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Acute hypoxia increases ventilation. After cessation of hypoxia loading, ventilation 
decreases but remains above the pre-exposure baseline level for a time. However, the 
mechanism of this post-hypoxic persistent respiratory augmentation (PHRA), which is a 
short-term potentiation of breathing, has not been elucidated. We aimed to test the 
hypothesis that astrocytes are involved in PHRA. To this end, we investigated hypoxic 
ventilatory responses by whole-body plethysmography in unanesthetized adult mice. The 
animals breathed room air, hypoxic gas mixture (7% O2, 93% N2) for 2 min, and again 
room air for 10 min before and after i.p. administration of low (100 mg/kg) and high 
(300 mg/kg) doses of arundic acid (AA), an astrocyte inhibitor. AA suppressed PHRA, with 
the high dose decreasing ventilation below the pre-hypoxic level. Further, we investigated 
the role of the astrocytic TRPA1 channel, a putative ventilatory hypoxia sensor, in PHRA 
using astrocyte-specific Trpa1 knockout (asTrpa1−/−) and floxed Trpa1 (Trpa1f/f) mice. In 
both Trpa1f/f and asTrpa1−/− mice, PHRA was noticeable, indicating that the astrocyte 
TRPA1 channel was not directly involved in PHRA. Taken together, these results indicate 
that astrocytes mediate the PHRA by mechanisms other than TRPA1 channels that are 
engaged in hypoxia sensing.

Keywords: astrocyte, hypoxia, post-hypoxic respiratory augmentation, plasticity, short-term potentiation, 
respiratory control, arundic acid, TRPA1

INTRODUCTION

Acute hypoxia increases ventilation. After brief hypoxic exposure, a switchback to room air 
is accompanied by a ventilatory fall-off in the recovery phase, but ventilation remains above 
the pre-hypoxic baseline for a time. Post-hypoxic persistent respiratory augmentation (PHRA) 
is a form of neural plasticity, which is defined as a change in the neural control system based 
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on the memory-like experience (Mitchell and Johnson, 2003). 
The poststimulus overshoot in ventilatory activity may even 
go above the stimulus level as is evident in the acute hypoxic 
ventilatory response (HVR) to static exercise, with the mechanism 
ascribed to the interaction with the cardiovascular brain control 
or rapid release of the volitional hypothalamic control over 
sustained muscle tension (Pokorski et al., 1990). Neural plasticity 
is essential for stabilizing respiratory control, but the underlying 
mechanisms are not yet well known (Eldridge and Millhorn, 1986; 
Dahan et  al., 1995; Eldridge, 1996; Powell et  al., 1998).

There are plastic interactions in relay circuits of hypoxic 
stimulus between peripheral chemoreceptors, among which 
carotid body chemoreceptors are most engaged in creating the 
HVR, and brain respiratory control pathways (Pamenter and 
Powell, 2016). The multipronged complexity of PHRA is 
highlighted by increased carotid chemoreceptor sensitivity due 
to the withdrawal of the central efferent activity component 
running down the sinus nerve to the carotid body (Lahiri 
et  al., 1983). That feature has been unraveled in adaptive 
plasticity to chronic hypoxia but is plausibly also present in 
repeat acute hypoxic episodes characteristic of sleep apnea 
syndrome, the disease that distinctly affects brain function and 
increases chemoreflex sensitivity (Prabhakar, 2016).

Limited understanding of peripheral and central underliers 
of respiratory plasticity spurred novel lines of research, one 
of which is the role of transient receptor potential ankyrin 1 
(TRPA1) channel. These channels participate in shaping the 
acute HVR (Pokorski et al., 2014). However, the channels have 
never been verified in carotid chemoreceptor cells and their 
effects on the HVR are mediated by mechanisms other than 
the carotid body (Pokorski et  al., 2014). It has been shown 
that TRPA1 is localized in the chemosensitive parafacial 
respiratory group (pFRG/RTN) astrocytes in which hypoxia-
induced TRPA1 activation facilitates exocytosis of ATP-containing 
vesicles (Uchiyama et al., 2020). On the basis of these findings, 
TRPA1 channels in astrocytes have been proposed as an oxygen 
sensor for respiratory control (Uchiyama et  al., 2020). The 
proposition is in line with studies that show the role of astrocytes 
in brain synaptic plasticity (De Pittà et  al., 2016; Schiera et  al., 
2020). Astrocytes are also influential for various aspects of 
respiratory control, including rhythm generation (Okada et  al., 
2012; Sheikhbahaei et  al., 2018) and hypoxic and hypercapnic 
ventilatory responses (Gourine et  al., 2010; Funk et  al., 2015; 
Pokorski et  al., 2016; Beltrán-Castillo et  al., 2017; Gourine 
and Funk, 2017; Funk and Gourine, 2018; Sheikhbahaei et  al., 
2018; Guyenet et al., 2019). It has been reported that astrocytes 
can detect hypoxia (Tadmouri et  al., 2014; Angelova et  al., 
2015; Fukushi et  al., 2016; Onimaru et  al., 2021). Therefore, 
we  aimed to test the hypothesis that astrocytes are involved 
in PHRA and define the role of astrocytes, notably through 
TRPA1 channels, in the PHRA phenomenon. We used arundic 
acid (AA) as a pharmacological tool to inhibit astrocytic function 
in wild-type mice. We  also used astrocyte Trpa1 knockout 
mice to investigate the role of astrocytic TRPA1 channels in 
PHRA. We  found that the presence of active astrocytes is 
indispensable for the expression of PHRA, but their action is 
mediated by mechanisms other than TRPA1 channels.

MATERIALS AND METHODS

Animal Welfare
All animal experiments were performed with the approval of 
the Ethics Committee for Animal Experiments of the Murayama 
Medical Center in Tokyo and complied with the Guidelines 
for Care and Use of Laboratory Animals released by the National 
Research Council of the National Academies (8th edition, 
revised 2011) and with the Guiding Principles for Care and 
Use of Animals of the Physiological Society of Japan. A total 
of 34 mice (including the mice in experiments for 
Supplementary Figures 1, 2) were used in the experiments. 
All efforts were made to minimize the number of animals used.

Experiments With Arundic Acid
We used unanesthetized adult male C57BL/6 mice aged 
24.0 ± 3.0 weeks (mean ± SE). It should be  the same weeks, 
weighing 29.6 ± 0.7 g (n = 9). The respiratory flow was measured 
noninvasively using an “open flow” whole-body plethysmograph 
(PLY 310, EMMS, Bordon, United  Kingdom) consisting of 
recording (volume of 530 ml) and reference chambers as 
previously described (Oyamada et  al., 2008; Pokorski et  al., 
2014; Fukushi et  al., 2016, 2020). Briefly, the chambers were 
placed inside a transparent acrylic box (size 20 × 20 × 20 cm). 
Each mouse was placed in the pre-calibrated recording chamber. 
The chamber temperature was maintained at 25°C throughout. 
The air in the recording chamber was suctioned with a constant 
flow generator (MV-6005VP, E.M.P-Japan, Tokyo, Japan), with 
a flow rate of 250 ml/min. To calculate the airflow, the pressure 
difference between the recording and reference chambers was 
measured with a differential pressure transducer (TPF100, 
EMMS) connected to an amplifier (AIU060, Information & 
Display Systems, Bordon, United  Kingdom) and was bandpass 
filtered at 0.1–20 Hz. We calculated tidal volume (VT; μl/g b.w.) 
for each breath by integrating the airflow whose changes are 
proportional to those in the chamber pressure (Lundblad et al., 
2002). We counted the number of breaths and obtained respiratory 
rate (RR; breaths/min). Minute ventilation (VE; ml/g/min) was 
calculated as VT × RR for each minute. The VE during hypoxia 
was calculated as a 2-min average and during the recovery 
phase as an average of the first 5 min (Recovery 1) and second 
5 min (Recovery 2). The O2 concentration in the chamber was 
monitored with an O2 analyzer incorporating a polarographic 
sensor (Respina IH 26, San-ei, Tokyo, Japan) and was adjusted 
by controlling the mixing of N2 and air blown into the acrylic 
box. The pressure and O2 concentration data were simultaneously 
digitized at a 400 Hz sampling rate with an A/D converter 
(PowerLab4/26) and stored in a PC with LabChart7 software. 
The signal processing was performed using MATLAB 2020a 
(MathWorks, Natick, MA).

To evaluate the HVR, mice breathed room air, then a hypoxic 
gas mixture (7% O2, 93% N2 for 2 min), and room air again 
before and after i.p. administration of AA. The experimental 
protocol consisted of three repeats of hypoxic challenges. First, 
dimethyl sulfoxide (DMSO), a vehicle for AA diluted in saline, 
was injected and the mouse was placed into the chamber to 
acclimatize in room air for 60 min. Then, after recording 
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normoxic baseline data for 1 min, N2 gas was blown into the 
acrylic box. The chamber O2 concentration rapidly declined 
to 7%, which was maintained for 2 min and followed by a 
switchback to room air. The measurement for the recovery 
continued for 10 min. This protocol was repeated after injections 
of two doses of AA solubilized in a mixture of DMSO and 
saline (1:4:5 v/v) at 30-min intervals. Thus, injections were 
made in the following sequence (1) vehicle – 0.45 ml/kg DMSO, 
(2) AA – 100 mg/kg, and (3) AA – 200 mg/kg (cumulative 
AA dose of 300 mg/kg). Although DMSO alone can affect the 
brain function when the dose is high, a total dose of DMSO 
used in the present experiment did not exceed 2.0 g/kg, which 
is much below the 3.5 g/kg, a dose that starts affecting respiration 
(Takeda et  al., 2016). The total volume of saline used in the 
experiment was 2.24 ml/kg, which is much below the 10 ml/kg 
reported to affect respiration in mice (Receno et  al., 2018). 
The dosing of AA was chosen according to previous studies 
using this agent in in-vivo rodents (Higashino et  al., 2009; 
Fukushi et al., 2016, 2020). Any apparent movement and sniffing 
artifacts interfering with breathing patterns were discarded 
off-line from the recording traces during the final data elaboration. 
The mean values of VE were submitted to a two-factor within-
subject analysis of variance (ANOVA), with three pharmacological 
conditions: DMSO vehicle and the two doses of AA, and four 
air phases (Baseline room air, Hypoxia, Recovery 1, and Recovery 
2). The same statistical tests were performed for RR and VT 
as for VE. A Greenhouse–Geisser adjustment was used to correct 
for violations of sphericity whenever necessary. Then, to 
quantitatively evaluate the magnitude of PHRA, we  calculated 
the difference in VE between the post-hypoxic recovery and 
pre-hypoxic baseline levels. This difference was divided by the 
difference in VE between the hypoxic loading and pre-hypoxic 
levels to normalize for the degree of hypoxic ventilatory 
augmentation. The calculation provided the parameter ΔVERecovery/
ΔVEHypoxia to compare the PHRA magnitude among three drug 
conditions (without AA and with low and high doses of AA) 
in the post-hypoxic Recovery 1 and Recovery 2 phases. Statistical 
differences were assessed with a paired t-test. Bonferroni 
correction was performed for the multiple comparisons.

Experiments Using Astrocyte-Specific 
Trpa1 Knockout Mice
We examined the role of astrocyte TRPA1 channels in HVR 
and PHRA using astrocyte-specific Trpa1 knockout mice 
(asTrpa1−/−). To generate the asTrpa1−/−, two lines of mice 
were crossed: a transgenic mouse GFAP-Cre (mGFAP-Cre) and 
a recombinant Trpa1 floxed (Trpa1f/f) mouse (Gregorian et  al., 
2009; Zappia et al., 2017; Uchiyama et al., 2020). We conducted 
7% hypoxia loading experiments in asTrpa1−/− mice (seven 
males and five females, aged 21.8 ± 0.4 weeks, weighing 25.8 ± 1.1 g) 
and Trpa1f/f mice (two males and four females, aged 
22.7 ± 1.3 weeks, weighing 24.2 ± 0.9 g) according to the same 
protocol and measurement methods as outlined above for the 
AA experiments. The mean values of VE, VT, and RR were 
submitted to two-way ANOVA with two TRPA1 conditions 
(asTrpa1−/− and Trpa1f/f) as between-factor and with four air 
phases (Baseline room air, Hypoxia, Recovery 1, and Recovery 2) 

as within-factor. A Greenhouse–Geisser adjustment was used 
to correct for violations of sphericity. We calculated the ΔVERecovery/
ΔVEHypoxia to compare the PHRA magnitude between the two 
TRPA1 conditions (asTrpa1−/− and Trpa1f/f) in the post-hypoxic 
Recovery 1 and Recovery 2 phases using the Welch test. The 
Bonferroni correction was used for multiple comparisons in 
post hoc tests. A p < 0.05 defined statistically significant differences. 
The analysis was performed using SPSS 24.0 (IBM, Armonk, NY).

RESULTS

Effects of Arundic Acid on HVRs
The exemplary recordings of VE profiles in the two AA conditions 
vs. the control condition with no AA across the baseline room 
air, hypoxia, and Recovery 1 and 2 phases are shown in 
Figure  1. There was a significant interaction between 
pharmacological conditions × ventilatory phases [F(6, 42) = 8.08, 
p < 0.001]. On average, AA failed to affect VE, despite some 
increases in RR after the higher dose of AA in room air. 
While VE increased during hypoxia on the background of AA, 
there were differences in the post-hypoxia recovery course. In 
the control condition, VE decreased from the hypoxic 
hyperventilation level but remained higher than the pre-hypoxic 
baseline level in both recovery phases. In the low-dose AA 
condition, VE immediately returned to the pre-hypoxic baseline 
level during Recovery 1 but increased again above it during 
Recovery 2. In the high-dose AA condition, VE decreased 
significantly below the pre-hypoxic baseline level during Recovery 
1 and then tended to revert to the baseline level in Recovery 
2 failing to reach it. The time courses of VE, VT, and RR as 
outlined in the example shown above are summarized in 
Figure 2. Figure 3A shows that the ΔVERecovery/ΔVEHypoxia, assessing 
the PHRA magnitude, was significantly smaller in Recovery 
1 between control (no AA) and 100 mg/kg AA (p < 0.01) or 
300 mg/kg AA (p < 0.001), and between 100 and 300 mg/kg 
AA (p < 0.05). The differences between control (no AA) and 
300 mg/kg AA and between 100 and 300 mg/kg AA distinctly 
persisted in Recovery 2 (Figure 3B). Thus, blockade of astrocyte 
activation significantly attenuated PHRA; the effect was greatly 
potentiated at the higher AA dose.

HVRs in asTrpa1−/− Mice
VE profiles in asTrpa1−/− and Trpa1f/f mice are shown in 
Figures  4A,B. There was a significant main effect of the 
ventilatory response phases [F(3, 48) = 85.011, p < 0.001] but 
not between the TRPA1 conditions [F(1, 16) = 1.843, p = 0.193]. 
In both asTrpa1−/− and Trpa1f/f mice, VE increased during 
hypoxia when compared to the pre-hypoxic baseline level 
(p < 0.001) and then decreased in Recovery 1. However, VE 
stayed above the baseline level throughout the recovery phases 
in both asTrpa1−/− and Trpa1f/f mice. Both VT and RR components 
drove ventilatory changes throughout the hypoxic course in 
both asTrpa1−/− and Trpa1f/f mice (Figures  4C,D).

Although there was no significant interaction of TRPA1 
conditions × ventilatory phases [F(3, 48) = 2.352, p = 0.084], 
we  performed a between-TRPA1 comparison in each phase. 
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VE tended to be smaller in Trpa1f/f than asTrpa1−/− mice during 
hypoxia, but the difference was not significant (p = 0.158). VE 
became significantly smaller in asTrpa1−/− mice during Recovery 1 
(p = 0.034), but the PHRA phenomenon remained noticeable 
in both asTrpa1−/− and Trpa1f/f mice (Figure  4B). On average, 
ΔVERecovery/ΔVEHypoxia percentage values denoting PHRA magnitude 
were little different between asTrpa1−/− and Trpa1f/f in post-
hypoxic Recovery 1 and 2 phases (Figures  5A,B, respectively). 
Although we  did not conduct statistical analysis because the 
number of Trpa1f/f mice was small, there seems to be  a gender 
difference; ΔVERecovery1/ΔVEHypoxia values in male and female 
Trpa1f/f, and male and female asTrpa1−/− mice were 52, 61, 

67, and 16%, respectively. ΔVERecovery2/ΔVEHypoxia values in these 
mice were 38, 36, 51, and 40%, respectively.

DISCUSSION

This study investigated the role of astrocytes in the PHRA, 
representing short-term potentiation of respiration. The findings 
show that astrocytes mediate PHRA. Pharmacological blockade 
of astrocyte activation by AA inhibited PHRA. The knockout 
asTrpa1−/− mice showed less increase in ventilation in response 
to hypoxia than Trpa1f/f mice. However, the magnitude of PHRA 

A

B

C

D

E

FIGURE 1 | Effects of arundic acid (AA) on hypoxic ventilatory responses (HVRs) in mice by whole-body plethysmography. (A) Representative recordings of 
respiratory flow (inspiration upward) in mice without and with the higher dose of AA in room air (baseline), 7% hypoxia, Recovery 1 (first 5 min), and Recovery 2 
(second 5 min). AA did not affect minute ventilation (VE) at pre-hypoxic baseline but tended to suppress the acute hypoxic hyperventilation. After the lower AA dose, 
VE immediately returned to the pre-hypoxic baseline in Recovery 1 but rebounded in Recovery 2. After the higher AA dose, VE decreased below the pre-hypoxic 
baseline in Recovery 1 and tended to revert to the baseline level in Recovery 2 failing to reach it. (B) Time-profile of chamber oxygen changes. (C–E) Time-series 
data for minute ventilation, tidal volume, and respiratory rate (RR), respectively, in the control (no AA) and low- and high-AA dose conditions.
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was not attenuated in asTrpa1−/− when compared to Trpa1f/f mice. 
Our findings demonstrate the putative role of the astrocyte TRPA1 
channels in hypoxia sensing, which confirms the recent findings 
by Uchiyama et  al. (2020). We  expanded the role of astrocytes 
to the mediation of PHRA as well. However, TRPA1 detects 
mild hypoxia (13%) more closely than severe hypoxia (7%; 
Takahashi et  al., 2011; Pokorski et  al., 2014). This suggests that 
PHRA is more likely to occur under conditions of severe hypoxia. 
Astrocyte-related action on the short-term PHRA occurs through 
yet unsettled mechanisms other than TRPA1 channels. The 
involvement of astrocyte TRPA1 channels has been reported in 
the hippocampal long-term potentiation in mice (Shigetomi et al., 
2013). The contribution of these channels may vary depending 
on the type of brain plasticity.

In the present study, we used AA, as an inhibitory modulator 
of astrocyte function. AA inhibits the inflammatory response 
of astrocytes by reducing GFAP and S100 protein synthesis, 
increasing the expression of the astroglial glutamate transporter 
GLAST and releases the glutamate receptor antagonist kynurenic 
acid from astrocytes (Tateishi et  al., 2002; Mori et  al., 2004; 
Asano et  al., 2005; Wajima et  al., 2013; Yamamura et  al., 2013; 
Yanagisawa et  al., 2015). We  have previously reported that AA 
delays the occurrence of seizures and prevents respiratory arrest 
in severe hypoxia (Fukushi et  al., 2020).

The present finding of counteracting the PHRA by AA 
indicates that astrocytes are influential in shaping respiratory 
neural plasticity. Hypoxia activates the carotid body, and the 
information is relayed via the carotid sinus nerve to the 

A

B

C

FIGURE 2 | (A) Minute ventilation (VE) profiles (n = 9) in the control (no AA) and low- and high-AA dose conditions across the successive ventilatory phases. VE 
differed significantly in the following pairwise comparisons: Control vs. AA 100 and AA 100 vs. AA 300 in hypoxia (both p < 0.05); Control vs. AA 100 (p < 0.01) and 
Control vs. AA 300 (p < 0.001) in Recovery 1; and Control vs. AA 300 (p < 0.01) in Recovery 2. (B) The time-course of tidal volume (VT). There were main effects on VT 
of the AA condition (F2,16 = 6.596, p < 0.01) and oxygen concentration (F3,24 = 89.579, εGG = 0.424, p < 0.001), but no interaction between the two (F6,48 = 1.205, 
εGG = 0.522, p = 0.329). VT differed significantly in the following comparisons: Control vs. AA 300 in Recovery 1 and Control vs. AA 300 in Recovery 2 (both p < 0.01). 
(C) Time-course of RR. There was a significant interaction between control (no AA) and two AA conditions × HVR phases (F6,42 = 12.208, p < 0.001). RR differed 
significantly in the following comparisons: Control vs. AA 300 at baseline (p < 0.01); Control vs. AA 100 (p < 0.05) and Control vs. AA 300 (p < 0.01) in Recovery 1; 
and Control vs. AA 300 (p < 0.05) in Recovery 2. *p < 0.05, **p < 0.01, and ***p < 0.001, Bonferroni corrected.
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medullary solitary tract nucleus, emanating to other respiratory 
regions in the brainstem and spinal cord (Guyenet, 2014). 
Astrocytes around the excited neurons are activated via 
neurotransmitters spilled from neurons. Once activated, they 
release gliotransmitters that in turn activate respiratory neurons 
responsible for the sustenance of respiratory potentiation. Of 
note, the hitherto mechanistic studies on respiratory neural 
plasticity have been explicitly focused on neurons but not on 
glial cells. The present study is the first to demonstrate that 
astrocytes mediate the neural plasticity of respiration.

The short-term potentiation of brain excitability, leading to 
the continuation of respiratory augmentation after the stimulus 
cessation, referred to as neural plasticity, has been previously 
reported (Eldridge, 1973, 1976; Tawadrous and Eldridge, 1974; 
Eldridge and Gill-Kumar, 1980; Wagner and Eldridge, 1991). 
The mechanisms of respiratory plasticity are also present in the 
spinal cord (Feldman et  al., 2003; Mitchell and Johnson, 2003; 
Fuller and Mitchell, 2017). One of the most extensively investigated 
phenomena in this context is the phrenic long-term facilitation 
following acute intermittent hypoxia. Regarding the cellular 
mechanism of facilitation, the Q and S signaling cascades in 
the phrenic motor nucleus have been proposed, induced by 
activation of metabotropic receptors coupled to Gq and Gs 
proteins, respectively, interacting via crosstalk inhibition. The 
serotonin-dependent Q pathway dominates in the phrenic 
facilitation during mild-to-moderate hypoxia. In contrast, the S 
pathway is serotonin-independent and dominates during severe 
hypoxia (Devinney et  al., 2013; Fuller and Mitchell, 2017).

Recent studies have revealed an active role of astrocytes in 
brain plasticity related to other than respiratory functions, with 
a notable reference to hippocampal memory (Magistretti, 2006; 
Ota et  al., 2013; Croft et  al., 2015; Sims et  al., 2015; 

De Pittà et  al., 2016). Astrocytes secrete synapse-modulating 
gliotransmitters such as glutamate, ATP, d-serine, and GABA 
(Jourdain et  al., 2007; Henneberger et  al., 2010; Takata et  al., 
2011; Kang et  al., 2013; Shigetomi et  al., 2013; Verkhratsky 
et  al., 2016; Zorec et  al., 2018; Santello et  al., 2019). The 
regulation of postsynaptic glutamate receptors, particularly 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors, is dependent on ATP released from astrocytes. The 
elevation in astrocytic Ca2+, occurring slowly in the order of 
seconds, stimulates glutamate release which activates astrocytic 
metabotropic glutamate receptors (Agulhon et al., 2012; Navarrete 
et al., 2012). The classical form of neural plasticity also depends 
on N-methyl-d-aspartate (NMDA) receptors and Ca2+-dependent 
slow release of d-serine from astrocytes (Henneberger et  al., 
2010). Further, astrocytes express a variety of receptors such 
as acetylcholine, ATP, GABA, and endocannabinoids 
(Porter and McCarthy, 1997; Haydon, 2001; Charles et al., 2003).

There are an increasing number of studies referring to the 
functional role of astrocytes in respiratory control other than 
respiratory plasticity. Astrocytes in the brainstem are sensitive 
to hypoxia and involved in HVR (Tadmouri et  al., 2014; 
Angelova et  al., 2015; Marina et  al., 2015; Fukushi et  al., 2016; 
Pokorski et  al., 2016; Rajani et  al., 2018; Uchiyama et  al., 
2020). Astrocytes in the ventral respiratory network, including 
the pre-Bötzinger complex, release ATP, which increases 
respiratory activity during hypoxia, putatively counteracting the 
depressive effects of hypoxia (Gourine et  al., 2005; Marina 
et  al., 2016a; Gourine and Funk, 2017; Funk and Gourine, 
2018; Rajani et  al., 2018). ATP acts via P2Y1 receptors in the 
pre-Bötzinger complex to increase the respiratory burst rate 
with increases in intracellular Ca2+ and glutamate release (Lorier 
et  al., 2007; Huxtable et  al., 2010). Astrocytes also are strongly 

A B

FIGURE 3 | The magnitude of effects of AA on post-hypoxic persistent respiratory augmentation (PHRA) evaluated according to the formula ΔVERecovery/ΔVEHypoxia 
(see Materials and Methods for details). (A) Recovery 1 – PHRA differed between control (no AA) vs. AA 100, control vs. AA 300, and AA 100 vs. AA 300 conditions. 
(B) Recovery 2 – PHRA differed between control (no AA) vs. AA 300. Data are means ± SE. *p < 0.05, **p < 0.01, and ***p < 0.001, Bonferroni corrected.
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involved in the central control of sympathetic activity and 
cardiovascular function, including systemic hypertension (Marina 
et  al., 2016b), which are enhanced by acute and particularly 

repeat hypoxia episodes sensed by carotid chemoreceptors 
(Prabhakar et  al., 2015). There is a biological plausibility that 
medullary astrocytes, respiratory neurons, and peripheral 

A

B

C

D

FIGURE 4 | Hypoxic ventilatory responses in asTrpa1−/− and Trpa1f/f mice. (A) Representative recordings of respiratory flow (inspiration upward) in room air 
(baseline), 7% hypoxia, Recovery 1 (first 5 min), and Recovery 2 (second 5 min). In both asTrpa1−/− and Trpa1f/f mice, minute ventilation (VE) increased during hypoxia 
and then decreased in Recovery 1, remaining significantly elevated over the baseline level throughout both recovery phases. In Recovery 1, VE was smaller in 
asTrpa1−/− than Trpa1f/f mice (B) Minute ventilation (VE) in Trpa1f/f (n = 12) and asTrpa1−/− (n = 6) mice in successive ventilatory phases. Of note, VE was significantly 
smaller in asTrpa1−/− than Trpa1f/f in Recovery 1 (p = 0.034). (C) Tidal volume (VT) in successive ventilatory phases. There was a significant interaction between 
transient receptor potential ankyrin 1 (TRPA1) conditions (asTrpa1−/− and Trpa1f/f) × ventilatory response phases (F3,48 in asTrpa1−/− and Trpa1f/f mice = 3.318, 
εGG = 0.658, p < 0.05) but not between TRPA1 condition and VT in any of the ventilatory phases. Pairwise comparisons in asTrpa1−/−: Baseline vs. Hypoxia (p < 0.001), 
Baseline vs. Recovery 1 and Baseline vs. Recovery 2 (both p < 0.01), and Hypoxia vs. Recovery 2 (p < 0.05) and in Trpa1f/f Baseline vs. Hypoxia (p < 0.001), Baseline 
vs. Recovery 1, Baseline vs. Recovery 2, Hypoxia vs. Recovery 1, and Hypoxia vs. Recovery 2 (all p < 0.01). (D) RR in successive ventilatory phases. There was a 
significant main effect on RR of the ventilatory response phases (F3,48 = 17.967, p < 0.001) but no significant interaction between RR and TRPA1 conditions 
(F3,48 = 1.396, p = 0.08). There were no significant pairwise differences between ventilatory response phases in either asTrpa1−/− or Trpa1f/f. Data are means ± SE. 
*p < 0.05; Bonferroni corrected.
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chemosensing intertwine with each other in shaping PHRA. 
Alternative study designs are needed to further explore this issue.

In the present study, AA failed to affect VE, although RR 
was increased in mice receiving a high dose of AA in room 
air. This phenomenon suggests that AA can affect breathing, 
i.e., inhibition of astrocyte activation may alter breathing patterns. 
In line with this notion, we  showed that HVR was attenuated 
by a high dose of AA. However, AA blunted PHRA much 
more, suggesting that PHRA is activity-dependent plasticity.

There may be  a concern over the time-dependent stability 
of minute ventilation on the background of a high dose of 
AA. Our additional investigation revealed that minute ventilation 
was stable over 240 min in this condition 
(Supplementary Figure  1). Likewise, another set of control 
investigations showed that hypoxia loadings repeated three 
times provide close reproducibility (Supplementary Figure  2).

One potential limitation of this study could be  a lack of 
the animal’s temperature control. In the classical “closed chamber” 
whole-body plethysmography, tidal volume is calculated by 
measuring the chamber pressure based on the combined gas 
law stating that the ratio of the product of gas pressure and 
volume to the absolute gas temperature is equal to a constant 
(Drorbaugh and Fenn, 1955). The chamber pressure is recorded 
while the chamber is sealed, and the body temperature weighs 
in on the result (Mayer et  al., 2014; Rourke et  al., 2016; Baby 
et al., 2018). In practice, however, the body temperature changes 
are so small during the hypoxic challenges of a couple of 
minutes that they are usually neglected for the sake of simplicity 
(Onodera et  al., 1997). In the present study, we  adopted the 
“open flow” plethysmography in which the chamber gas is 
continuously suctioned at a constant flow rate during the 
continuous recording. We  calculated the tidal volume by 
integrating the airflow whose changes are proportional to those 
in the chamber pressure (Lundblad et  al., 2002). In this case, 

tidal volume is expressed at ambient temperature (25°C), which 
obviates the need for taking the animal’s body temperature. 
Another limitation of this study was that we  failed to examine 
metabolic rate in knock-out mice or its potential alterations 
by AA, which could influence respiration. Metabolic aspects 
require further exploration using alternative study designs.

The ultimate purpose of this research was to refer to the 
mechanism of post-hypoxic short-term respiratory plasticity 
in unanesthetized humans, which is essential to get insights 
into the pathophysiology of and preventive measures for periodic 
breathing, e.g., sleep apnea. This purpose stemmed from the 
studies showing that PHRA is involved in the mitigation of 
periodic breathing in sleep apnea (Georgopoulus et  al., 1992; 
Mahamed and Mitchell, 2007; Mateika and Syed, 2013; Mateika 
and Komnenov, 2017) and heart failure (Ahmed et  al., 1994); 
the notion supported in a computer simulation study (Eldridge, 
1996). Our results showed that astrocytes, but not the astrocytic 
TRPA1 channel, were involved in the development of PHRA, 
suggesting that the TRPA1 is engaged in shaping HVR but 
not PHRA. The TRPA1 channel likely plays a (patho)physiological 
role in acute hypoxic conditions such as an attack of bronchial 
asthma (Shen et  al., 2012). In diseases with periodic breathing 
such as sleep apnea, astrocytes may contribute to its prevention 
by exerting PHRA. Additionally, the observation that ΔVERecovery1/
ΔVEHypoxia tended to be  smaller in the female asTrpa1−/− mice 
raises the implication of a greater role of astrocytic TRPA1  in 
the female gender, which requires further exploration.

In conclusion, we  have provided novel aspects of PHRA’s 
role linking it to astrocyte activation and suggesting that this 
tandem arrangement contributes to respiratory stability and 
potentially might be  influential in the prevention of periodic 
breathing. However, caution should be exercised in the translation 
of animal findings to human settings before further exploratory 
research. We conclude that astrocytes mediate the post-hypoxic 

A B

FIGURE 5 | Post-hypoxic persistent respiratory augmentation in astrocyte-specific Trpa1 knockout mice. The ΔVERecovery/ΔVEHypoxia, denoting PHRA, were not 
significantly different between asTrpa1−/− and Trpa1f/f in either Recovery 1 (A) or Recovery 2 (B). Data are means ± SE.
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persisting respiratory augmentation by mechanisms other than 
the hitherto recognized role of TRPA1 channels in 
hypoxia sensing.
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