AUTHOR=Frerichs Inéz , Lasarow Livia , Strodthoff Claas , Vogt Barbara , Zhao Zhanqi , Weiler Norbert TITLE=Spatial Ventilation Inhomogeneity Determined by Electrical Impedance Tomography in Patients With Chronic Obstructive Lung Disease JOURNAL=Frontiers in Physiology VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2021.762791 DOI=10.3389/fphys.2021.762791 ISSN=1664-042X ABSTRACT=

The aim of this study was to examine whether electrical impedance tomography (EIT) could determine the presence of ventilation inhomogeneity in patients with chronic obstructive lung disease (COPD) from measurements carried out not only during conventional forced full expiration maneuvers but also from forced inspiration maneuvers and quiet tidal breathing and whether the inhomogeneity levels were comparable among the phases and higher than in healthy subjects. EIT data were acquired in 52 patients with exacerbated COPD (11 women, 41 men, 68 ± 11 years) and 14 healthy subjects (6 women, 8 men, 38 ± 8 years). Regional lung function parameters of forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), forced inspiratory vital capacity (FIVC), forced inspiratory volume in 1 s (FIV1), and tidal volume (VT) were determined in 912 image pixels. The spatial inhomogeneity of the pixel parameters was characterized by the coefficients of variation (CV) and the global inhomogeneity (GI) index. CV and GI values of pixel FVC, FEV1, FIVC, FIV1, and VT were significantly higher in patients than in healthy subjects (p ≤ 0.0001). The ventilation distribution was affected by the analyzed lung function parameter in patients (CV: p = 0.0024, GI: p = 0.006) but not in healthy subjects. Receiver operating characteristic curves showed that CV and GI discriminated patients from healthy subjects with an area under the curve (AUC) of 0.835 and 0.852 (FVC), 0.845 and 0.867 (FEV1), 0.903 and 0.903 (FIVC), 0.891 and 0.882 (FIV1), and 0.821 and 0.843 (VT), respectively. These findings confirm the ability of EIT to identify increased ventilation inhomogeneity in patients with COPD.