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Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and 
organs, control capillary blood pressure and microvascular fluid exchange, govern 
peripheral vascular resistance, and contribute to the regulation of blood pressure. These 
important microvessels display pressure-dependent myogenic tone, the steady state level 
of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar 
internal diameter such that arterioles can both dilate and constrict to meet the blood flow 
and pressure needs of the tissues and organs that they perfuse. This perspective will 
focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum 
membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. 
In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated 
by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-
gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels 
(TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent 
inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-
induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in 
Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from 
VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-
mediated control of BKCa channel activity, or positive-feedback regulation in cooperation 
with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor 
potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that 
activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) 
channels causing membrane hyperpolarization that is conducted to overlying VSMCs 
producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs 
produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels 
activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial 
vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that 
mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion 
channels importantly contribute to many aspects of the regulation of myogenic tone in 
arterioles in the microcirculation.
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INTRODUCTION

Arterioles are prominent resistance vessels that regulate blood 
flow to and within tissues and organs; determine capillary 
blood pressure and fluid exchange in the microcirculation; 
and contribute to the regulation of systemic blood pressure 
(Renkin, 1984). A defining characteristic of arterioles is pressure-
dependent myogenic tone, the steady state vascular smooth 
muscle cell (VSMC) contractile activity that is induced and 
maintained by pressure-dependent mechanisms (Jackson, 2020, 
2021). Myogenic tone sets resting arteriolar internal diameter 
such that these microvessels can dilate or constrict to maintain 
homeostasis by meeting the blood flow and pressure needs of 
the tissues and organs that they perfuse.

Arterioles express numerous ion channels that are essential 
to their function (Figure 1). Plasma membrane and endoplasmic 
reticulum (ER) ion channels in VSMCs are a major source 

of Ca2+ triggering contractile machinery activation and increased 
arteriolar tone (vasoconstriction). In endothelial cells (ECs), 
ion channels provide a key Ca2+source controlling EC autacoid 
production including prostacyclin (PGI2), nitric oxide (NO) 
and epoxides of arachidonic acid (EETs; Jackson, 2016). 
Intracellular Ca2+ also controls gene expression and cell 
proliferation in VSMCs (Cartin et  al., 2000; Stevenson et  al., 
2001; Barlow et  al., 2006) and in ECs (Quinlan et  al., 1999; 
Nilius and Droogmans, 2001; Munaron, 2006; Minami, 2014). 
Ion channels play a major role in cell volume regulation in 
all cells (Hoffmann et  al., 2009). Finally, ion channels help 
set and modulate VSMC and EC membrane potential (Jackson, 
2016, 2020, 2021; Tykocki et  al., 2017). Membrane potential, 
in turn, regulates the open state probability of voltage-gated 
Ca2+ channels (VGCCs) which provide a major source of 
activator Ca2+ in VSMCs (Tykocki et  al., 2017), but probably 
not most ECs (Jackson, 2016). The electrochemical gradient 

FIGURE 1 | Schematic representation of a cross section of one wall of an arteriole showing a myoendothelial projection (MEP) passing through a hole in the internal 
elastic lamina (IEL). Heterocellular gap junctions are present allowing electrical and chemical (Ca2+, IP3, etc.) communication between ECs and VSMCs. Also shown 
are homocellular (EC-EC and VSMC-VSMC) gap junctions that also allow electrical and chemical communication as shown. Only a few classes of ion channels 
expressed by arteriolar VSMCs and ECs are shown for clarity. TRPC6, transient receptor potential channel C family member 6; CaCC, Ca2+-activated Cl− channels; 
TRPM4, transient receptor potential channel melanostatin family member 4; VGCC, voltage-gated Ca2+ channels, BKCa, large-conductance Ca2+-activated K+ 
channels; KV, voltage-gated K+ channels; KATP, ATP-sensitive K+ channels; IP3R, inositol 1,4,5 trisphosphate receptor; RyR, ryanodine receptor; SERCA, smooth 
endoplasmic reticulum Ca2+ ATPase; IKCa, intermediate-conductance Ca2+-activated K+ channel; TRPV4, Transient Receptor Potential Vanilloid-family 4 channels; 
TRPC3, transient receptor potential channel C family member 3; sKCa, small-conductance Ca2+-activated K+ channel.
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for diffusion of Ca2+ and other ions depends on membrane 
potential in all cells (Tykocki et al., 2017). Membrane potential 
also has been proposed to affect Ca2+ release from ER Ca2+ 
stores and may influence the Ca2+ sensitivity of Ca2+-dependent 
processes [see (Tykocki et  al., 2017) for references]. Lastly, 
membrane potential serves as an essential signal for cell–cell 
communication, because VSMCs and ECs express both 
homocellular and heterocellular gap junctions allowing electrical 
and chemical communication among cells in the arteriolar 
wall (de Wit and Griffith, 2010; Bagher and Segal, 2011; Dora 
and Garland, 2013; Garland and Dora, 2017; Schmidt and de 
Wit, 2020). Thus, arteriolar function critically depends on 
ion channels.

Calcium-dependent ion channels in both VSMCs and ECs 
play a central role in the generation and modulation of myogenic 
tone and maintenance of homeostasis (Figure 1). These channels 
provide both positive- and negative-feedback control of 
intracellular Ca2+ in VSMCs that allows fine tuning of arteriolar 
tone as will be  outlined in Section VSMC Ca2+-Dependent 
Ion Channels, below.

The arteriolar endothelium provides negative-feedback signals 
to overlying VSMCs through Ca2+-dependent autacoid production 
and direct electrical communication via myoendothelial gap 
junctions (MEGJs; Lemmey et  al., 2020). Endothelial Ca2+-
dependent ion channels contribute to these processes (Figure 1) 
as outlined in Section Endothelial Ca2+-Dependent Ion Channels 
and Arteriolar Tone, below.

Section Integration of Ca2+-Dependent Ion Channels Into 
the Mechanisms Underlying Pressure-Induced Myogenic Tone 
then will integrate the VSMC and EC Ca2+-dependent ion 
channels into the mechanisms that establish, maintain, and 
modulate pressure-dependent myogenic tone in resistance arteries 
and arterioles.

VSMC Ca2+-DEPENDENT ION 
CHANNELS

Arteriolar VSMCs express at least six different Ca2+-dependent 
ion channels (Tykocki et  al., 2017) that participate in the 
generation, maintenance and modulation of myogenic tone. 
Large-conductance Ca2+-activated K+ (BKCa) channels provide 
negative-feedback regulation of myogenic tone. Ryanodine 
receptors (RyRs) can be  both inhibitory (negative feedback) 
or excitatory (positive feedback) dependent on where in the 
ER they are expressed and with which ion channels they 
interact. Inositol 1,4,5-trisphosphate receptors (IP3Rs), transient-
receptor potential melanostatin member 4 (TRPM4) channels, 
Ca2+-activated Cl− channels (CaCCs) and transient receptor 
potential polycystin-family member 1 [TRPP1 (PKD2)] channels 
are excitatory and contribute to the positive-feedback regulation 
of myogenic tone. In addition, VGCCs (Shah et  al., 2006), 
voltage-gated K+ (KV) channels (Gelband et  al., 1993; Ishikawa 
et  al., 1993; Gelband and Hume, 1995; Post et  al., 1995; Cox 
and Petrou, 1999) and ATP-sensitive K+ (KATP) channels (Wilson 
et  al., 2000) are inhibited in a Ca2+-dependent fashion and 
will be  briefly discussed.

VSMC BKCa Channels and the Regulation 
of Arteriolar Tone
Arteriolar VSMCs express BKCa channels that provide negative-
feedback regulation of myogenic tone (Figure 1). Both membrane 
depolarization and increases in intracellular Ca2+ activate BKCa 
(Tykocki et  al., 2017), and because of their large conductance 
(~200 pS), they powerfully dampen the excitation of VSMCs, 
preventing vasospasm. BKCa channels consist of a tetramer of 
KCa1.1 α-pore-forming subunits (gene = KCNMA1) which have 
seven transmembrane spanning domains (Meera et  al., 1997; 
Figure  2A). Voltage is sensed by positively charged amino 
acids in membrane spanning domains S2, S3, and S4 (Ma 
et  al., 2006; Figure  2A), while Ca2+ is sensed by two regulator 
of conductance of K+ (RCK) domains (RCK1 and RCK2) in 
the long, cytosolic C-terminus of the α-subunit (see (Hoshi 
et  al., 2013a) for references; Figure  2A).

Vascular smooth muscle cells express both β and γ subunits 
that modulate the function of the BKCa channel α-pore-forming 
subunits (Figure  2A). The primary β subunits in VSMCs are 
β1 (KCNMB-1, KCaβ1; Tykocki et  al., 2017; Figure  2A). These 
subunits modulate channel gating kinetics and increase the Ca2+ 
sensitivity of the α-subunit (McCobb et al., 1995; McManus et 
al., 1995; Meera et al., 1996; Tseng-Crank et al., 1996). They 
also are dynamically trafficked to the cell membrane from Rab11A-
positive recycling endosomes, providing the ability of VSMCs 
to tune BKCa channel function (see (Leo et  al., 2014, 2017) for 
details). The expression of β1-subunits may be  downregulated 
during disease states like hypertension (Amberg et  al., 2003; 
Tajada et al., 2013) and diabetes (McGahon et al., 2007), decreasing 
the ability to activate VSMC BKCa channels, increasing myogenic 
tone. The BKCa channel agonists dehydrosoyasaponin I (McManus 
et al., 1995) and 17β-estradiol require expression of β1-subunits 
(Valverde et al., 1999). Thus, β1-subunits control the Ca2+ sensitivity 
and the pharmacology of BKCa channels in VSMCs.

Arteriolar VSMC BKCa channels have a high Ca2+ setpoint 
requiring >3 μM cytosolic Ca2+ ([Ca2+]in) to open at negative, 
physiological membrane potentials (−30 to −40 mV; Jackson 
and Blair, 1998). For reference, global [Ca2+]in measured with 
Fura-2  in arterioles with myogenic tone is on the order of 
300–400 nM (Brekke et  al., 2006). Patch clamp studies have 
shown that arteriolar BKCa channels are silent when VSMCs 
are dialyzed with solutions containing 300 nM [Ca2+]in (Jackson, 
1998), consistent with a high [Ca2+]in threshold for their activation. 
The high Ca2+ setpoint (threshold) in arteriolar VSMCs may 
be  due to lower expression of the β1-subunits (Yang et  al., 
2009, 2013) and possible differences in expression of spliced 
variants of the α-pore-forming subunit (Nourian et  al., 2014) 
compared to VSMCs in larger arteries.

There also are γ-subunits associated with BKCa channels 
that are leucine-rich-repeat-containing proteins (LRRCs; Yan 
and Aldrich, 2010; Almassy and Begenisich, 2012; Evanson 
et  al., 2014; Gonzalez-Perez et  al., 2014; Figure  2A). LRRCs 
allow activation of BKCa channels at negative membrane potentials, 
even in the absence of Ca2+, by shifting their voltage vs. activity 
relationships to the left (increasing their voltage-sensitivity), 
facilitating their negative feedback function (Yan and Aldrich, 
2010; Gonzalez-Perez et al., 2014). The BKCa channel sensitivity 
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to activation by docosahexaenoic acid (DHA) also is increased 
by LRRCs (Hoshi et  al., 2013b). The role played by LRRCs 
in arteriolar VSMCs has not been  studied.

BKCa channels provide strong negative feedback regulation 
of both pressure-induced and agonist-induced tone in resistance 
arteries and arterioles [see (Tykocki et  al., 2017) for numerous 

A B

C D

E F

G

FIGURE 2 | Membrane topology of Ca2+-dependent ion channels involved in the regulation of myogenic tone. (A) Components of VSMC BKCa channels including a 
β1- subunit with two membrane-spanning domains, one pore-forming α-subunit with seven membrane-spanning domains and a γ-subunit (LRRC26, for example) 
with one membrane-spanning domain. (B) Shows one α-subunit of an RYR with a large cytosolic N-terminal domain, 6 membrane spanning domains and a short 
C-terminal sequence. (C) Shows one α-subunit of an IP3R with a large cytosolic N-terminal domain, 6 membrane spanning domains and a short C-terminal 
sequence. (D) Shows one α-subunit of a TRPM4 channel including an N-Terminal domain with a TRPM homology sequence, 6 membrane spanning domains, and a 
C-terminal domain containing a TRP sequence and binding sites for calmodulin. (E) Shows one α-subunit of ANO1 (TMEM16A) CaCC with 10 membrane spanning 
domains. (F) Shows α-subunit of either sKCa or IKCa channels with 6 membrane spanning domains and a C-terminal domain with bindings sites for calmodulin. 
(G) Shows one α-subunit of a TRPV4 channel with N-terminal sequence containing ankyrin repeat domains (ARDs), 6 membrane spanning domains and a 
C-terminal domain with TRP sequence and calmodulin binding sites. See text for more information.
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references]. However, there is regional heterogeneity in the 
source of Ca2+ that activates BKCa channels in resistance arteries 
versus arterioles. In most resistance arteries, BKCa channels 
are controlled by Ca2+ sparks which represent the simultaneous 
release of Ca2+ from the ER through small, clustered groups 
of RyRs (Nelson et  al., 1995). Vascular smooth muscle cells 
that utilize this mechanism of BKCa channel activation display 
the so-called spontaneous-transient-outward currents (STOCs): 
bursts of activity of small groups of BKCa channels coinciding 
with the RyR-based Ca2+ sparks [(Nelson et  al., 1995), see 
(Tykocki et  al., 2017) for additional references]. In VSMCs 
where this mechanism is active, pharmacological block of RyRs 
produces the same effect as block of BKCa channels.

In contrast to many larger resistance arteries, Ca2+ influx 
through VGCCs directly activates BKCa channels in skeletal 
muscle arteriolar VSMCs; RyRs are silent, at least under the 
conditions studied (Westcott and Jackson, 2011; Westcott et al., 
2012). In resistance arteries immediately upstream from skeletal 
muscle arterioles, both RyR-dependent and VGCC-dependent 
control of BKCa channels is apparent (Westcott and Jackson, 
2011; Westcott et  al., 2012). These data suggest that there may 
be  a spectrum of control mechanisms that are involved in 
Ca2+-dependent control of BKCa channels in the resistance 
vasculature. In cerebral penetrating arterioles, both RyRs and 
BKCa channels are silent at rest, but both can be  activated by 
low pH (Dabertrand et  al., 2012). The molecular mechanisms 
underlying pH-sensitive recruitment of RyR-control of BKCa 
channels has not been established. The mechanisms responsible 
for the differences in Ca2+ sources that control BKCa channels 
are not known, but likely relate to the number and location 
of BKCa channels expressed relative to RyRs, VGCCs and other 
ion channels.

VSMC Ryanodine Receptors and Arteriolar 
Tone
Ryanodine receptors are composed of four, >500 kDa subunits 
that form ryanodine-sensitive Ca2+ channels in ER membranes 
(Figure  2B; Van Petegem, 2015; Yan et  al., 2015; Zalk et  al., 
2015). Increases in [Ca2+]in from resting levels [~300 nM in 
VSMCs with tone (Brekke et al., 2006).] up to ~10 μM activate 
release of Ca2+ through RyRs, although high levels of [Ca+]in 
(>10 μM) are inhibitory (Tykocki et  al., 2017). Ryanodine 
receptors also serve as scaffolds for a plethora of signaling 
proteins [see (Tykocki et  al., 2017) for numerous references]. 
There are three isoforms of RyRs, RyR1, RyR2 and RyR3 
[genes = RYR1, RYR2 and RYR3, respectively (Lanner et  al., 
2010)]: RyR1 is predominantly expressed in skeletal muscle, 
RyR2 is expressed in cardiac muscle and RyR3 is expressed 
in the brain and other tissues (Ledbetter et  al., 1994; Giannini 
et  al., 1995; Reggiani and te Kronnie, 2006). Vascular smooth 
muscle expresses multiple isoforms of RYRs with considerable 
vessel-to-vessel heterogeneity (Vallot et  al., 2000; Yang et  al., 
2005; Salomone et al., 2009; Vaithianathan et al., 2010; Westcott 
and Jackson, 2011; Westcott et al., 2012). In VSMCs of skeletal 
muscle arterioles, RyR2 is predominate, and RyR1 is absent 
(Westcott et  al., 2012).

Ryanodine receptors are highly regulated proteins that are 
modulated by phosphorylation, cellular redox status and 
interactions with many binding partners in addition to [Ca2+]in 
(see Tykocki et al., 2017). The overall function of RyRs depends 
on exactly where they are located in cells and with which ion 
channels and other proteins they interact.

The elemental Ca2+ signal generated by RyRs is the Ca2+ 
spark which represents the simultaneous release of Ca2+ from 
small clusters of RyRs as noted in Section VSMC BKCa Channels 
and the Regulation of Arteriolar Tone. Calcium influx through 
VGCCs has been shown to indirectly regulate Ca2+ spark 
frequency and amplitude by effects on global [Ca2+]in and ER 
Ca2+ store loading (Essin et  al., 2007). Subsequent studies have 
shown that the magnitude of Ca2+ influx through the persistent 
activity of membrane clusters of VGCCs, that can be  recorded 
as VGCC Ca2+ sparklets (Navedo et  al., 2005; Amberg et  al., 
2007), controls the amplitude of Ca2+ sparks (Tajada et  al., 
2013). These data suggest that local influx of Ca2+ is a major 
determinant of RyR activity in VSMCs.

In skeletal and cardiac muscle, RyRs act in a positive-feedback 
manner through Ca2+-induced-Ca2+-release (CICR) to cause 
explosive release of Ca2+ from the ER and subsequent muscle 
contraction. In both skeletal muscle and cardiac muscle, Ca2+ 
sparks form the basis of this positive feedback process. A 
similar positive feedback role for Ca2+ sparks has been proposed 
for some arteriolar VSMCs (Curtis et  al., 2004, 2008; Fellner 
and Arendshorst, 2005, 2007; Balasubramanian et  al., 2007; 
Tumelty et  al., 2007; Kur et  al., 2013). In addition to Ca2+ 
sparks, RyRs can cooperate with IP3Rs and contribute to Ca2+ 
waves and the positive regulation of myogenic tone in some 
resistance arteries (Jaggar, 2001; Mufti et al., 2010, 2015; Westcott 
and Jackson, 2011; Westcott et  al., 2012). In other VSMCs, 
RyR-dependent Ca2+ sparks may also act in an excitatory fashion 
by activating plasma membrane CaCCs producing the so-called 
spontaneous transient inward currents (STICs) that cause 
membrane depolarization, VGCC activation and an increase 
in tone (ZhuGe et  al., 1998; Cheng and Lederer, 2008).

As outlined in Section VSMC BKCa Channels and the 
Regulation of Arteriolar Tone, in many resistance arteries 
upstream from the microcirculation, RyRs function as part of 
a negative-feedback process limiting VSMC excitability. In these 
vessels, RyR-dependent Ca2+ sparks are functionally coupled 
to BKCa channels producing membrane hyperpolarization, VGCC 
deactivation and a decrease in tone (Nelson et al., 1995; Jaggar 
et  al., 1998; Cheng and Lederer, 2008).

However, in skeletal muscle (Westcott and Jackson, 2011; 
Westcott et  al., 2012), cerebral (Dabertrand et  al., 2012), and 
ureteral (Borisova et  al., 2009) arterioles downstream from 
resistance arteries, RyRs are not active and do regulate myogenic 
tone. Low pH has been shown to recruit RyR-dependent Ca2+ 
sparks in cerebral arterioles, thereby activating BKCa channels 
and mediating dilation (Dabertrand et al., 2012). Whether RyRs 
can be  recruited by pH or other conditions in skeletal muscle 
or ureteral VSMCs has not been studied.

The mechanisms responsible for the heterogeneity in RyR 
function are not known but most likely result from the specific 
pattern and magnitude of RyR isoform expression, their cellular 
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localization, and the expression and localization of other ion 
channels (for example, CaCC vs. BKCa channels) in the plasma 
membrane over RyRs. This area of research should be explored 
in more detail in the future.

VSMC IP3Rs and Arteriolar Tone
Inositol 1,4,5 trisphosphate receptors are homotetramers that, 
like RyRs, form large (~310 kDa) Ca2+ release channels in ER 
membranes (Foskett et  al., 2007; Figure  2C). There is one 
binding site for IP3 on each IP3R monomer (Foskett et  al., 
2007; Seo et  al., 2012, 2015; Taylor et  al., 2014).

Three isoforms of IP3Rs (IP3R1, IP3R2, and IP3R3) arise 
from three genes (ITPR1, ITPR2 and ITPR3 respectively; Foskett 
et  al., 2007). There is regional heterogeneity in VSMC IP3R 
expression and multiple isoforms are usually expressed in a 
given VSMC (see (Narayanan et  al., 2012) for review). In 
VSMCs from skeletal muscle resistance arteries and downstream 
arterioles, we  have found expression of IP3R1 > IP3R2 > > IP3R3 
(Westcott et  al., 2012).

Like RyRs, IP3Rs can be  triggered to open by increases in 
[Ca2+]in, with IP3 affecting the sensitivity of the channels to 
CICR [see (Tykocki et  al., 2017) for review]. In the presence 
of IP3, IP3Rs display a bell shaped [Ca2+]in-response relationship 
with high [Ca2+]in (>1 μM) inhibiting Ca2+ release through these 
channels (Tu et  al., 2005). IP3Rs serve as amplifiers of Ca2+ 
signals generated by other ion channels. They have a number 
of protein binding partners that modulate their function including 
FKBP12 (MacMillan et  al., 2005), RACK1 (Patterson et  al., 
2004; Foskett et  al., 2007), ankyrin (Hayashi and Su, 2001), 
Homer (Tu et al., 1998; Foskett et al., 2007), Bcl family members 
(Bcl-xL, Mcl and Bcl-2; Li et  al., 2007; Eckenrode et  al., 2010) 
and, importantly, a number of TRPC channels including TRPC1 
(Boulay et  al., 1999), TRPC3 (Boulay et  al., 1999; Kiselyov 
et al., 1999), TRPC4 (Mery et al., 2001), TRPC6 (Boulay et al., 
1999) and TRPC7 (Vazquez et al., 2006), either directly (Boulay 
et  al., 1999) or as a component of larger protein complexes 
(Yuan et  al., 2003).

Vascular smooth muscle IP3Rs are essential for the initiation 
and maintenance of myogenic tone in resistance arteries (Osol 
et  al., 1993; Gonzales et  al., 2010, 2014; Garcia and Earley, 
2011) and some, but not all arterioles (Jackson and Boerman, 
2017). Three mechanisms have been proposed to account for 
pressure-dependent activation of IP3Rs in resistance arteries 
including angiotensin receptor-mediated (Gonzales et al., 2014), 
or integrin-mediated (Mufti et  al., 2015) activation of PLCγ1, 
angiotensin receptor-mediated activation of PLCβ (Mederos y 
Schnitzler et al., 2008; Schleifenbaum et al., 2014), or mechanisms 
involving membrane depolarization-induced activation of Gq-
coupled receptors (Ganitkevich and Isenberg, 1993; del Valle-
Rodriguez et  al., 2003; Urena et  al., 2007; Mahaut-Smith et  al., 
2008; Liu et al., 2009; Fernandez-Tenorio et al., 2010; Yamamura 
et  al., 2012).

In contrast, myogenic tone in hamster cheek pouch arterioles 
(Jackson and Boerman, 2017) and in murine 4th-order mesenteric 
arteries (Mauban et  al., 2015) does not depend on IP3 and 
activation of IP3Rs. Phospholipase-mediated hydrolysis of 

phosphatidylcholine and subsequent production of diacylglycerol 
was proposed to participate in the generation and maintenance 
of myogenic tone in murine 4th-order mesenteric arteries 
(Mauban et  al., 2015).

Myogenic tone in rat cerebral resistance arteries is 
accompanied by an increase in the frequency of Ca2+ waves 
(Jaggar, 2001; Mufti et  al., 2010, 2015) that involve both IP3Rs 
(Mufti et  al., 2015) and RyRs (Jaggar, 2001; Mufti et  al., 2010, 
2015). Similarly, Ca2+ waves in skeletal muscle resistance arteries 
depend on both RyRs and IP3Rs (Westcott and Jackson, 2011; 
Westcott et  al., 2012). In contrast, Ca2+ waves in downstream 
skeletal muscle arterioles depend only on Ca2+ release from 
IP3Rs (Westcott and Jackson, 2011; Westcott et  al., 2012) that 
may amplify Ca2+ influx through VGCCs (Jackson and Boerman, 
2018). However, in rat (Miriel et al., 1999) and mouse (Zacharia 
et  al., 2007) mesenteric resistance arteries, Ca2+ waves were 
inhibited as myogenic tone developed. Thus, there appears to 
be  regional heterogeneity in the role played by IP3R in the 
development and maintenance of myogenic tone. The mechanisms 
responsible for the heterogeneity in function of IP3Rs among 
blood vessels has not been established but likely stems from 
differences in the IP3R isoforms that are expressed; their 
localization and interactions with other proteins; and their 
proximity to other ion channels.

VSMC Ca2+-Activated Cl− Channels and 
Arteriolar Tone
VSMCs also express CaCCs that may contribute to myogenic 
tone. The protein anoctamin-1 (gene = ANO1), also known as 
transmembrane member 16A (TMEM16A), appears to be  the 
molecular basis of CaCCs in VSMCs (Ji et  al., 2019). This 
protein exists as a homodimer with each monomer having 10 
membrane spanning domains (S1-S10), with the pore being 
formed by S3-S7 helices which also contains a Ca2+ binding 
domain (Ji et  al., 2019; Figure  2E). TMEM16A demonstrates 
a synergistic dependence on voltage and Ca2+ to control its 
activity, with depolarization and increases in [Ca2+]in leading 
to opening of these channels (Ji et  al., 2019). In vascular 
smooth muscle, [Cl−]in is elevated due to intracellular Cl− 
accumulation from the activities of the Cl−/HCO3

− exchanger 
and the Na+/K+/Cl− co-transporter (Matchkov et  al., 2013). 
The elevated [Cl−]in sets the equilibrium potential for Cl− [−40 
to −25 mV, (Matchkov et  al., 2013)] to be  positive to the 
resting membrane potential [−45 to −30 mV, (Tykocki et  al., 
2017)] of VSMCs that develop myogenic tone. Therefore, opening 
of a Cl− channel results in an outward Cl− current (an inward 
current in electrophysiological terms), membrane depolarization, 
activation of VGCCs and an increase in tone (Matchkov 
et  al., 2013).

Calcium-activated chloride channels contribute to agonist-
induced tone in a variety of arteries (Bulley and Jaggar, 2014). 
In addition, STICs carried by Cl− and coupled to RyR-mediated 
Ca2+ sparks or IP3-based Ca2+ waves have been reported (Bulley 
and Jaggar, 2014). Cerebral resistance artery VSMCs express 
TMEM16A that are functionally coupled to transient receptor 
potential C-family member 6 (TRPC6) channels. Calcium influx 
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through TRPC6 activates TMEM16A contributing to the 
membrane depolarization, VGCC activation and pressure-induced 
myogenic tone in these vessels (Bulley et al., 2012; Wang et al., 
2016). In hamster cheek pouch arterioles, CaCCs appear to 
contribute to myogenic tone when VGCCs are active (Jackson, 
2020), suggesting that CaCCs may be  functionally coupled to 
VGCCs in those VSMCs. The molecular identity of CaCCs in 
hamster cheek pouch arteriolar VSMCs has not been established. 
Additional research on expression and function of CaCCs in 
resistance arteries and arterioles appears warranted.

VSMC TRPM4 Channels and Arteriolar 
Tone
VSMCs express many members of the transient receptor potential 
(TRP) family of ion channels that contribute to myogenic tone 
[see (Earley and Brayden, 2015; Tykocki et  al., 2017) for more 
information; Figures  1, 3]. Of these, TRPM4 channels are 
Ca2+-activated and are essential for pressure-induced myogenic 
tone in cerebral resistance arteries (Gonzales et  al., 2014). Like 
all TRP channels, the pore-forming subunit of TRPM4 channels 
has six transmembrane domains (S1–S6) which assemble as a 
tetramer to form a functional ion channel with residues in 
the intramembrane loop between S5 and S6 forming the channel’s 
pore (Earley and Brayden, 2015; Figure  2D). A conserved 
TRP domain located distal to S6 and a TRPM homology region 
in the NH2 terminus (Earley and Brayden, 2015) distinguish 
all members of the TRPM family (Earley and Brayden, 2015; 
Figure  2D). TRPM4 channels selectively conduct monovalent 
cations such that opening of these channels produces membrane 
depolarization due primarily to the influx of Na+ (Earley and 
Brayden, 2015). Calmodulin binding sites in the C-terminus 
of TRPM4 are essential for Ca2+-dependent activation and the 
Ca2+-sensitivity of these channels is increased by protein kinase 
C-dependent phosphorylation in their amino terminus (Earley, 
2013). Rho kinase also has been reported to increase the Ca2+-
sensitivity of TRPM4 channels in cerebral parenchymal arterioles 
(Li and Brayden, 2017).

In cerebral resistance arteries and arterioles, TRPM4 channels 
are part of the signal transduction pathway for pressure-dependent 
myogenic tone (Gonzales et  al., 2014; Li et  al., 2014; Li and 
Brayden, 2017; see Figure  3 and Section Integration of Ca2+-
Dependent Ion Channels Into the Mechanisms Underlying 
Pressure-Induced Myogenic Tone for more details). In this 
scheme, TRPM4 channels are activated by release of Ca2+ 
through IP3Rs into the subplasmalemmal space (Gonzales et al., 
2010), with the IP3Rs being activated by IP3, formed by 
mechanosensitive G-protein coupled receptor-mediated 
stimulation of phospholipase C (PLC)γ1, and Ca2+ entry through 
TRPC6 channels, likely activated by both pressure and PLCγ1-
production of diacylglycerol (DAG; Gonzales et  al., 2014; 
Figure  3). As noted above, in cerebral parenchymal arterioles, 
rho-kinase, which also is activated and contributes to myogenic 
tone, appears to modulate the Ca2+ sensitivity of TRPM4 
channels (Li and Brayden, 2017; Figure  3). The Na+ entry 
through TRPM4 channels, along with the entry of Ca2+ and 
Na+ through TRPC6 channels produces membrane depolarization 

and activation of Ca2+ entry through VGCCs, hallmark elements 
of pressure-dependent myogenic tone (see (Tykocki et al., 2017) 
for numerous references; Figure  3). The role of TRPM4  in 
myogenic tone of vessels in other vascular beds has been 
questioned because global knockout of TRPM4 has no effect 
on pressure-induced tone in hind limbs of mice (Mathar et al., 
2010). However, the details of the mechanisms responsible for 
pressure-induced tone in the TRPM4 knockout animals was 
not determined, such that compensation for the global knockout 
of TRPM4 channels may have occurred. Additional research 
on TRPM4 and myogenic tone appears warranted.

VSMC TRPP1 (PKD2) Channels and 
Myogenic Tone
Another potentially Ca2+-activated ion channel that is involved 
in regulation of myogenic tone are TRPP1 (PKD2) channels. 
Similar to TRPM4 channels already described, TRPP1 channels 
are tetramers of 6 membrane spanning domains encoded by 
the PKD2 gene that have coiled-coil domains in their C-termini 
and a Ca2+-binding EF-hand motif that may be  involved in 
Ca2+-dependent activation of these channels (Giamarchi and 
Delmas, 2007). The channels formed from TRPP1 are 
non-selective cation channels that conduct both Ca2+ and Na+ 
(Giamarchi and Delmas, 2007). The function of TRPP1  in 
regulation of myogenic tone is unclear. In murine mesenteric 
arteries, VSMC TRPP1 channels appear to inhibit myogenic 
tone (Sharif-Naeini et al., 2009), whereas in rat cerebral arteries 
VSMC TRPP1 channels significantly contribute to myogenic 
tone (Narayanan et  al., 2013). Conditional knockout of TRPP1 
from VSMCs decreases blood pressure and substantially reduces 
myogenic tone in murine skeletal muscle resistance arteries 
(Bulley et  al., 2018). The plasma membrane expression of 
TRPP1  in VSMCs is controlled by recycling of sumoylated 
channels and SUMO1 modification of TRPP1 channels is 
required for pressure-induced myogenic tone (Hasan et  al., 
2019). How TRPP1 channels “fit” with other channels that 
have been shown to be  involved in initiation and maintenance 
of myogenic tone (TRPC6 and TRPM4, for example) remains 
to be  established. Nor has it been established that VSMC 
TRPP1 channels are activated by Ca2+ or that Ca2+-dependent 
activation is part of their role in pressure-dependent myogenic 
tone. It is known that TRPP1 channels can heterodimerize 
with other members of the TRP family (Giamarchi and Delmas, 
2007) such that it is feasible that TRPP1 channels may be  part 
of a multi-channel complex. Additional research will be required 
to determine how TRPP1 channels and all of the other VSMC 
ion channels implicated in the generation and maintenance of 
myogenic tone fit together.

Inhibition of VSMC Ion Channels by Ca2+

Voltage-gated Ca2+ channels composed of CaV1.2 α-subunits 
(gene = CACNA1C) play a central role myogenic tone as these 
channels provide the main source of intracellular Ca2+, the 
primary trigger of VSMC contraction (Tykocki et  al., 2017). 
Calcium-dependent inhibition of VGCCs is mediated by 
calmodulin that binds to the C-terminus of CaV1.2 channels 
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that make up VSMC VGCCs (Shah et al., 2006). Thus, VGCCs 
themselves may contribute to the negative-feedback regulation 
of myogenic tone through this process (Figure  3).

Vascular smooth muscle cells express a diverse array of KV 
channels that participate in the negative-feedback regulation 
of myogenic tone (Tykocki et  al., 2017). Early studies showed 

Ca2+-dependent inhibition of KV channel currents in VSMCs 
from large arteries (Gelband et  al., 1993; Ishikawa et  al., 1993; 
Gelband and Hume, 1995; Post et  al., 1995; Cox and Petrou, 
1999). However, the molecular identity of the KV channel 
isoform that was inhibited was not identified: it was only 
suspected to be a channel inhibited by 4-amino pyridine (4-AP). 

FIGURE 3 | Ca2+-dependent ion channels and vascular smooth muscle signaling pathways for pressure-induced myogenic tone. Schematic diagram [modified 
from Jackson (2020), (2021)] of reported signaling pathways involved in myogenic tone in resistance arteries and arterioles highlighting the roles played by Ca2+-
dependent ion channels. See Section Integration of Ca2+-Dependent Ion Channels Into the Mechanisms Underlying Pressure-Induced Myogenic Tone of text for 
more details and references. Green font color depicts putative mechanosensors in pressure-induced myogenic tone. Blue font color depicts Ca2+-dependent ion 
channels involved in regulation of myogenic tone. Black arrows show stimulation, increases or activation of signaling molecules, ion channels or enzymes that 
participate in myogenic tone. Red capped lines indicate inhibition, decreases or deactivation of signaling molecules, ion channels or enzymes involved in myogenic 
tone. EC, endothelial cell; VSMC, vascular smooth muscle cell; IKCa, intermediate conductance Ca2+-activated K+ channel; sKCa, small conductance Ca2+-activated 
K+ channel; MMP, matrix metalloproteinase; HB-EGF, heparin-bound epidermal growth factor; EGFR, Epidermal Growth Factor Receptor; ERK1/2, Extracellular-
Signal-Related Kinases 1 or 2; JAK, Janus Kinase; STAT3, Signal Transducer and Activator of Transcription 3; mTNFα, membrane-bound Tumor Necrosis Factor α; 
TNFR, TNFα Receptor; S1P, Sphingosine-1-phosphate; S1PR, S1P Receptor; α5β1-int, α5β1 Integrin: FAK, Focal Adhesion Kinase; SRK, Src-related kinases; CaCC, 
Ca2+-activated Cl− channel; TRPP1 (PKD2), Transient Receptor Potential Polycystin family member 1; TRPV2,4, Transient Receptor Potential Vanilloid-family 2 or 4 
channels; ENaC, Epithelial Na+ Channel; ASIC, Acid Sensing Ion Channel; P2X7, P2X7 Purinergic Receptor; TRPC6, transient receptor potential C family member 6; 
TRPM4, transient receptor potential melanostantin member 4; VGCC, voltage-gated Ca2+ channel; BKCa, large-conductance Ca2+-activated K+ channel; KV, voltage-
gated K+ channel; KIR, inwardly-rectifying K+ channel; KATP, ATP-sensitive K+ channel; msGPCR, mechanosensitive G-protein-coupled receptor; DAG, diacylglycerol; 
PKC, protein kinase C; PLC, phospholipase C; PIP2, phosphatidylinositol bisphosphate; IP3, inositol, 1,4,5 trisphosphate; IP3R1, IP3 receptor 1; RyR, ryanodine 
receptor; CICR, Ca2+-induced-Ca2+ release; LARG, Guanine Nucleotide Exchange Factor LARG; RhoA, small G-protein Rho; RhoK, Rho kinase; LIMK, LIM kinase; 
CPI17, C-kinase potentiated Protein phosphatase-1 Inhibitor; MLCPPT, myosin light-chain phosphatase; MLC, myosin light-chain; MLCK, myosin light-chain kinase; 
CaN, calcineurin; CaM, calmodulin.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Jackson Ca2+-Dependent Ion Channels and Arteriolar Tone

Frontiers in Physiology | www.frontiersin.org 9 November 2021 | Volume 12 | Article 770450

Block of KV channels by 4-AP appears to be  Ca2+-dependent, 
making interpretation of 4-AP sensitivity difficult (Baeyens 
et al., 2014). It is well established that increased [Ca2+]in inhibits 
KV7.2-7.5 channels via binding to calmodulin associated with 
these channels (Alaimo and Villarroel, 2018). KV7 channels 
contribute substantially to the regulation of myogenic tone in 
resistance arteries (Mackie et  al., 2008; Greenwood and Ohya, 
2009; Jepps et  al., 2013; Cox and Fromme, 2016). Therefore, 
it is likely that at least some of the inhibitory effect of elevated 
[Ca2+]in on whole-cell KV currents is through inhibition of KV7 
channels. Regardless, Ca2+-dependent inhibition of active KV 
channels will cause membrane depolarization, activation of 
VGCCs and a further increase in [Ca2+]in contributing to the 
positive-feedback regulation of myogenic tone (Figure  3). It 
should be  noted that the density of KV channels is such that 
Ca2+-dependent inhibition of these channels serves only to 
blunt the main, negative-feedback role that KV channels play 
in the regulation of myogenic tone (Tykocki et  al., 2017; 
Jackson, 2018).

Elevated [Ca2+]in also inhibits ATP-sensitive K+ (KATP) channels 
through Ca2+-dependent activation of the protein phosphatase, 
calcineurin (Wilson et  al., 2000). These channels are active at 
rest in the microcirculation of a number of vascular beds 
(Tykocki et  al., 2017). Closure of KATP channels by increased 
Ca2+ would contribute to membrane depolarization, activation 
of VGCCs, and a further increase in [Ca2+]in, a positive-feedback 
process that would increase myogenic tone (Figure  3).

ENDOTHELIAL Ca2+-DEPENDENT ION 
CHANNELS AND ARTERIOLAR TONE

Numerous ion channels also contribute to EC function and 
to the modulation of myogenic tone (Jackson, 2016). Calcium-
dependent ion channels in ECs include IP3Rs, small conductance 
Ca2+-activated K+ (sKCa) channels, intermediate conductance 
Ca2+-activated K+ (IKCa) channels, CaCCs, transient receptor 
potential vanilloid-family member 4 (TRPV4) channels and 
TRPP1 channels.

EC IP3Rs and Arteriolar Tone
Endothelial cells express IP3Rs that contribute to the negative-
feedback regulation of arteriolar myogenic tone. Early EC studies 
demonstrated that the initial increase in [Ca2+]in in response 
to agonists of EC Gαq-coupled receptors resulted from Ca2+ 
release from ER stores (Hallam and Pearson, 1986; Colden-
Stanfield et  al., 1987; Busse et  al., 1988; Schilling et  al., 1992; 
Sharma and Davis, 1994, 1995). Subsequent studies pinpointed 
IP3Rs as the primary Ca2+ release channel involved in this 
response (Sharma and Davis, 1995; Cohen and Jackson, 2005).

Endothelial cells from arteries (Mountian et  al., 1999, 2001; 
Grayson et al., 2004; Ledoux et al., 2008) and arterioles (Jackson, 
2016) appear to express all three isoforms of IP3R. However, 
the dominant isoform may display regional- or species-dependent 
heterogeneity. For example, IP3R2 is the dominant IP3R expressed 
in mouse mesenteric artery ECs (Ledoux et  al., 2008), whereas 

IP3R3 is the dominant IP3R in mouse cremaster muscle arteriolar 
ECs (Jackson, 2016). There is little information about the 
specific localization of IP3R in native arteriolar ECs. In both 
EC-VSMC co-cultures and in intact mouse cremaster arterioles, 
IP3R1 localizes at sites of MEGJs (Isakson, 2008). Similarly, 
in mouse mesenteric resistance arteries, EC IP3Rs cluster near 
holes in the internal elastic lamina (Ledoux et  al., 2008), that 
are sites of myoendothelial projections (MEPs) and MEGJs 
(Sandow and Hill, 2000; Figure 1). Although the IP3R isoform(s) 
expressed in these IP3R clusters has not been identified, they 
were demonstrated to be  the sites of EC Ca2+ pulsars, localized 
IP3-dependent Ca2+ events arising from clusters of IP3Rs in 
the ER that extend into MEPs (Kansui et  al., 2008; Ledoux 
et  al., 2008; Figure  1).

Myoendothelial projections and MEGJs are important 
signaling microdomains in resistance arteries and arterioles 
and contain a growing list of signaling proteins including 
IP3Rs (Kansui et  al., 2008; Ledoux et  al., 2008), IKCa channels 
(Sandow et  al., 2006), TRPA1 channels (Earley et  al., 2009a), 
TRPV4 channels (Sonkusare et  al., 2012, 2014), anchoring 
proteins [e.g., AKAP150 (Sonkusare et  al., 2014)], protein 
kinases [e.g., PKC (Sonkusare et  al., 2014)], NO synthase 
(Straub et al., 2011; Wolpe et al., 2021), Na+/K+ ATPase (Dora 
et  al., 2008) and other proteins (Straub et  al., 2014; Wolpe 
et  al., 2021; Figure  1). Calcium influx through TRPA1 and 
TRPV4, which produce small, localized Ca2+ events called 
Ca2+ sparklets, likely serves as the source of Ca2+ that actually 
triggers release of Ca2+ through IP3Rs to form both localized 
Ca2+ pulsars (Kansui et  al., 2008; Ledoux et  al., 2008), Ca2+ 
wavelets (Tran et  al., 2012) and larger Ca2+ waves (Duza and 
Sarelius, 2004; Kansui et  al., 2008) found in ECs of resistance 
arteries and arterioles. These Ca2+ events are then translated 
into several signals that are vasodilatory and tend to reduce 
or temper myogenic tone. Activation of EC sKCa and IKCa 
channels (Section EC sKCa and IKCa Channels and Arteriolar 
Tone, below) leads to EC hyperpolarization, which can 
be conducted through MEGJs to overlying VSMCs, deactivating 
VGCCs, reducing VSMC Ca2+ influx and decreasing myogenic 
tone (Figure 3). Endothelial cell IP3R Ca2+ signals also activate 
EC NO synthase and production of other EC autacoids (PGI2, 
EETs, H2O2, etc.) that diffuse to overlying VSMCS and reduce 
myogenic tone (Figure  3).

Global increases in [Ca2+]in reported for ECs in intact 
resistance arteries or arterioles exposed to endothelium-
dependent vasodilators (Dora et  al., 1997; Marrelli, 2000; 
Cohen and Jackson, 2005; Socha et al., 2011) are a complicated 
blend of IP3R-mediated Ca2+ pulsars, Ca2+ wavelets and Ca2+ 
waves. Both the number and frequency of Ca2+ pulsars (Ledoux 
et  al., 2008) and both synchronous (Duza and Sarelius, 2004; 
Socha et  al., 2012) and asynchronous (Ledoux et  al., 2008; 
Socha et  al., 2012) Ca2+ waves are increased by endothelium-
dependent vasodilators, such as acetylcholine (Ledoux et  al., 
2008; Socha et  al., 2012) or adenosine (Duza and Sarelius, 
2004). Additional research will be  required to discover the 
precise IP3R isoform expression, location and function related 
to endothelium-dependent vasomotor activity and modulation 
of myogenic tone.
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Arteriolar ECs Do Not Express Functional 
RyRs
Early studies of ECs from large arteries provided evidence for 
expression of functional RyRs (Lesh et  al., 1993; Graier et  al., 
1994, 1998; Ziegelstein et  al., 1994; Rusko et  al., 1995; Kohler 
et  al., 2001b). In contrast, there is a lack of evidence for 
expression of RyRs in resistance artery and arteriolar ECs. 
Mouse mesenteric resistance artery ECs do not express mRNA 
for the three RyR isoforms, whereas transcripts for IP3Rs are 
readily detected (Ledoux et  al., 2008). In addition, resting Ca2+ 
levels or acetylcholine-evoked Ca2+ events in mouse (Ledoux 
et  al., 2008) or rat (Kansui et  al., 2008) mesenteric resistance 
artery ECs are unaffected by concentrations of ryanodine that 
block RyRs. Similarly, mouse cremaster arteriolar ECs do not 
express message for RyRs (Jackson, 2016), and the RyR agonist, 
caffeine (10 mM), has no effect on [Ca2+]in in these ECs (Cohen 
and Jackson, 2005). These data do not support a role for RyRs 
in resistance artery or arteriolar EC Ca2+ signals.

EC sKCa and IKCa Channels and Arteriolar 
Tone
Resistance artery and arteriolar ECs express both sKCa (KCa2.3; 
gene = KCNN3) and IKCa (KCa3.1; gene = KCNN4) channels 
(Kohler et  al., 2001a; Eichler et  al., 2003; Taylor et  al., 2003; 
Sandow et  al., 2006; Si et  al., 2006; Grgic et  al., 2009). These 
channels are a tetramer of six transmembrane domain subunits 
with cytosolic N- and C-termini (Adelman et  al., 2012; 
Figure  2F). The ion conducting pore is formed from a pore 
loop between membrane spanning domains 5 and 6, as in 
voltage-gated K+ channels (Adelman et  al., 2012). Calmodulin 
interacts with the intracellular C-terminus to gate opening of 
both channels (Xia et  al., 1998; Fanger et  al., 1999; Adelman 
et  al., 2012; Sforna et  al., 2018). The Ca2+ sensitivity of sKCa 
and IKCa channels is an order of magnitude higher than for 
BKCa channels. The threshold for activation by Ca2+ binding 
to calmodulin occurs at 100 nM, 50% of maximal activation 
at 300 nM and maximal activation at 1 μM for both sKCa channels 
(Xia et  al., 1998) and IKCa channels (Ishii et  al., 1997). The 
distinct pharmacology of sKCa and IKCa channels has helped 
to define their function in intact vessels (Jackson, 2016).

Endothelial cell sKCa and IKCa channels are not distributed 
uniformly in the plasma membrane of ECs: IKCa channels 
cluster at MEPs (Sandow et  al., 2006; Ledoux et  al., 2008; 
Earley et  al., 2009a), the site of MEGJs (Sandow and Hill, 
2000), whereas sKCa channels are more distributed around the 
cell periphery (Sandow et  al., 2006). Both channels appear to 
reside in macromolecular signaling complexes. At MEPs and 
near MEGJ’s, IKCa channels localize with IP3Rs (Ledoux et  al., 
2008), TRPA1 channels (Earley et  al., 2009a), TRPV4 channels 
(Sonkusare et al., 2012, 2014), anchoring proteins [e.g., AKAP150 
(Sonkusare et al., 2014)], protein kinases [e.g., PKC (Sonkusare 
et  al., 2014)], nitric oxide synthase (Straub et  al., 2011; Wolpe 
et al., 2021), Na+/K+ ATPase (Dora et al., 2008), likely G-protein 
coupled receptors (Sonkusare et  al., 2014) and other proteins 
(Straub et  al., 2014; Wolpe et  al., 2021; Figure  1). Local Ca2+ 
signals through TRPA1 channels (Earley et  al., 2009a), TRPV4 

channels (Sonkusare et  al., 2012, 2014), and/or IP3Rs (Ledoux 
et  al., 2008) activate IKCa (and sKCa) channels, leading to EC 
hyperpolarization and conduction of this signal to overlying 
VSMCs. Hyperpolarization then deactivates VSMC VGCCs 
reducing myogenic tone (Figure  3). EC hyperpolarization also 
may amplify Ca2+ influx through TRPA1 and TRPV4 channels 
by increasing the electrochemical gradient for Ca2+ influx (Qian 
et  al., 2014).

Endothelial cell sKCa channels also exist in macromolecular 
signaling microdomains around the EC periphery. They are 
found in cholesterol-rich areas (caveolae or lipid rafts) and 
colocalize with caveolin-1 (Absi et  al., 2007). Ca2+ influx 
through TRPC3 channels selectively activates sKCa channels 
in rat cerebral arteries (Kochukov et  al., 2014), suggesting 
that TRPC3 and sKCa channels exist in the same microdomain. 
In mouse carotid arteries, sKCa channels are in caveolae 
adjacent to EC-EC gap junction plaques (Brahler et al., 2009). 
Conditional knockout of sKCa channels attenuates shear-stress-
induced vasodilation in these arteries, suggesting that sKCa 
channel localization has functional consequences (Brahler 
et  al., 2009). The respective EC localization of sKCa and IKCa 
channels and their signaling microdomains explain how these 
two channels mediate different facets of EC hyperpolarization 
and the regulation of myogenic tone (Crane et  al., 2003; Si 
et  al., 2006).

Because ECs are electrically coupled to VSMCs via MEGJs, 
resting membrane potential of ECs can impact myogenic tone. 
Resting EC membrane potential is determined, in part, by the 
activity of sKCa and IKCa channels. Overexpression of sKCa 
channels (which hyperpolarizes ECs) reduces myogenic tone 
of mesenteric resistance arteries (Taylor et al., 2003). In contrast, 
conditional knockout of sKCa channels has the opposite effect 
(EC depolarization and an increase in myogenic tone; Taylor 
et  al., 2003). Consistent with these data, pharmacological 
inhibition of sKCa and IKCa channels, or both channels augment(s) 
myogenic tone in rat cerebral parenchymal arterioles (Cipolla 
et  al., 2009; Hannah et  al., 2011). Endothelial cell sKCa and 
IKCa channels seem to play a smaller role in modulating 
myogenic tone of larger cerebral resistance arteries, although 
they remain important in endothelium-dependent agonist-
induced vasodilation (Cipolla et  al., 2009). Nonetheless, sKCa 
and IKCa channels significantly contribute to EC-dependent 
negative-feedback regulation of myogenic tone.

Endothelium-dependent vasodilators that act through Gq-
coupled receptors also activate sKCa and IKCa channels. In some 
vessels, such as guinea-pig carotid artery (Corriu et  al., 1996), 
rat mesenteric arteries preconstricted with phenylephrine (Crane 
et  al., 2003) and porcine coronary arteries (Bychkov et  al., 
2002) both channels appear to be  involved because block of 
both sKCa and IKCa channels is necessary to inhibit agonist-
induced EC hyperpolarization. In contrast, IKCa channels mediate 
endothelium-dependent hyperpolarization and vasodilation in 
rat cerebral arteries (Marrelli et al., 2003) and in murine arteries 
and arterioles (Brahler et  al., 2009). The reason for this 
heterogeneity in the roles played by sKCa and IKCa channels 
between vascular beds is not apparent and will require 
further research.
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EC BKCa Channels and Arteriolar Tone
The expression and function of BKCa channels in ECs remains 
debatable (Sandow and Grayson, 2009). As described for VSMCs, 
BKCa channels are activated by both voltage and Ca2+, have a 
much larger conductance (~250 pS) than sKCa and IKCa channels, 
do not require association with calmodulin, and display 
pharmacology distinct from sKCa and IKCa channels (Hoshi 
et  al., 2013a; Tykocki et  al., 2017). Cultured large artery ECs 
have been reported to express BKCa channels (see (Sandow 
and Grayson, 2009) for references). Native ECs isolated from 
hypoxic rats (Hughes et  al., 2010; Riddle et  al., 2011) or 
cholesterol depleted ECs (Riddle et al., 2011) express functional 
BKCa channels. In cultured ECs, BKCa channels are located in 
caveolae and caveolin inhibits their function (Wang et  al., 
2005). These studies open the possibility that EC BKCa channels 
are normally inhibited. Conversely, chronic hypoxia, and 
potentially other stresses or pathologies, that alter membrane 
lipid domains may upregulate EC BKCa channel function (Sandow 
and Grayson, 2009).

Electrophysiological studies of freshly isolated bovine 
coronary artery (Gauthier et al., 2002), mouse carotid artery 
(Brahler et al., 2009), and rat cerebral parenchymal arteriolar 
(Hannah et  al., 2011) ECs found only sKCa channel and 
IKCa channel currents; no BKCa channel currents were detected. 
While it has been reported that ECs in freshly isolated rat 
cremaster arterioles express protein for BKCa channels (Ungvari 
et  al., 2002), neither mRNA nor protein for this channel 
were detected in bovine coronary artery ECs (Gauthier et al., 
2002). Murine skeletal muscle resistance artery and arteriolar 
ECs lack BKCa channel mRNA (Jackson, 2016). Thus, there 
may be  regional or species heterogeneity in EC expression 
of BKCa channels. Additional research appears to be warranted 
to define if and where EC BKCa are expressed, how they 
are regulated and their function in the regulation of 
myogenic tone.

EC Ca2+-Activated Cl− Channels and 
Arteriolar Tone
Electrophysiological studies of bovine pulmonary artery and 
human umbilical vein ECs demonstrate the functional expression 
of CaCCs (Nilius et  al., 1997; Zhong et  al., 2000). Unlike 
VSMCs (see Section VSMC Ca2+-Activated Cl− Channels and 
Arteriolar Tone), initial studies did not report expression of 
TMEM16A in ECs in lung sections (Huang et al., 2009; Ferrera 
et  al., 2011). However, more recent studies have identified 
TMEM16A expression and function in human pulmonary artery 
ECs and have shown that over expression of these channels 
leads to EC dysfunction (Skofic Maurer et  al., 2020). In 
hypertension, EC TMEM16A also contributes to endothelial 
dysfunction (Ma et al., 2017). TMEM16A is expressed in murine 
cerebral capillary ECs where it regulates membrane potential, 
Ca2+ signaling, proliferation, migration, and blood brain barrier 
permeability (Suzuki et al., 2020). Block of TMEM16A preserves 
blood brain barrier function after ischemic stroke (Liu et  al., 
2019). Hypoxia stimulates proliferation of brain capillary ECs 
via increased expression of TMEM16A (Suzuki et  al., 2021). 

Hypoxia also increases expression of TMEM16A in mouse 
cardiac ECs (Wu et  al., 2014).

The function of TMEM16A in arteriolar ECs related to 
regulation of myogenic tone is not clear. In murine capillary 
ECs, block of TMEM16A results in membrane hyperpolarization 
suggesting that in ECs, like in VSMCs (see Section VSMC 
Ca2+-Activated Cl− Channels and Arteriolar Tone), activation 
of these CaCCs leads to membrane depolarization, counter to 
the effects of activation of EC sKCa and IKCa channels which 
produce robust EC hyperpolarization. Thus, it may be  that 
CaCCs in ECs are part of a negative feedback mechanism to 
dampen membrane hyperpolarization induced by EC sKCa and 
IKCa channels when intracellular Ca2+ is elevated.

EC TRPV4 and Regulation of Arteriolar 
Tone
Transient receptor potential vanilloid-family member 4 channels 
are another prominent Ca2+-modulated ion channel expressed 
in ECs (Sonkusare et  al., 2012, 2014; Hong et  al., 2018; Chen 
and Sonkusare, 2020). These channels are formed from a 
tetramer of six membrane spanning domain subunits, with 
the pore of the channel formed by a pore-loop between domains 
5 and 6 like many other ion channels (Figure  2G). They 
conduct primarily Ca2+ and are activated by a diverse array 
of chemicals including EETs (Nilius et  al., 2004). In ECs, 
TRPV4 channels exist in signaling complexes near MEGJ’s 
along with IKCa channels, IP3Rs and other proteins (Sonkusare 
et  al., 2012, 2014; Hong et  al., 2018; Chen and Sonkusare, 
2020; Figures 1, 3). Intracellular Ca2+ potentiates the activation 
of TRPV4 channels through calmodulin that binds to the 
C-terminal region of this channel (Strotmann et  al., 2003).

Endothelial TRPV4 channels mediate agonist-induced, 
endothelium-dependent vasodilation, particularly in arterioles 
where activation of these receptors leads to activation of IKCa 
channels, EC hyperpolarization and conduction of this 
hyperpolarization to overlying VSMCs to induce vasodilation 
(Marrelli et  al., 2007; Earley et  al., 2009b; Sonkusare et  al., 
2012, 2014; Zhang et  al., 2013; Zheng et  al., 2013; Du et  al., 
2016; Diaz-Otero et  al., 2018; Figure  3). In addition, TRPV4 
channels play a central role in myoendothelial negative-feedback 
that tempers vascular tone in the absence of an endothelial 
agonist. Agonist-induced activation of VSMC Gq-coupled 
receptors leads to a global increase in EC intracellular Ca2+(Dora 
et  al., 1997; Schuster et  al., 2001; Tuttle and Falcone, 2001; 
Jackson et  al., 2008; Kansui et  al., 2008) that contributes to 
the negative-feedback regulation of vascular tone (Lemmey 
et  al., 2020). Studies in murine mesenteric resistance arteries 
have shown that endothelial TRPV4 channels are activated 
during this process through a mechanism involving Ca2+ release 
through IP3Rs, resulting in activation of IKCa channels blunting 
agonist-induced vasoconstriction (Hong et al., 2018; Figure 3). 
Similarly, studies in rat cremaster arterioles have shown that 
endothelial TRPV4 channels are activated at low intravascular 
pressure, leading to TRPV4 Ca2+ sparklets (localized [Ca2+]in 
signals through small groups of TRPV4 channels), activation 
of IKCa channels and dampening of myogenic tone (Bagher 
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et  al., 2012). The precise signal that is communicated from 
VSMCs to ECs to initiate myoendothelial feedback remains 
in question, with data supporting Ca2+ as the signal (Garland 
et  al., 2017) and other findings supporting IP3 as the signal 
(Tran et  al., 2012; Hong et  al., 2018). Additional research will 
be  required to determine whether Ca2+ or IP3 mediates 
myoendothelial negative-feedback and whether there is 
heterogeneity among vessels in which signal (Ca2+ or IP3) 
is used.

EC TRPP1 Channels and Myogenic Tone
Endothelial cells also express TRPP1 channels where they 
function in shear-stress dependent vasodilation (MacKay et al., 
2020). Shear-stress-induced increases in EC [Ca2+]in that activate 
sKCa channels, IKCa channels and EC nitric oxide synthase were 
shown to be  substantially impaired by conditional knockout 
of EC TRPP1 with no change in Ca2+ signals activated by 
muscarinic receptor activation (MacKay et  al., 2020). Calcium-
dependent activation of TRPP1 channels was not established 
in these studies, so [Ca2+]in modulation of these channels in 
ECs and their role in regulating myogenic tone other than 
when activated by shear-stress remains to be  established.

INTEGRATION OF Ca2+-DEPENDENT ION 
CHANNELS INTO THE MECHANISMS 
UNDERLYING PRESSURE-INDUCED 
MYOGENIC TONE

As outlined in Sections above, Ca2+-dependent ion channels 
in VSMCs and ECs are involved in the initiation, maintenance 
and modulation of pressure-induced myogenic tone. Figure  3 
integrates this information into a working model with the 
function of VSMC and EC Ca2+-dependent ion 
channels highlighted.

Pressure-Dependent Activation of 
Mechanosensors Leads to Formation of 
IP3 and DAG
Multiple mechano-sensors of wall stress (or strain) initiate 
the myogenic response culminating in steady-state myogenic 
tone (Figure  3). Putative sensors (in green font in Figure  3) 
include: several G-protein coupled receptors (Brayden et  al., 
2013; Narayanan et  al., 2013; Schleifenbaum et  al., 2014; 
Storch et  al., 2015; Kauffenstein et  al., 2016; Mederos et  al., 
2016; Hong et  al., 2017; Pires et  al., 2017; Chennupati et  al., 
2019), various cation channels (Welsh et  al., 2002; Jernigan 
and Drummond, 2005; Gannon et  al., 2008; VanLandingham 
et  al., 2009; Narayanan et  al., 2013; Nemeth et  al., 2020), 
integrins (Davis et  al., 2001; Martinez-Lemus et  al., 2005; 
Colinas et al., 2015), matrix metalloproteinases and epidermal 
growth factor receptors (EGFR; Lucchesi et  al., 2004; Amin 
et  al., 2011); and membrane-bound tumor necrosis factor α 
(mTNF α), TNF α receptor (TNFR) and downstream 
sphingosine-1-phosphate (S1P) signaling (Kroetsch et al., 2017; 

Figure  3). Pressure-dependent stimulation of these putative 
mechano-sensors activates phospholipase C (PLC) catalyzing 
hydrolysis of membrane phosphatidyl inositol 4,5 bisphosphate 
(PIP2) to form IP3 and DAG (Figure  3).

Activation of Plasma Membrane Ion 
Channels Produces Membrane 
Depolarization
Pressure- and likely DAG-induced activation of plasma 
membrane TRPC6 channels results in Ca2+ influx through 
these channels (Slish et  al., 2002; Welsh et  al., 2002). The 
resultant local [Ca2+]in increase, along with IP3, activates IP3Rs 
to release Ca2+ from the ER, amplifying the local [Ca2+]in 
increase. This subplasmalemmal increase in [Ca2+]in then 
activates overlying plasma membrane TRPM4 channels. Calcium 
influx through TRPC6 channels also activates plasma membrane 
Ca2+-activated Cl− channels (CaCCs; Bulley et al., 2012; Wang 
et  al., 2016). The cation influx through TRPC6 and TRPM4 
channels, and Cl− efflux through CaCCs causes membrane 
depolarization (Figure  3). As noted in Section Pressure-
Dependent Activation of Mechanosensors Leads to Formation 
of IP3 and DAG and shown in Figure  3, additional cation 
channels including TRPP1 channels may contribute to the 
pressure-induced depolarization.

Membrane Depolarization Activates VGCC, 
Induces Ca2+ Influx and Stimulates VSMC 
Contraction
Membrane depolarization induced by ionic currents through 
TRPC6 channels, TRPM4 channels, CaCCs and other ion 
channels activates plasma membrane VGCCs resulting in Ca2+ 
influx. VGCC-mediated Ca2+ influx across the plasma membrane, 
along with IP3R-mediated Ca2+ release from ER Ca2+ stores, 
increases cytoplasmic (global) [Ca2+]in levels, leading to 
calmodulin-mediated myosin light-chain kinase (MLCK) 
activation, phosphorylation of the myosin light-chains (MLC), 
actin-myosin cross-bridge formation, cross bridge cycling and 
an increase in myogenic tone (vasoconstriction; Cole and Welsh, 
2011; Figure  3).

K+ Channels Provide Negative Feedback to 
Dampen Myogenic Tone
Membrane depolarization-induced activation of VGCCs is 
inherently a positive-feedback process because the Ca2+ influx 
through these channels will itself lead to depolarization and 
further activation of VGCCs. This process is limited in VSMCs 
by activation of at least three negative-feedback processes. 
Membrane depolarization activates KV channels, and membrane 
depolarization along with increased [Ca2+]in activates BKCa 
channels. The K+ efflux through these two K+ channels (which 
by themselves would cause membrane hyperpolarization) blunts 
and limits depolarization-induced activation of VGCC (Figure 3; 
Jackson, 2017, 2020). Additional negative feedback arises from 
Ca2+-dependent inactivation of VGCCs (Shah et  al., 2006; 
Figure  3).
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Parallel Activation of Protein Kinase C and 
Rho-Kinase
In addition to activating TRPC6 channels, the DAG formed 
from the activity of PLC along with elevated [Ca2+]in activates 
protein kinase C (PKC) supporting the increase in tone 
by increasing the activity of TRPM4 channels (supporting 
depolarization) and VGCCs (promoting Ca2+ influx) while 
blunting the activity of several K+ channels (also supporting 
membrane depolarization; Jackson, 2020, 2021; Figure  3). 
The negative feedback involving KV channels is blunted 
by Ca2+-dependent inhibition of these channels (Gelband 
et  al., 1993; Ishikawa et  al., 1993; Gelband and Hume, 
1995; Post et  al., 1995; Cox and Petrou, 1999; Figure  3). 
Ca2+-dependent activation of the protein phosphatase, 
calcineurin, inhibits ATP-sensitive K+ (KATP) channels, 
limiting their activity and promoting depolarization (Wilson 
et  al., 2000; Figure  3).

Stimulation of the mechano-sensors in vascular smooth 
muscle also activates the small G-protein rhoA, which, in 
turn, activates rho-kinase (Chennupati et al., 2019; Figure 3). 
Rho kinase phosphorylates a number of substrates that also 
support myogenic tone including inhibition of myosin light 
chain phosphatase (MLCPPT; Cole and Welsh, 2011), 
stimulation of actin cytoskeleton remodeling that accompanies 
activation of the contractile machinery (Loirand et al., 2006; 
Moreno-Dominguez et  al., 2013), inhibition of KV channels 
as a consequence of actin remodeling (Luykenaar et  al., 
2009) and increasing the Ca2+ sensitivity of TRPM4 channels 
(Li and Brayden, 2017; Figure  3). Activated PKC also may 
inhibit MLCPPT through phosphorylation of the inhibitory 
protein, CPI17 (Cole and Welsh, 2011; Figure  3).

Endothelial Cells Contribute to the 
Negative-Feedback Regulation of 
Myogenic Tone
Endothelial cells lining resistance arteries and arterioles play 
a negative-feedback role, dampening myogenic tone both through 
the Ca2+-dependent production of vasodilator autacoids (PGI2, 
NO, EETS, etc.) and by conduction of Ca2+-dependent membrane 
hyperpolarization from the endothelium to overlying VSMCs 
via MEGJs (Figures  1, 3). Endothelial cells chemically and 
electrically converse with VSMCs through MEGJs that may 
form at myoendothelial projections that penetrate holes in the 
internal elastic lamina and contact the overlying VSMCs. 
Heterocellular gap junctions (MEGJs) between ECs and VSMCs 
form and allow small molecules (like IP3) and ionic currents 

(including Ca2+) to move between the cells. Pressure-induced 
increases in VSMC [Ca2+]in or IP3 can pass to endothelial cells 
leading to EC IP3R-induced Ca2+ signals (Ca2+ pulsars and 
wavelets) that can increase the production of Ca2+-dependent 
EC vasodilator autacoids that feedback to the VSMCs reducing 
myogenic tone (Figure  3). In addition, increased EC [Ca2+]in 
will activate EC sKCa and IKCa channels causing EC membrane 
hyperpolarization. Myoendothelial gap junctions allow this 
hyperpolarization to be passed from ECs to VSMCs, producing 
VSMC hyperpolarization, deactivation of VSMC VGCCs and 
reduced myogenic tone (Figure  3). Thus, the production of 
EC autacoids and EC membrane potential are both strongly 
dependent on the activity of Ca2+-dependent ion channels in 
the endothelium including IP3Rs, TRPV4 channels, sKCa channels 
and IKCa channels (Lemmey et  al., 2020).

FINAL PERSPECTIVE

As outlined in this perspective, Ca2+-activated ion channels in 
both VSMCs and ECs contribute to the regulation of myogenic 
tone. However, there appears to be  considerable heterogeneity 
in the specific details of their roles in this process among 
vessels in different vascular beds around the body. The 
mechanisms responsible for this heterogeneity remains to 
be established. It is also clear that there is a paucity of information 
about the cellular and molecular details surrounding which 
channels are expressed, their localization and their regulation 
relative to myogenic tone in arterioles around the body. 
Mesenteric and cerebral resistance artery ion channel expression 
and function has been well studied. However, we know relatively 
little about ion channel expression and function in the 
downstream arterioles in microcirculation, which is really the 
business end of the cardiovascular system. Future studies directed 
specifically at understanding control of ion channel expression 
and function in the microcirculation and how they vary among 
vascular beds in different organs is warranted.
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