardial endothelial cells (representing cod
SECs) (Koren et al., 1997), studies were carried out in vitro to
explore in more detail the effective mechanism of the uptake
of physiological waste macromolecules in these cells (Koren
et al., 1997; Sørensen et al., 1998, 2001; Seternes et al., 2001b).
Those studies revealed that the cod SECs endocytose ligands
for the scavenger and mannose receptors in the same way
as has been demonstrated for mammalian LSECs. Receptor-
mediated endocytosis and degradation was responsible for
rapid and high-capacity uptake of the physiological molecules
hyaluronan (Sørensen et al., 1997), chondroitin sulfate (Seternes
et al., 2001b), lysosomal enzymes (Sørensen et al., 2001),
N-terminal propeptide of type I procollagen (Sørensen et al.,
1998), and collagen alpha chains (Smedsrød et al., 1995;
Koren et al., 1997).

CONCLUDING REMARKS

As the result of normal metabolic processes, large amounts of
macromolecules from various tissues must be swiftly and silently
removed to clean the blood and maintain homeostasis. The
LSECs exhibit a remarkably efficient blood clearance capability.
This is due largely to their extremely rapid and high-capacity
endocytosis, mediated by receptors specifically recognizing a
variety of different waste macromolecules. Moreover, the LSECs,
lining the hepatic sinusoids, are strategically located for optimal
survey of the blood. Equipped with endocytic pattern-recognition
receptors that display multi-ligand binding domains, these cells
clear a plethora of different types of waste molecules, many of
which are DAMPs and PAMPs with the potential to activate
immune cells if allowed to circulate. Hence, the waste clearance
activity of LSECs represents a silent removal of molecules,
maintaining homeostasis.

Our knowledge about the clearance activity of LSECs
in various pathophysiological conditions are rudimentary.
Questions that need to be answered include establishing how liver
is affected by changes in the LSEC scavenger function in various
pathophysiological conditions. Moreover, development of the
new generation of pharmaceuticals including macromolecular
and nanosized compounds are seriously hampered due to
undesired clearance of these compounds in LSECs. This is still
a major challenge that needs to be solved.

Studies in various mammalian tissues have revealed the
presence of SECs with striking functional similarity to the
LSECs. Animal species from all vertebrate classes employ SECs
to clear waste macromolecules from the circulation, in the
same way as LSECs of mammals. However, it is noteworthy
that phylogenetically old vertebrate classes (jawless, cartilage,
and bony fishes) carry their SECs in organs other than liver.
Apart from this difference, the functional similarities of SECs
from all vertebrates are prominent, revealing a remarkably well
conserved pan-vertebrate waste clearance system that has been
well conserved over a considerable phylogenetic time span.
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