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Insufficient sleep, which has been shown to adversely affect metabolism, is generally
associated with prolonged exposure to artificial light at night, a known circadian
disruptor. There is growing evidence suggesting that circadian disruption adversely
affects metabolism, yet few studies have attempted to evaluate the adverse metabolic
effects of insufficient sleep while controlling for circadian disruption. We assessed
postprandial glucose and insulin responses to a standard breakfast meal in healthy
adults (n = 9) who underwent 3 weeks of chronic sleep restriction (CSR) in a 37-day
inpatient study while minimizing circadian disruption by maintaining the same duration
of light exposure each study day. We compared these results to findings from an earlier
inpatient study which used a forced desynchrony (FD) protocol to assess the influence of
3 weeks of CSR combined with recurrent circadian disruption (RCD) on glycemic control
in healthy adults (n = 21). CSR combined with RCD resulted in significantly elevated
postprandial plasma glucose levels (o < 0.0001), while CSR with minimized circadian
disruption had no adverse glycemic effects after 3 weeks of exposure (EXP). These
results suggest that one mechanism by which sleep restriction impacts metabolism may
be via concurrent circadian disruption.

Keywords: chronic sleep restriction, recurrent circadian disruption, glucose tolerance, insulin sensitivity,
metabolism

INTRODUCTION

In a groundbreaking 1999 study, Spiegel and colleagues reported that 1 week of chronic
sleep restriction (CSR) in healthy participants reduced glucose tolerance to a level associated
with an increase in diabetes risk (Spiegel et al, 1999). Since then, numerous studies
have found similar disturbances in glucose metabolism following varying amounts of sleep
restriction (Nedeltcheva et al., 2009; Spiegel et al, 2009; Buxton et al, 2010; Donga
et al, 2010; van Leeuwen et al, 2010; Schmid et al, 2011; Reynolds et al, 2012;
Leproult et al, 2014; Eckel et al, 2015; Rao et al, 2015; Broussard et al, 2016; Wang
et al, 2016; Depner et al, 2019; Ness et al, 2019a,b), selective suppression of slow-wave
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sleep (Tasali et al, 2008; Herzog et al, 2013) and untreated
sleep-disordered breathing (Pallayova et al., 2010; Pamidi et al.,
2015). It is now well established that sleep restriction decreases
insulin sensitivity and glucose tolerance (Buxton et al., 2010;
Ness et al., 2019a).

While multiple candidate causative mechanisms have
been explored (Reutrakul and Van Cauter, 2018), the exact
mechanisms by which sleep restriction elicits these effects is still
unknown. In contrast to human studies, rodent studies have
found that sleep deprivation or restriction can cause weight
loss and improve glucose tolerance (Rechtschaffen et al., 1989;
Everson and Crowley, 2004; Koban and Swinson, 2005; Caron
and Stephenson, 2010; Vetrivelan et al., 2012). Importantly, most
previous human studies of sleep restriction involved concurrent
exposure to artificial light at night during extended wakefulness,
which could have an adverse impact on glucose control through
circadian disruption (Czeisler, 2013; Stenvers et al., 2019).

Previously, we reported that prior exposure to the
combination of CSR and circadian disruption induced an
increase in postprandial glucose levels associated with inadequate
pancreatic insulin secretion, even when the circadian phase of
participants was realigned so that there was no concurrent
circadian misalignment (Buxton et al., 2012). To dissociate
the two components of this exposure, in the present study we
directly compared the influence of 3 weeks of CSR with recurrent
circadian disruption (RCD) to 3 weeks of CSR while minimizing
circadian disruption on glucose tolerance and insulin sensitivity
in healthy adults.

MATERIALS AND METHODS

Experimental Approach

We report findings from three main study conditions: CSR
(n =9), Control (n = 8), and CSR&RCD (n = 21). All data were
collected as part of a multi-study Program Project investigating
the effects of sleep restriction and circadian disruption. Data from
the CSR&RCD group were collected as part of a previous study
(Buxton et al., 2012) and included here as a comparison to the
CSR without circadian disruption group. Data from the CSR and
Control groups were collected as part of the most recent study
in the Program Project. Here, we focus on the effects of sleep
restriction on glucose metabolism with and without circadian
disruption (Figure 1).

The first four participants in the CSR group were studied
under similar conditions to the CSR&RCD group, including a 10-
h baseline (BL) sleep opportunity, sleep restriction to 5.6 h/24 h,
and a lower-fat diet. For the remaining five CSR participants,
we attempted to increase the metabolic challenge by reducing
sleep opportunity to 5 h/24 h, introducing a higher-fat diet,
and extending the eating window by reducing BL sleep to
8 h. Control participants were matched to the respective CSR
BL conditions. After verifying that there were no significant
differences in sleep duration at BL between the two CSR
conditions or the two Control conditions, we combined the
data to form a single CSR group (n = 9) and a single Control
group (n = 8).

Participant Recruitment and Eligibility

Criteria

All participants were recruited from the community and
screened to exclude medical, psychological, and sleep disorders.
Participants did not take medication and had no acute
or chronic illnesses. Screening included a medical history,
physical examination, electrocardiogram, urinalysis, and clinical
blood tests; psychological questionnaires (Minnesota Multiphasic
Personality Inventory, Beck Depression Inventory) and a
structured psychological interview with a clinical psychologist;
and an overnight sleep recording [clinical polysomnography
(PSG) or home sleep tests] to rule out clinically significant
sleep disorders (Amira et al., 2020). Participants reported
no significant sleep complaints, no history of regular night
shift work for at least 3 years, and no travel across more
than 2 time zones within 3 months before the study.
Participants scheduled to all conditions had identical screening
and selection criteria and were studied in the same research
facility. Data collection procedures were standardized for
all participants.

Study Protocol

Pre-study Conditions

Participants in all conditions maintained a regular sleep-wake
schedule for at least 3 weeks prior to admission, with 10-h
per night time-in-bed at a self-selected time. Compliance was
verified by wrist actigraphy (Actiwatch-S, Philips-Respironics,
Murrysville, PA, United States or MotionWatch-8, CamNtech,
Cambridge, United Kingdom), sleep diaries, and regular calls
to a time-stamped phone answering system. During this time,
participants were instructed not to use drugs, alcohol, nicotine, or
caffeine. Compliance was verified with a urine toxicology screen
upon study admission.

Inpatient Study Conditions

All studies took place in the Intensive Physiological Monitoring
Unit of the Center for Clinical Investigation at Brigham and
Women’s Hospital where participants were studied individually
in private rooms free of time cues. The room was maintained
at a temperature of 23.9 + 1.7°C, with complete darkness
(<0.02 lux) during scheduled sleep opportunities. During
wakefulness, participants could engage in sedentary activities
such as reading, writing, etc. Research technicians observed
participants throughout the study by closed circuit television to
ensure compliance with the study protocol. All study events were
timed relative to each participant’s habitual schedule.

In all conditions, the protocol began with three sleep extension
days, each consisting of a 12-h nighttime sleep opportunity and a
4-h nap in the middle of the wake episode. These sleep extension
days, in combination with the 3 weeks of regular sleep-wake
schedule prior to admission, served to minimize the effect of
any prior history of sleep loss. Sleep extension was followed by
three BL days, each with a 10-h (CSR: n = 4; Control: n = 4;
CSR&RCD: n = 21) (Buxton et al., 2012; McHill et al., 2018) or 8-
h (CSR: n = 5; Control: n = 4) nighttime sleep opportunity. After
BL, participants in the Control groups underwent an additional
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FIGURE 1 | Inpatient study schedules. Study day is indicated along the left side and representative clock hour along the top. Solid black bars represent scheduled
sleep episodes in O lux. Dark gray, light gray, and white indicate parts of the study conducted under 1 lux, 4 lux, and 90 lux lighting levels, respectively. Gray bars with
black outlines indicate times during wake episodes where participants maintained a semi-recumbent posture in bed. The timing of standardized breakfast meal
responses (solid colored bars; purple, red, and green used for chronic sleep restriction (CSR), CSR&RCD, and Control groups, respectively), for assessment of
glucose and insulin and euglycemic-hyperinsulinemic clamps (diagonal hatched bars; purple and green used for CSR and Control groups, respectively) is also
indicated. The standardized meal response on day 9 is available only in 4 CSR and 4 Control participants.

3 weeks with the same BL sleep conditions. Room lighting was
maintained at 90 lux during scheduled wake, except during sleep
extension days and on three constant posture days when lighting
was maintained at 4 lux and participants remained in bed in a
semi-recumbent position (see Figure 1).

Participants in the CSR group with 10-h BL sleep opportunity
then underwent 3 weeks of CSR with 5.6 h of sleep opportunity
per night, centered around midsleep (with 2.2 h of extended
wakefulness in near-darkness scheduled before and after the
5.6 h sleep opportunity). Participants in the CSR group with
8-h BL sleep opportunity underwent 3 weeks of CSR with
5 h of sleep opportunity per night, with the additional 3 h
of extended wakefulness in near-darkness occurring before
the sleep opportunity. To minimize circadian disruption,
participants remained semi-recumbent in bed under <1
lux light levels during extended wakefulness (Figure 1).
Thus, participants in the CSR group maintained the same
90-lux light exposure duration as during BL. Research
technicians monitored the participants from within the
room to ensure that participants remained awake while under 1
lux light levels.

In the CSR&RCD group, participants underwent 3 weeks
of forced desynchrony (FD) consisting of 28-h “days,” each
with a 21.47-h wake episode and a 6.53-h sleep opportunity
(equivalent to 5.6 h/24 h of sleep). All wake episodes were

scheduled in 4 lux lighting levels to avoid circadian phase-
resetting properties of light.

Following the 3 weeks of exposure (EXP) to CSR&RCD,
CSR, or Control conditions, all participants underwent 8 (CSR
and Control groups) or 9 (CSR&RCD group) days of recovery
(REC), each with the same nightly sleep opportunity they
received during BL.

Controlled Diet

During the inpatient study, participants received a controlled
nutrient diet free of caffeine. In the CSR&RCD group and first
four participants in each of the CSR and Control groups, this
consisted of 55-60% carbohydrates, 15-20% protein, and 20-
30% fat; in the subset of CSR and Control participants who
received a higher-fat diet, carbohydrates were reduced to 30-
40% to allow fat content to be increased to 45-50%. All diets
also included 150 mEQ Na + (£20%), 100 mEq K + (£20%),
and at least 1.5 liters/24 h of fluid. Breakfast meals were
identical within participants during all meal response testing, and
participants were required to finish all food. Kcals were adjusted
when changes in weight exceeded 1 kg from average weight
on inpatient days 3-4 to maintain stable participant weights
throughout the study. Weighed foods confirmed that consumed
kcals changed from BL by 2.63 & 3.1% during the EXP segment
of the protocols.

Frontiers in Physiology | www.frontiersin.org

October 2021 | Volume 12 | Article 764737


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Yuan et al.

Sleep Restriction and Glucose Tolerance

Calories were distributed evenly across breakfast, lunch, and
dinner. In participants with the higher-fat diet, two additional
snacks each consisting of 12.5% of the daily calories were added
and the eating window was extended from 9.5 to 15 h. Meal
timing was identical between the CSR and Control groups.
The initial daily caloric intake was calculated using the Harris
Benedict equation (activity factor 1.4) (Harris and Benedict,
1919) in the CSR&RCD group, and the Mifflin-St. Joer equation
(Mifflin et al., 1990) for the first four participants in each
of the CSR and Control groups (activity factor 1.3) and CSR
and Control participants on the higher-fat diet (activity factor
1.6), both of which take into account the individual’s height,
weight, age, and sex.

Inpatient Study Measurements

Standardized Breakfast Meal Response

Standardized breakfast meal response tests for assessment of
glucose and insulin were conducted during BL and the third week
of EXP. In the CSR&RCD group, a day in the third week of
EXP was chosen to ensure that the standardized meal occurred
at the same circadian phase as the BL meal (60.8 = 44.3 min). For
participants in the Control and CSR groups, the meal response
on day 26 was used as the 3-week EXP meal response, except
for two disempaneled CSR participants who had the standardized
meal on day 21, and one disempaneled Control participant who
had the standardized meal on day 12. Participants in the Control
and CSR groups on both diets also had multiple standardized
breakfast meal responses conducted during the first week of EXP
(Figure 1). The first half of participants (CSR: n = 4; Control:
n = 4) had standardized meal responses every day of the first
week, whereas the second half of participants (CSR: n = 5;
Control: n = 4) are missing the meal response on study day 9.
In each meal response, two fasted samples were collected via
an indwelling catheter prior to breakfast. Blood samples were
taken at minutes 10, 20, 30, 40, 50, 60, 90, 120, 150, 180, and
240 after the start of breakfast. Samples were placed on ice,
centrifuged within 1 h of collection, aliquoted into separate tubes
for glucose, insulin and lipids, and frozen at —80°C (glucose
and insulin samples) or sent for assay within 48 h of collection
(lipid samples).

Glucose and Insulin Assays and Analysis

Serum glucose was measured by Gluco-quant Glucose/HK
kits (Roche Diagnostics GmbH, Mannheim, Germany) with a
sensitivity of 2 mg/dL, an inter-assay precision CV of 1.7%,
and an intra-assay precision CV of 1.0% (CSR&RCD group),
or using the YSI 2300 STAT Plus Glucose and L-Lactate
Analyzer (YSI Life Sciences) with a sensitivity of 2.5 mg/dL,
an inter-assay precision CV of 2.3 to 6%, and an intra-
assay precision CV of 1.4 to 1.8% (CSR and Control groups).
Insulin was assayed using chemiluminescent immunoassay Kits
from Beckman Coulter, Inc. (Fullerton, CA, United States),
with a sensitivity of 0.03 pIU/mL, an inter-assay precision
of 3.1-5.6%, and an intra-assay precision of 2.0-4.2% (all
groups). Postprandial glucose and insulin responses were
quantified by calculating the Area-Under-the-Curve (AUC) from

0 through postprandial minute 180 with linear interpolation
for missing values.

Insulin Sensitivity Assessments
Euglycemic-hyperinsulinemic clamps were performed in the first
four participants in Control and CSR groups as previously
described (Raji et al, 2001) during BL, week 1, week 3,
and REC (Figure 1). We were unable to perform clamps in
the remaining CSR and Control participants. Clamps were
performed in the morning following an overnight fast, with
participants remaining in bed for the procedure. Intravenous
lines were placed in each arm for infusion or blood draw.
After a BL sample was collected, participants were infused
with human insulin (Novolin R) with priming doses of 80 and
60 mU/m? body surface area per minute over the first two
5-min periods, respectively, followed by a constant infusion
rate of 40 mU/m? per minute for 170 min. Blood samples
were collected every 5 min from T = 0 to T = 180 min
from a catheter placed retrograde in a dorsal vein of the
wrist; this hand was placed in a hand warmer thermostatically
controlled at 60°C to arterialize venous blood. Serum glucose
levels were determined immediately at the bedside. Dextrose
solution (20%) was variably infused to maintain serum glucose
levels at 90 mg/dL throughout the clamp procedure. To calculate
the M-index, we calculated the mean dextrose infusion rate
from at least 30 min of a steady-state (i.e., glucose levels
consistently at 90 £ 5 mg/dL) from the last hour of the clamp
(DeFronzo et al., 1979).

Lipid Assays and Analysis

Fasted serum samples were collected ~60 min before the
standardized breakfast during BL (days 5-7) and REC (days 34-
36) and were assayed for triglycerides, total cholesterol and high-
density lipoprotein (HDL); low-density lipoprotein (LDL) and
very-low density lipoprotein (VLDL) were estimated using the
Friedewald equation (Lipid Panel, #303756; LabCorp, Burlington,
NC, United States). Values were calculated by averaging across
samples within a study segment.

Body Weight and Body Fat Analysis

Wake-time, post-void weight was measured using a standard
hospital scale and compared between BL, EXP, and REC days
(Zitting et al., 2018). Pre- and post-study body composition was
measured using Discovery W Dual-energy X-ray Absorptiometry
(DXA) Scanner (Hologic, Bedford, MA, United States) in
CSR and Control participants. Pre-study scans were performed
<3 weeks before admission (except for one Control participant
who was scanned ~2 months before admission) and post-study
scans were performed <2 days of discharge. Only a single
scan <6 weeks of admission was performed for participants in
the CSR&RCD group.

Polysomnographic Recording and Analysis

Ambulatory PSG was recorded throughout the study with
a digital recorder (Vitaport 3, Temec Instruments, The
Netherlands). The montage included electroencephalography
(EEG; C3, C4, Fz, Cz, Pz, Oz referenced to linked mastoids
M1 and M3), left and right electrooculography (EOGs), bipolar
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submental electromyography (EMG; during sleep episodes only),
and bipolar electrocardiography (ECGs). Filtered and digitized
EEG, EOG, EMG and ECG data were visually scored by a
registered PSG technologist in 30 s epochs in Vitascore (Temec
Instruments, The Netherlands) according to established criteria
(33). Custom-built software (TASCI File Manager, developed at
BWH by Mr. Joseph Ronda) was used to compile scored PSG
data. Prorated average Total Sleep Time (TST) per 24 h was
calculated for the last two BL sleep episodes, each of the EXP sleep
episodes, and each of the REC sleep episodes.

Circadian Phase Assessments

For the CSR&RCD group, the intrinsic circadian period of
the core body temperature data from the FD portion of the
protocol was estimated using non-orthogonal spectral analysis
(Czeisler et al., 1999). From this estimate, a circadian phase
(from 0 to 359°) was assigned to each minute of the study,
with 0°corresponding to the minimum of the waveform fit
to the entire temperature data series. For participants in the
CSR groups, 24-h melatonin profiles were assessed at BL, after
~3 weeks of EXP, and at the end of REC. Dim Light Melatonin
Onset (DLMO) was defined as the time at which plasma
melatonin levels rose to 25% of the fitted nightly peak. Phase
shifts were calculated as the difference in clock times of DLMO
from BL to EXP or REC.

Statistical Analysis

Statistical analyses were performed using SAS version 9.4
(SAS Institute, Cary, NC, United States). All outcomes were
approximately normally distributed. Post hoc power analysis
showed that we have 69% power to detect an effect size of
1.46 computed based on the 180 min AUCg,,. (two-sided two-
sample t-test, n = 5, a = 0.05). Because the CSR and Control
groups were part of a larger clinical trial with three total
study arms, participants in the Control and CSR conditions
were randomly assigned to one of three groups, stratified by
gender and with a randomization block size of six. Linear mixed
models were used to analyze the outcomes measured repeatedly
over time from all groups whenever the data was available.
Group, condition (BL, EXP, REC or Pre vs. Post for body fat),
and group x condition were considered as fixed effects in the
model, and subjects were considered as random effects. Gender,
race (white, non-white), ethnicity (Hispanic, non-Hispanic),
BMI, BL weight, and AHI were tested as covariates. Only
significant covariates were retained in the final model. We
included all available data from one participant in the Control
group who was disempaneled on day 17. We were unable to
obtain the REC meal response data for two CSR participants
due to IV problems and a third who was disempaneled for
fever on day 26. We do not have scored REC sleep data for
four Control participants. Repeat participants were included
as nested random effects. Imputation methods such as linear
interpolation and last observation carried forward were only
used when necessary for calculating AUCs, fasting glucose, and
fasting lipids. All data are reported in text as mean £ SD,
unless otherwise specified. The critical significance level was
set at a = 0.05. The Bonferroni method was used to adjust

for multiple comparisons and both unadjusted and Bonferroni-
adjusted p-values are reported.

Study Approval

The Partners Health Care Human Research Committee reviewed
and approved this study (2005-P-002292; 2014-P-000243). The
study conduct adhered to the ethical principles outlined in the
Declaration of Helsinki and each participant provided written
informed consent. This trial was registered on ClinicalTrials.gov
(#NCT02171273).

RESULTS

Participant Characteristics

A total of 18 studies in 15 participants were conducted
under the Control and CSR experimental conditions. One
CSR participant (57-year-old male) was disempaneled on study
day 7 and not included in analyses. Thus, data are reported
from 17 studies conducted in 14 participants: nine studies in
the CSR group (67.1 £ 12.5 years, 27-71 years; 5 females);
eight studies in the Control group (54.5 & 8.5 years, 34-
60 years, 3 females). Two CSR participants each completed
the study twice under different diet conditions, and one
participant completed the study twice under two different
study arms (CSR and Control). No participant completed
the study more than once under the same diet/experimental
conditions. A total of 24 studies in 12 young and 12 older
participants were conducted under CSR&RCD experimental
conditions as reported previously (Buxton et al, 2012). One
CSR&RCD participant (64-year-old male) was excluded due
to IV access difficulties, and two CSR&RCD participants (58-
year-old female and 19-year-old female) were excluded from
analyses because blood samples were not obtained at the
correct circadian phase. Therefore, data are reported from
21 participants in the CSR&RCD group (40.1 £ 19.1 years,
18-70 years; 10 females). For participant characteristics, see
Supplementary Table 1.

Sleep and Circadian Phase Assessments
As expected, there was a significant reduction in TST during EXP
compared to BL in the CSR group (n = 9; LSMdiff: 138 min;
bootstrapping 95% CI (102, 172), unadjusted empirical bootstrap
p < 0.0001, ppo, < 0.0001) and the CSR&RCD group (n = 21;
LSMdiff: 170 min; bootstrapping 95% CI (135, 201), unadjusted
empirical bootstrap p < 0.0001, py,, < 0.0001). In the CSR group,
TST did not recover to BL levels (LSMdiff: 80 min; bootstrapping
95% CI (25, 143), unadjusted empirical bootstrap p = 0.003,
Pron = 0.018). In the CSR&RCD group, there was no significant
difference in TST between BL and REC. We also found no
significant difference in TST among BL, EXP, and REC time
points in the Control (n = 8) group (Supplementary Table 2).
To confirm that we successfully minimized circadian
disruption in the CSR group, we assessed DLMO at BL, EXP, and
REC and found no significant circadian phase shifts at any time
points (Supplementary Table 2).
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Postprandial Glucose Levels After

3 Weeks of Chronic Sleep Restriction
While Minimizing Circadian Disruption or
Chronic Sleep Restriction Combined

With Recurrent Circadian Disruption

In the CSR group (n = 9), in which circadian disruption was
minimized, there was no significant change in AUCgy,, at EXP or
REC compared to BL (Figure 2A). In contrast, in the CSR&RCD
group (n = 21), there was a significant increase in AUCg, at
EXP when compared to BL (LSMdiff: 2726; bootstrapping 95%
CI (2105, 3293), unadjusted empirical bootstrap p < 0.0001,
Poon < 0.0001). AUC,,, was not different at REC compared to BL
in the CSR&RCD group (Figure 2B). There were no significant
differences in AUCg,, in the Control group (n = 8) at BL, EXP,
and REC (Zitting and Vetrivelan, submitted).

In a subset of CSR participants (n = 4) who were on a low-fat
diet, we observed a significant overall decrease in AUC,, at EXP
compared to BL (LSMdift: 2033; bootstrapping 95% CI (1359,
2487), unadjusted empirical bootstrap p < 0.0001, py,, < 0.0001)

CSR CSR&RCD
A B
1
25000 + 25000 A LIIN
Sz Sz
2 £ 21000 2§ 21000 ;
o o
23 23
5 2 17000 S 2 17000
(O (O
13000 - 13000 A
c D
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S £ 11000 { SE€ 1000 { ?
< - < -
£E = * EE
5 £ BRRL B 5 £
@ 3 6000 A @ 3 6000 A
£3 — ‘ £3
1000 Lrm—— 1000 -
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—@— overallmean --.-- low-fat diet —— high-fat diet
FIGURE 2 | Postprandial glucose and insulin responses to a standardized
breakfast meal after 3 weeks of CSR with and without concurrent recurrent
circadian disruption (RCD). Glucose and insulin 180-min
Area-Under-the-Curves (AUCs) at baseline (BL), after 3 weeks of exposure
(EXP), and near the end of recovery (REC) in the CSR group (n = 9; A,C), and
the CSR&RCD group (n = 21; B,D). For postprandial glucose and insulin
responses in the Control groups, see Zitting and Vetrivelan (submitted).
LSmeans and 95% bootstrapping confidence intervals are shown in black,
while individual raw data is shown in dotted red lines (low-fat diet) or solid gray
lines (high-fat diet). Bonferroni-adjusted bootstrapping p-values are indicated
as follows: *p < 0.05 and ***p < 0.001.

which was not different at REC compared to BL. The remaining
CSR participants (n = 5) showed no significant differences in
AUCgy,,c at any point.

Postprandial Insulin Levels After

3 Weeks of Chronic Sleep Restriction
While Minimizing Circadian Disruption or
Chronic Sleep Restriction Combined

With Recurrent Circadian Disruption
In the CSR group, there was a decrease in AUC;,; when
comparing BL to EXP (LSMdiff: 790; bootstrapping 95% CI (267,
1228), unadjusted empirical bootstrap p = 0.009, pp,, = 0.054).
AUC;,s was not significantly different at REC compared to BL
(Figure 2C). In the CSR&RCD group, there was a decrease in
AUC;ys at EXP compared to BL (LSMdiff: 1317; bootstrapping
95% CI (555, 2331), unadjusted empirical bootstrap p = 0.015,
Pron = 0.09). AUC;,; was not different at REC compared
to BL in the CSR&RCD group (Figure 2D). There were no
significant changes in AUCj,; in the Control group (Zitting and
Vetrivelan et al., submitted).

In a subset of CSR participants (n = 4) who were on
a low-fat diet, we found a significant decrease in AUCj,s
at EXP compared to BL (LSMdiff: 1405; bootstrapping 95%
CI (1148, 1719), unadjusted empirical bootstrap p < 0.0001,
Pron < 0.0001), which then remained low at REC compared to
BL (LSMdiff: 1182; bootstrapping 95% CI (686, 1728), unadjusted
empirical bootstrap p < 0.0001, pp,,, < 0.0001). The remaining
CSR participants (n = 5) showed no significant differences in
AUC;;;s at any point.

Fasting Glucose Levels After 3 Weeks of
Chronic Sleep Restriction While

Minimizing Circadian Disruption or
Chronic Sleep Restriction Combined

With Recurrent Circadian Disruption

There was no change in fasting glucose levels after 3 weeks of
CSR while minimizing circadian disruption between BL, EXP,
and REC. In contrast, in the CSR&RCD group, there was a
significant increase in fasting glucose levels at EXP compared to
BL (LSMdift: 5.41; bootstrapping 95% CI (3.12, 7.97), unadjusted
empirical bootstrap p < 0.0001, pp,, < 0.0001), which then
recovered to below BL levels (LSMdiff: 3.02; bootstrapping
95% CI (0.66, 5.66), unadjusted empirical bootstrap p = 0.014,
Pron = 0.084). There were no changes in fasting glucose levels
between BL, EXP, and REC in the Control group (Zitting and
Vetrivelan et al., submitted).

Daily Assessments of Postprandial
Glucose and Insulin Levels During the

First Week of Chronic Sleep Restriction
While Minimizing Circadian Disruption

We found no significant change in AUC,. (Figure 3A)

or AUCj,s (Figure 3C) AUC during the first week of
EXP compared to BL in the CSR group. Unexpectedly,
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FIGURE 3 | Glucose and insulin responses to a standardized breakfast meal at BL and during week 1 of CSR without circadian disruption or Control. 180-min
glucose and insulin AUCs for CSR (n = 9; A,C) and Control (n = 8; B,D) groups. LSmeans and 95% bootstrapping confidence intervals are shown in black, while
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in a subset of participants (n = 4) in the CSR group
who were on a low-fat diet, we found that AUCg,, in
the first week of EXP was significantly lower than BL
(LSMdift: 1508; bootstrapping 95% CI (840, 2030), unadjusted
empirical bootstrap p < 0.0001, py,, < 0.0001; Supplementary
Figure 1A). Similarly, AUC;,; was lower during the first
week of EXP compared to BL in this group only (LSMdiff:
1381; bootstrapping 95% CI (941, 1663), unadjusted empirical
bootstrap p < 0.0001, py,, < 0.0001; Supplementary Figure 1B).
In the remaining CSR participants who were on the higher-
fat diet, we observed no significant change in either AUC,,
or AUCjys.

Daily Assessments of Postprandial
Glucose and Insulin Levels During the

First Week Under Control Conditions

In the Control group, there were no significant changes in
AUCqyc (Figure 3B) or AUC;,s (Figure 3D) during the first week
in the laboratory.

Insulin Sensitivity During 3 Weeks of
Chronic Sleep Restriction While
Minimizing Circadian Disruption

We  performed  euglycemic-hyperinsulinemic ~ clamps
in the first half of CSR (n = 4) and Control (n = 4)
participants during BL, and after the first and third
weeks of EXP. We detected no overall effects of
condition in the CSR or Control group on insulin
sensitivity (Figure 4).

Body Weight, Body Fat, and Fasting

Lipids

Chronic sleep restriction participants showed no significant
change in weight throughout the study. In the CSR&RCD
group, participants exhibited a significant but modest reduction
in mean body weight at EXP compared to BL (LSMdift:
0.97 kg; bootstrapping 95% CI (0.59, 1.34), unadjusted empirical
bootstrap p < 0.0001, py,,, < 0.0001) and continued to lose weight
during REC, resulting in a small but significant reduction in
body weight (LSMdift: 1.22 kg; bootstrapping 95% CI (0.74, 1.66),
unadjusted empirical bootstrap p < 0.0001, pp,,, < 0.0001). There
was no significant change in weight in the Control participants.
Dual-energy X-ray absorptiometry scans performed before and
after the study revealed no significant changes in total body fat
within any of the groups (Supplementary Table 2). No significant
changes were observed in the levels of any fasting lipids in the
CSR, Control, and CSR&RCD groups (Supplementary Table 2).

DISCUSSION

We previously reported that 3 weeks of CSR with RCD increased
glucose levels in response to a standardized breakfast meal
due to inadequate insulin levels (Buxton et al., 2012). In the
present study, we found that glucose levels were not increased in
response to a standardized breakfast meal after 3 weeks of CSR
while minimizing circadian disruption. Notably, we have also
found in the same individuals that slow wave activity and slow
wave sleep duration increased during 3 weeks of CSR (Xin and
Yuan et al.,, submitted). Given the important role of slow wave
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FIGURE 4 | Insulin sensitivity on a low-fat diet at BL and after 3 EXP weeks of
CSR or Control conditions. M-index calculated from
euglycemic-hyperinsulinemic clamps conducted at BL, after 1 week of CSR or
Control EXP conditions (Wk 1), and after 3 EXP weeks of CSR or Control
conditions (Wk 3). Each line represents data from an individual participant in
the (A) CSR group (purple; n = 4) or (B) Control group (green; n = 4).

sleep in glucose metabolism (Tasali et al., 2008; Herzog et al,
2013), its preservation in the CSR condition when minimizing
circadian disruption may account for why glucose metabolism
was not impaired.

In a subset of CSR participants who were on a low-fat
diet, near-daily assessments of glucose and insulin metabolism
during week 1 of EXP to CSR revealed a significant decrease
in postprandial glucose and insulin levels in response to the
standardized test meal, suggesting improved glucose tolerance
and insulin sensitivity. Although unexpected, this result is
consistent with our overall finding that exposure to CSR while
minimizing circadian disruption has no adverse effect on glucose
tolerance. Unlike real-world sleep restriction, these participants
were not permitted to consume additional calories nor were
they exposed to light at night during their extended wake.
Therefore, the observed improvement in glucose tolerance
in these participants could potentially be due to increased
caloric utilization as a result of their extended wakefulness; the
combination of CSR with a low-fat diet would have inadvertently
resulted in greater caloric restriction compared to the other CSR
participants who were on a more typical western diet. Overall,
these findings—that CSR while minimizing circadian disruption
has a minimal adverse impact on glucose metabolism—are
similar to a recent study of chronic partial sleep loss in rats
showing slower weight gain, decreased plasma glucose, and no
changes in plasma insulin levels after 60 days of exposure to sleep
deficiency while on a low-fat diet (16.7% fat) of regular rat chow
(Vetrivelan et al., 2012).

Many human studies have demonstrated impaired glucose
regulation and/or insulin sensitivity after as few as 1-7 days
of sleep deprivation or CSR (Nedeltcheva et al., 2009; Buxton
et al, 2010; Donga et al., 2010; van Leeuwen et al, 2010;
Schmid et al, 2011; Reynolds et al., 2012; Leproult et al,
2014; Rao et al, 2015; Broussard et al., 2016; Wang et al,
2016; Ness et al., 2019a). However, in those studies, sleep
restriction was also associated with circadian disruption through
extension of the daily photoperiod, i.e., the duration of light
exposure in a 24-h day. Circadian misalignment has itself
been shown to disrupt glucose metabolism, with an important

role for impaired insulin sensitivity and muscle non-oxidative
glucose disposal (Scheer et al, 2009; Leproult et al, 2014;
Qian et al, 2018; Wefers et al, 2018). Moreover, changes
in photoperiod have been shown to impact metabolism in
a wide array of species (Rousseau et al, 2003; Walton
et al, 2011). In the present study, we maintained the same
photoperiod in the EXP segment as in the BL by keeping
participants in near darkness during extended wakefulness,
thereby minimizing the confounding effects of extended exposure
to light. Furthermore, we performed our primary assessments
after 3 weeks of EXP, allowing time for adaptation. It may
be that the extended photoperiod inherent in prior CSR
studies contributed to the reported metabolic effects by affecting
melatonin concentrations —which may be a key regulator of
glucose metabolism (McMullan et al., 2013a,b; Rubio-Sastre et al.,
2014; Garaulet et al., 2015, 2020; Lopez-Minguez et al., 2018;
Karamitri and Jockers, 2019) —either by delaying the evening
rise in melatonin or by reducing the duration of the diurnal
profile of melatonin. Of note, Leproult et al. (2014) found that
recent exposure to extreme circadian misalignment coupled with
CSR had significantly larger adverse effects on key diabetes
risk factors than CSR alone. Consistent with these findings,
our results support the hypothesis that circadian disruption
may contribute to the increased diabetes risk that has been
associated with chronic insufficient sleep (Committee on Sleep
Medicine and Research, Board on Health Sciences Policy,
2006).

Limitations: We compared the effects of 3 weeks of CSR
in highly controlled inpatient studies under two conditions:
(1) while minimizing circadian disruption, and (2) while
imposing RCD. As the participants in condition 2 were
from a previous study, we could not randomize participants
between the two groups or do direct statistical comparisons
between groups. However, given the hundreds of published
studies documenting the association between sleep restriction
and impaired glucose metabolism, our findings are both
unexpected and noteworthy that in carefully controlled
laboratory conditions, nine healthy individuals studied for
3 weeks of EXP to CSR with minimal circadian disruption
showed no impairment of glucose metabolism. These studies,
which involved 1,152 days of hospitalization and represent
some of the longest inpatient studies of CSR, break open a new
field of inquiry regarding the role of circadian disruption in
the pathophysiology of sleep restriction-induced impairment of
glucose metabolism in humans.

CONCLUSION

In summary, we found that while 3 weeks of CSR combined
with RCD impaired glucose tolerance, 3 weeks of CSR
while minimizing circadian disruption had no adverse
effect on glucose metabolism. These results suggest that
the mechanism by which chronic sleep loss impacts
metabolic health may require circadian disruption and/or
fragmentation [e.g., sleep apnea (Pamidi et al., 2015)] or
selective deprivation of slow wave sleep (Tasali et al., 2008).
Future studies are needed to clarify how exposure to extended
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duration artificial light at night, melatonin secretion, meal timing,
and diet interact with sleep loss to impact metabolism.
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