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Cardiorenal syndrome (CRS) is a complex disorder that refers to the category of
acute or chronic kidney diseases that induce cardiovascular disease, and inversely,
acute or chronic heart diseases that provoke kidney dysfunction. There is a close
relationship between renal and cardiovascular disease, possibly due to the presence
of common risk factors for both diseases. Thus, it is well known that renal diseases are
associated with increased risk of developing cardiovascular disease, suffering cardiac
events and even mortality, which is aggravated in those patients with end-stage renal
disease or who are undergoing dialysis. Recent works have proposed mineral bone
disorders (MBD) as the possible link between kidney dysfunction and the development
of cardiovascular outcomes. Traditionally, increased serum phosphate levels have been
proposed as one of the main factors responsible for cardiovascular damage in kidney
patients. However, recent studies have focused on other MBD components such as the
elevation of fibroblast growth factor (FGF)-23, a phosphaturic bone-derived hormone,
and the decreased expression of the anti-aging factor Klotho in renal patients. It has
been shown that increased FGF-23 levels induce cardiac hypertrophy and dysfunction
and are associated with increased cardiovascular mortality in renal patients. Decreased
Klotho expression occurs as renal function declines. Despite its expression being absent
in myocardial tissue, several studies have demonstrated that this antiaging factor plays
a cardioprotective role, especially under elevated FGF-23 levels. The present review
aims to collect the recent knowledge about the FGF-23-Klotho axis in the connection
between kidney and heart, focusing on their specific role as new therapeutic targets in
CRS.

Keywords: FGF-23, Klotho, cardiorenal syndrome, chronic kidney disease, acute kidney injury, dialysis, heart
failure

INTRODUCTION

Cardiorenal syndrome (CRS) is defined as a complex pathological disorder that involves the kidneys
and heart, whereby acute or chronic dysfunction in one organ may induce acute or chronic
dysfunction in the other (Ronco et al., 2010). The presence of both cardiovascular and renal disease
increases the risk of suffering cardiovascular events and death, even after adjustment for traditional
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cardiovascular risk factors (Gansevoort et al., 2013). Depending
on the origin of the pathology, CRS can be classified into five
different subtypes: acute CRS, whether the acute worsening of
the heart function leads to a renal dysfunction or kidney injury
(type 1 CRS or CRS1); chronic CRS, where the chronic heart
dysfunction induces renal dysfunction or kidney injury (type
2 CRS or CRS2); acute reno-cardiac syndrome, which is an
acute kidney injury (AKI) that leads to a heart dysfunction
(type 3 CRS or CRS3); chronic reno-cardiac syndrome, when
the existence of chronic kidney disease (CKD) leads to heart
dysfunction (type 4 CRS or CRS4); and secondary CRS, where
another pathology induces the development of heart and kidney
disease simultaneously (type 5 CRS or CRS5) (Ronco et al., 2010).

CARDIOVASCULAR EVENTS AND
MORTALITY IN RENAL DISEASE

It is well established that renal disease is associated with a high
risk of cardiovascular disease (Gansevoort et al., 2013; Legrand
and Rossignol, 2020). Compared to the healthy population, renal
patients present greater all-cause and cardiovascular mortality
(van der Velde et al., 2011; Odutayo et al., 2017), especially
end-stage renal disease (ESRD) patients (de Jager et al., 2009).
Thus, more than 50% of renal patients die due to cardiovascular
complications even before reaching ESRD. Premature deaths are
also very common before and during dialysis cycles (Go et al.,
2004), with a 10–20-fold greater cardiovascular mortality risk in
dialysis patients than in the general population (de Jager et al.,
2009). This increased cardiovascular mortality might be linked
to the fact that more than half of ESRD patients develop cardiac
arrhythmias (Hsieh et al., 2020; Kim et al., 2021) or heart failure
(HF) (House et al., 2019). Renal patients usually develop left
ventricular hypertrophy (LVH) (Middleton et al., 2001), atrial
fibrillation (AF) (Hsieh et al., 2020), HF (Schefold et al., 2016;
Odutayo et al., 2017), ischemic heart disease, and ventricular
tachycardia (Kim et al., 2021) which are related to increased
risk of mortality in these patients. In this context, there are
some kidney disease-related pro-arrhythmogenic risk factors that
might predispose these patients to suffer arrhythmias and cardiac
structure alterations such as variation in fluxes of key electrolytes,
metabolic acidosis, and the presence of uremic toxins (Tang et al.,
2015; Di Lullo et al., 2019).

On the other hand, the two main factors that define
renal disease—albuminuria and decreased estimated glomerular
filtration rate (eGFR)—are both independent risk factors for the
prediction of cardiovascular events and death (van der Velde
et al., 2011; Gansevoort et al., 2013). Thus, lower eGFR and
higher albumin-to-creatinine ratio (ACR) have been associated
with a significant increment to cardiovascular mortality (Ruilope
and Bakris, 2011; van der Velde et al., 2011; Gansevoort et al.,
2013). Both eGFR and ACR values are even more useful
than other traditional risk factors as predictors of incident
cardiovascular events such as HF (Matsushita et al., 2015). In
addition, as renal function declines, new risk factors appear that
contribute to renal dysfunction while also increasing the risk
of cardiovascular damage (Ruilope and Bakris, 2011). Among

these are biological aging, hypertension, diabetes mellitus,
atherosclerosis, endothelial dysfunction, accumulation of uremic
toxins, and mineral bone disorders (MBDs) (Ruiz-Hurtado and
Ruilope, 2014; Ruiz-Hurtado et al., 2016). The development
of cardiovascular disease associated with the uremic milieu is
named uremic cardiomyopathy. Uremic cardiomyopathy was
first described in Bailey et al. (1967) who observed cardiac
hypertrophy and its relation with diet in CKD patients with
highly increased creatinine and urea serum levels. Despite the
clear clinical association between kidney failure and cardiac
damage and vice versa, the underlying mechanisms connecting
both systems are not well understood.

Left Ventricular Hypertrophy
LVH is one of the most common cardiac alterations described in
renal patients (Middleton et al., 2001; Faul et al., 2011). LVH can
be associated with ischemic heart disease, diastolic dysfunction,
and a decompensated situation that can induce HF over the
long-term (Harnett et al., 1995), as it increases the probability of
cardiac arrhythmias (Rantanen et al., 2020) that are associated
with a decreased survival rate in renal patients (Banerjee,
2016). The development of LVH in renal patients might be the
consequence of maintained pressure overload and hypertension,
both of which are frequently observed in these patients. Shen et al.
(2020) recently proposed cystatin C secretion by cardiomyocytes
in response to pressure overload as a possible promoter of cardiac
hypertrophy in renal patients. Other studies have focused on
the alteration of mineral bone components in renal patients as
an important factor in the development of LVH, describing a
direct pro-hypertrophic effect of fibroblast growth factor (FGF)-
23 on the heart (Faul et al., 2011). However, other authors
have proposed the FGF-23-mediated activation of the cardiac
renin-angiotensin-aldosterone system (RAAS) as the inductor of
cardiac hypertrophy and fibrosis in renal patients (Böckmann
et al., 2019). More studies are needed to elucidate which of
these factors is the early inducer of cardiac hypertrophy in renal
patients; that will facilitate the determination of whether there is
a main causative factor, or whether it is the combination of all
factors that is responsible for the deleterious cardiac remodeling.

Heart Failure
HF is the main cardiovascular complication and the leading
cause of mortality in renal patients (Tuegel and Bansal, 2017;
Go et al., 2018), especially in ESRD patients (Bansal et al., 2017).
HF consists of the heart inability to supply the peripheral tissue
demands with enough blood and oxygen. HF patients are divided
according to the ejection fraction (EF) as patients with systolic
HF, who present reduced EF (HF-rEF), and patients with diastolic
HF, with preserved systolic function but compromised diastolic
function (preserved EF, HF-pEF). HF-rEF is a consequence of
an impairment of left ventricular contractility, usually linked to
eccentric remodeling with chamber dilatation. By contrast, HF-
pEF is characterized by an impaired ventricular relaxation and
filling as consequence of the concentric remodeling. In most
cases, HF appears due to a subjacent myocardial disease as
consequence of a myocardial ischemia. However, HF can also be
developed from a concomitant disease such as renal disease. In
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this line, the risk of HF development significantly increases in
AKI patients over the long term (Gammelager et al., 2014; Go
et al., 2018). It has been described that stage 3 CKD patients
present a threefold higher risk of HF development compared
to healthy population (Kottgen et al., 2007). CKD patients can
develop either diastolic or systolic HF. It has been found that
the majority of ESRD patients display HF-pEF with diastolic
dysfunction and presence of LVH, while HF-rEF is visible only in
the minority of these patients (Antlanger et al., 2017). Notably,
it is the HF-pEF phenotype that represents a higher mortality
risk in renal patients (Ahmed et al., 2007). It is further important
to remark that HF development begins even in the early stages
of CKD. Indeed, assessment of a large group of HF patients
has shown that diastolic dysfunction, systolic dysfunction, and
mortality increased in parallel with the progression of CKD
(Unger et al., 2016). This might be explained by the fact that
HF is a status of low cardiac output that diminishes the effective
glomerular filtration pressure, decreasing eGFR and promoting
the development or progression of CKD. At the experimental
level, a significant reduction in EF was observed in CKD mice
following 5/6 nephrectomy (Navarro-García et al., 2020). In an
experimental AKI model, mice developed diastolic dysfunction
with reduced EF (Hu et al., 2017). However, other authors have
shown more recently that AKI mice develop HF with preserved
EF (Fox et al., 2019; Soranno et al., 2021). In spite of the
differences observed, which are possibly based on the method
used to induce renal disease and the time of renal damage
progression, renal disease mouse models have clearly shown HF
development. It is likely that kidney dysfunction not only plays
an important causative role in the development and progression
of HF, but also acts as a marker of HF severity.

Arrhythmias
In dialysis patients, arrhythmia is a common symptom frequently
observed in the inter-dialytic interval (Roy-Chaudhury et al.,
2018). Bradycardias and asystole are the more common
arrhythmias described in the inter-dialytic interval, while
ventricular tachycardia and AF have been found during the
dialysis procedure (Roy-Chaudhury et al., 2018; Hsieh et al.,
2020). However, it is not easy to determine the main factor
triggering the arrhythmia responsible for sudden cardiac death
(SCD) in dialysis patients; this is because SCD usually happens
outside of the dialysis unit during the inter-dialytic interval. As
ventricular arrhythmia is possibly the main cause of SCD in the
general population (Priori et al., 2001), this fatal event might be
linked to the high prevalence of cardiac deaths found in CKD and
ESRD patients (Genovesi et al., 2013; Coll et al., 2018). Recent
studies have pointed to FGF-23 as an important inducer factor of
ventricular arrhythmias (Navarro-García et al., 2019).

MINERAL BONE DISORDERS AND
CARDIORENAL SYNDROME

Mineral metabolism disturbances are closely connected with
both AKI (Leaf and Christov, 2019) and CKD (Rouached
et al., 2008). MBDs contribute to the augmented morbidity and

mortality observed in renal patients (Block et al., 2004). MBD
is aggravated with the decrease of renal function. MBDs include
changes in serum calcium (Ca2+) concentration, increased serum
phosphate levels (hyperphosphatemia), reduced serum levels of
active vitamin D, secondary increase of parathyroid hormone
(PTH), augmented FGF-23 systemic levels, and reduced levels of
the antiaging factor Klotho (Wang et al., 2018). Mineral bone
components are regulated by important negative and positive
feedback loops between them (Navarro-García et al., 2018). Thus,
the systemic levels of any one of these components depend on the
levels of the others, with the objective of maintaining an adequate
phosphate and Ca2+ homeostasis. However, the loss of renal
function disrupts these feedback loops. Moreover, changes in any
one of these parameters misbalance the feedback loops, altering
the circulating levels of the others and inducing significant
effects on remote organs such as the heart. In the context of
renal disease, the increased levels of phosphate, increased PTH,
vitamin D deficiency, Klotho deficiency, and augmented FGF-23
levels might facilitate cardiovascular events, including structural
alterations like LVH (Faul et al., 2011), cardiac dysfunction such
as HF (Wannamethee et al., 2014), and rhythm alterations such
as AF (Mathew et al., 2014) or ventricular arrhythmia (Navarro-
García et al., 2019, 2020).

Vitamin D and Parathyroid Hormone
Ca2+ homeostasis is chiefly regulated by 1,25-
dihydroxycholecalciferol D3 (or vitamin D) and PTH.
A reduction of serum Ca2+ concentration activates the synthesis
of PTH in the parathyroid gland. PTH binds to PTH receptors
(PTHR) in the kidney, stimulating Ca2+ reabsorption but also
increasing vitamin D synthesis. Vitamin D binds to vitamin D
receptors (VDR) on the surface of enterocytes in the intestinal
tract, increasing dietary Ca2+ absorption by augmenting the
expression of the transient receptor potential cation channel
subfamily V member 6 and plasma membrane Ca2+-ATPase
(Christakos et al., 2010). Furthermore, the binding of vitamin
D to VDR of the parathyroid gland inhibits PTH synthesis,
which constitutes an important feedback mechanism related
to Ca2+ homeostasis (Navarro-García et al., 2018). The loss
of renal function is frequently related to vitamin D deficiency
(Wolf, 2010) and increased synthesis of PTH (secondary
hyperparathyroidism) (Madsen et al., 1981; Naveh-Many and
Volovelsky, 2020).

Reduced serum vitamin D levels in renal patients arise
due to impaired activity of the renal enzyme 1-α-hydroxylase,
which transforms 25-hydroxyvitamin D3 into the active
hormone form of vitamin D, 1,25-dihydroxycholecalciferol
D3. However, vitamin D and PTH are not only important for
Ca2+ homeostasis, but also play an important role in phosphate
homeostasis. Serum PTH acts on type II sodium/phosphate
cotransporters to reduce renal phosphate reabsorption
(Kronenberg, 2002). At the gut level, vitamin D binding
to VDR on enterocytes also increases the expression of the
sodium-dependent phosphate transporter Pit-2, facilitating
phosphate absorption (Katai et al., 1999). It is well known that
changes in both vitamin D and PTH are related to important
cardiovascular alterations, especially in renal patients. Thus,
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vitamin D deficiency has been linked to a higher risk of cardiac
hypertrophy, LV dysfunction, HF development and mortality
(Bodyak et al., 2007; Anderson et al., 2010; Gotsman et al.,
2012). In this line, several studies have demonstrated that
treatment with vitamin D analogs such as paricalcitol can reduce
vascular calcification (Anis et al., 2020) and LVH (Bodyak et al.,
2007; Leifheit-Nestler et al., 2017) under uremic conditions.
Moreover, paricalcitol treatment has also been shown to impede
the progression of HF by improving adverse Ca2+ mishandling
even in the absence of renal disease (Tamayo et al., 2020). In
addition, PTH disorders have been related to hypertension, valve
calcification, HF (Khouzam et al., 2006), arrhythmias (Curione
et al., 2010), and mortality in renal patients (Molina et al., 2021).

Phosphates
Systemic phosphate levels appear to increase in renal patients
due to the loss of renal function (Jung et al., 2018; Bacchetta
et al., 2020). High phosphate levels have been related to
mortality in renal patients (Merhi et al., 2017; Moon
et al., 2019), mainly in those undergoing dialysis (Owaki
et al., 2018), but also in the general population (Chang
and Grams, 2014). Phosphate homeostasis depends on the
counterbalance between dietary phosphate intake, phosphate
mobilization from bone, and renal phosphate excretion.
Thus, renal dysfunction carries an important increment
of serum phosphate levels. Classically, serum phosphates
levels have been considered the main cause of increased risk
of cardiovascular disease among renal patients, including
the higher risk of mortality (Palmer et al., 2011; Scialla
and Wolf, 2014; Moon et al., 2019). Phosphates have been
described as promoting vascular calcification in renal patients
(Cozzolino et al., 2019). Furthermore, phosphate levels have
been linked to left ventricular remodeling in renal patients
(Zou et al., 2016).

Fibroblast Growth Factor-23
The main physiological regulator of serum phosphate levels is
FGF-23, which acts as a phosphaturic hormone (Seiler et al.,
2009). Phosphates have traditionally been established as the main
target to control in renal disease, with FGF-23 having been
considered a “secondary player” that has the apparently unique
role of reducing serum phosphate levels. However, FGF-23 has
recently emerged as a new and direct factor in the context of
cardiac damage. It has accordingly been described that increased
FGF-23 levels are the first alteration observed in renal patients,
even earlier than elevated phosphate serum levels (Wolf, 2012;
Christov et al., 2013). FGF-23 is a hormone mainly synthesized
by osteocytes and osteoblasts in long bones to control phosphate
homeostasis and serum levels of vitamin D and PTH (Navarro-
García et al., 2018). The principal stimulus for FGF-23 synthesis
is an increase in systemic phosphate levels due to high phosphate
diet uptake (Antoniucci et al., 2006) or decreased renal phosphate
excretion, as occurs in renal patients (Larsson et al., 2003).

FGF-23 effect is mediated by binding to one of the FGF
receptor isoforms (FGFR1-4). FGF-23 binding to FGFR requires
the presence of a co-factor due to FGF-23’s low affinity for
all FGFRs (Yu et al., 2005). The FGFR1 co-factor in the

kidney is the transmembrane protein Klotho (Kurosu and Kuro-
o, 2009), which reveals the importance of Klotho expression
for FGF-23 phosphaturic effects. All organs with FGFR and
Klotho expression are susceptible to FGF-23 effects. However,
Urakawa et al. (2006) proposed that the only FGFR isoform
capable of combining with Klotho to induce FGF-23 signaling
is FGFR1, being able FGF-23 to bind to the other FGFRs in
a Klotho-independent manner. In this sense, FGF-23 can also
act independently of Klotho through its binding to FGFR4, as
occurs in Klotho-free organs such as the heart (Faul et al.,
2011; Grabner et al., 2015). In renal patients, renal excretion
of phosphates decreases due to the reduction of renal Klotho
expression, increasing serum phosphate levels and stimulating
a maintained pathological synthesis of FGF-23 (Gutiérrez et al.,
2008). In fact, renal patients present extremely high serum FGF-
23 levels compared to healthy people. These levels increase
as renal function declines (Isakova et al., 2020), reaching the
highest levels in patients undergoing dialysis (see Figure 1 and
Table 1). Serum FGF-23 levels increase from ∼40 pg/mL in
healthy subjects to ∼200 pg/mL in AKI patients and stage 1
CKD patients. Throughout CKD progression, serum FGF-23
continues to increase due to the progressive loss of renal function,
reaching levels 20-fold higher than those described in the healthy
population. It is important to note that FGF-23 remains at
similar values in the early stages of CKD (CKD1-3), while the
increment of FGF-23 is greater from stage 4 CKD to ESRD. The
highest serum FGF-23 levels are found in those renal patients
undergoing dialysis treatment, with values above 2,000 pg/mL.
The phosphaturic effect of FGF-23 tries to protect against the
deleterious actions of increased serum phosphates aggravated
by renal dysfunction. However, it is impossible to efficiently
remove phosphates from blood in advanced-stage CKD and in
dialysis patients. As a result, serum FGF-23 levels are necessarily
up to 1,000 times higher in these patients than among healthy
people (Wolf, 2012), and these enormous FGF-23 levels can have
deleterious pathological consequences on off-target organs.

Recent studies have evidenced adverse effects of FGF-23 on
the heart. In this sense, elevated serum FGF-23 levels have been
associated with cardiovascular events in early CKD patients
(Isakova et al., 2011; Ix et al., 2012) and are also related to
increased all-cause and cardiovascular mortality (Ärnlöv et al.,
2013), especially in ESRD patients (Scialla et al., 2014) but also in
the general population (De Jong et al., 2021). It has been observed
that renal patients who experience faster elevations of FGF-23
serum levels tend to have a higher risk of death (Isakova et al.,
2018). Increased serum FGF-23 levels have also been associated
with increased incidence of AF (Seiler et al., 2011; Mathew et al.,
2014), LVH (Faul et al., 2011), HF (Ix et al., 2012), and mortality
(Isakova et al., 2011) in a concentration-dependent manner in
renal patients. Therefore, the prognostic value of high FGF-23
serum levels for predicting all-cause and cardiovascular mortality
has been proposed in several clinical studies and meta-analyses in
renal patients and especially ESRD dialysis (Gutiérrez et al., 2008;
Isakova et al., 2011; Ix et al., 2012; Ärnlöv et al., 2013).

Faul et al. (2011) first noted that the pro-hypertrophic effect of
FGF-23 is FGFR-dependent and mediated by the phospholipase
C (PLC)γ-calcineurin-nuclear factor of activated T cells (NFAT).
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FIGURE 1 | Mean values of FGF-23 and sKL in healthy population and alongside renal disease. The graph represents the mean values of serum FGF-23 and sKL
levels described in the different renal cohorts included in Tables 1, 2.

TABLE 1 | Mean values of serum FGF-23 levels measured in pg/mL in healthy subjects and different renal patients.

Population FGF-23 values (pg/mL) References

Healthy 42.7 ± 18.6 Yamazaki et al., 2010; Chathoth et al., 2015; Leaf et al., 2018; Neyra et al., 2019; Rodríguez-Ortiz et al., 2020; Shardell
et al., 2020; Matei et al., 2021; Salam et al., 2021

AKI 220.9 ± 126.8 Leaf et al., 2018; Rygasiewicz et al., 2018; Fayed et al., 2019; Neyra et al., 2019

CKD1 203.5 ± 346.0 Evenepoel et al., 2010; Kim et al., 2013; Iio et al., 2019; Khodeir et al., 2019; Bielesz et al., 2020

CKD2 153.3 ± 296.0 Evenepoel et al., 2010; Kanbay et al., 2010; Kim et al., 2013; Iio et al., 2019; Khodeir et al., 2019; Bielesz et al., 2020;
Shardell et al., 2020; Kritmetapak et al., 2021

CKD3 162.7 ± 264.8 Evenepoel et al., 2010; Kim et al., 2013; Chathoth et al., 2015; Bouma-de Krijger et al., 2019; Khodeir et al., 2019; Iio et al.,
2019; Ramalho et al., 2019; Bielesz et al., 2020; D’Arrigo et al., 2020; Hughes-Austin et al., 2020; Jovanovich et al., 2021;
Kritmetapak et al., 2021

CKD4 402.3 ± 537.1 Kim et al., 2013; Chathoth et al., 2015; Khodeir et al., 2019; Iio et al., 2019; Bielesz et al., 2020; Chen et al., 2021;
Kritmetapak et al., 2021

CKD5 911.0 ± 640.4 Kim et al., 2013; Chathoth et al., 2015; Khodeir et al., 2019; Iio et al., 2019; Bielesz et al., 2020; Chen et al., 2021;
Kritmetapak et al., 2021; Salam et al., 2021

Dialysis 2713.0 ± 1294.0 Fukasawa et al., 2014; Lima et al., 2014; Otani-Takei et al., 2015; Damasiewicz et al., 2018; Kulicki et al., 2019; Chan et al.,
2020; Takashi et al., 2020

Mean values ± SD are obtained as the mean of the values found in the different cohorts studied. Clinical studies in which FGF-23 levels were measured as pg/mL were
included in this table. These studies were carried out on diabetic or cardiovascular patient cohorts, with pediatric cohorts excluded.

At the experimental level, pro-hypertrophic FGF-23 actions were
found to occur in cardiomyocytes in an FGFR-dependent manner
(Böckmann et al., 2019) but Klotho-independently (Faul et al.,
2011). Andrukhova et al. (2014) proposed that FGF-23 increases
sodium renal uptake Klotho-dependently, producing a volume
overload and hypertension and finally leading to the development
of LVH. By contrast, other authors have postulated that FGF-
23 is not able to induce cardiac hypertrophy in the absence of
hyperphosphatemia conditions (Liu et al., 2018). Moreover, it
is not yet clear whether FGF-23 is the cause or a consequence
of LVH. Thus, it has been demonstrated that transgenic mice
that constitutively express active calcineurin A, the key pathway
involved in pathological LVH, showed a significant increment
in serum FGF-23 levels without any alteration of renal function
(Matsui et al., 2018). Cardiomyocyte expression of FGF-23 under
stress conditions has also been demonstrated by other authors.
Specifically, it has been probed in different rodent models that

the expression of FGF-23 is increased not only in bones but
also in the heart as consequence of a myocardial infraction
induction (Andrukhova et al., 2015). Furthermore, the expression
of FGF-23 in cardiomyocytes has been observed to be increased
by oncostatin M, a major mediator of cardiac remodeling
(Richter et al., 2015).

Several studies have additionally shown a direct effect of FGF-
23 on cardiac function. Different authors have demonstrated
a relationship between high FGF-23 levels and predisposition
to arrhythmia. First, it was found that high levels of FGF-23
were related to AF (Mathew et al., 2014; Lind et al., 2017).
A prospective study found a strong association between FGF-23
and incident and prevalent AF in renal patients with mild-
to-severe CKD (Mehta et al., 2016). This relationship was
corroborated in experimental studies where the atrial immortal
cell line HL-1 was incubated, with a high concentration (25
ng/mL) of FGF-23, inducing intracellular Ca2+ mishandling
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related to a pro-arrhythmogenic behavior (Kao et al., 2014).
At the ventricular level, recent studies have demonstrated
that FGF-23 is able to rapidly induce in vivo arrhythmic
events by increasing the prevalence of premature ventricular
contractions in healthy mice (Navarro-García et al., 2019).
At the cellular level, an acute exposure to elevated FGF-23
concentration (100 ng/mL) has also been demonstrated to induce
a pro-arrhythmogenic phenotype in isolated ventricular adult
cardiomyocytes (Navarro-García et al., 2019). The increased
incidence of pro-arrhythmogenic events in cardiac cells might
be a consequence of the Ca2+ mishandling observed in
cardiomyocytes exposed to high concentrations of FGF-23. In
this work, FGF-23 effect on cardiomyocyte function is also shown
to be FGFR-dependent. However, unlike the pro-hypertrophic
effect, FGF-23-induced cardiomyocyte dysfunction is calmodulin
kinase type II-dependent and independent of PLCγ (Navarro-
García et al., 2019). In this sense, it is important to note that
FGF-23 has been related to LV dysfunction even in the absence
of LVH (Seiler et al., 2011), suggesting that FGF-23 might be
activating different intracellular pathways on cardiomyocytes,
likely depending on its concentration and exposure time.
Furthermore, in the CKD mouse model of 5/6 nephrectomy
which shows high serum FGF-23 but normal phosphate levels,
cardiac dysfunction developed without any sign of cardiac
hypertrophy (Navarro-García et al., 2020). Furthermore, recent
works have proposed FGF-23, independently of phosphate levels,
as one of the main factor responsible for the cardiac function
alterations described in CKD patients (Isakova et al., 2018). All
of this evidence proposes FGF-23 as a potential candidate to
interconnect cardiac and renal systems, suggesting that it may
be an important contributor to the cardiac burden experienced
by renal patients.

Klotho
Klotho is a protein mainly expressed in kidneys although it is
also expressed in other organs such as the brain, pituitary gland,
and ovaries (Kuro-o et al., 1997). There are two membrane
Klotho isoforms, α-Klotho and β-Klotho. α-Klotho is the one
that acts as the FGFR cofactor in the kidney (Urakawa et al.,
2006). α-Klotho is mainly expressed in the distal tubules where
phosphate reabsorption takes place (Kurosu et al., 2005). Thus,
α-Klotho plays an important role in phosphate reabsorption in
the kidney (Myrvang, 2012). α-Klotho binds to FGFR1 in the
kidney through a receptor-binding arm that forms a complex
with a groove in which FGF-23 fits with the N-terminal domain
oriented toward FGFR1 and the C-terminal domain toward
α-Klotho (Kuro-o, 2019). Membrane α-Klotho can be cleaved by
secretases (ADAM10 and ADAM17) that release a soluble form
of Klotho, named soluble Klotho or sKL (Chen et al., 2007).
sKL functions as an endocrine factor for a widespread variety
of surface glycoproteins, such as ionic channels, and growth
factor receptors, such as insulin-like receptors involved in stress
resistance (Wang and Sun, 2009) and aging control (Kuro-o,
2009), highlighting its implication in the aging process.

α-Klotho expression, and consequently sKL levels, are closely
associated with kidney function. Several authors have shown that
serum α-Klotho levels decrease as renal disease progresses (see

Figure 1 and Table 2). Serum levels of sKL decrease from ∼670
pg/mL in healthy subjects to ∼300 pg/mL in ESRD patients.
A small decrease of sKL values has also been found in AKI
or CKD1 patients. As CKD progresses, sKL levels continue to
decline quickly from the early stages of the disease onward
until they reach values close to ∼280 pg/mL in CKD5 patients.
Dialysis patients show values around ∼400 pg/mL, which is
still significantly lower than the healthy population. The higher
sKL levels in dialysis-treated patients might be due to these
groups of patients comprising patients with different renal failure
etiologies, meaning that some of them reach dialysis without
passing through the five stages of CKD. On the other hand, it is
well known that renal α-Klotho expression declines with aging.
Indeed, the reduced expression of α-Klotho is implicated in age-
related CKD development (Zeng et al., 2016). Furthermore, it
has been demonstrated that higher levels of sKL are associated
with a lower risk of declining kidney function (Drew et al.,
2017). The role of α-Klotho in aging has been demonstrated in
experimental animal models, as Klotho-deficient mice present
reduced lifespan (Kuro-o et al., 1997) while mice overexpressing
α-Klotho exhibited a longer mean lifespan (Kurosu et al., 2005).
Among α-Klotho anti-aging effects, it is important to remark on
the reduction of senescence in response to oxidative stress (Kim
et al., 2019), an increment of cell survival in experimental uremia,
and a protection against inflammation by decreasing expression
and nuclear translocation of NFκB (Guo et al., 2018).

Some experimental studies have demonstrated that the
absence of Klotho is associated with cardiovascular pathologies
(Hu et al., 2011; Chen et al., 2016) and even with early unexpected
death in mice (Takeshita et al., 2004). Klotho-deficient mice are
characterized by hyperphosphatemia and enormously increased
levels of serum FGF-23 (Kuro-o et al., 1997). Klotho-deficient
mice also exhibit cardiac hypertrophy (Leifheit-Nestler et al.,
2018) and cardiac dysfunction (Navarro-García et al., 2020). By
contrast, Klotho-overexpressing mice are protected from cardiac
dysfunction when CKD is induced (Navarro-García et al., 2020).
However, it is unclear whether the cardiac alterations described
in the absence of Klotho are a direct consequence of Klotho
deficiency or induced by subsequent enormously increased serum
FGF-23. At the clinical level, no association has been found
yet between Klotho levels and cardiovascular mortality in the
general population (Brandenburg et al., 2015), although it has
been proposed Klotho as a predictor of all-cause mortality in the
elderly population (Semba et al., 2011). In this line, a lower risk of
cardiovascular disease development was found in elderly people
with higher Klotho levels, even after adjusting for traditional
cardiovascular risk factors (Semba et al., 2011). Moreover, lower
sKL levels have been associated with increased mortality and
cardiovascular events independently from other MBD-related
factors in ESRD patients (Memmos et al., 2019). Several studies
have also investigated the use of Klotho as therapeutic strategy
owing its cardioprotective role. At the experimental level, cardiac
dysfunction associated with reduced sKL serum levels has been
prevented with enhanced sKL availability (Hui et al., 2017;
Navarro-García et al., 2020). However, the mechanism through
which sKL protects the heart remains unknown. It has been
suggested that sKL protects the heart through the downregulation
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TABLE 2 | Mean values of serum-soluble Klotho levels measured in pg/mL in healthy subjects and different renal patients.

Population sKL levels (pg/mL) References

Healthy 672.8 ± 78.7 Yamazaki et al., 2010; Yokoyama et al., 2012; Shardell et al., 2020; Yin et al., 2020; Zbroch et al., 2020; Salam et al., 2021

AKI 606.7 ± 55.3 Kim et al., 2016; Seibert et al., 2017

CKD1 547.8 ± 75.9 Kim et al., 2013; Khodeir et al., 2019; Bielesz et al., 2020; Yin et al., 2020

CKD2 517.1 ± 104.0 Kim et al., 2013; Seiler et al., 2014; Khodeir et al., 2019; Bielesz et al., 2020; Shardell et al., 2020; Yin et al., 2020

CKD3 508.9 ± 157.9 Kim et al., 2013; Seiler et al., 2014; Khodeir et al., 2019; Bielesz et al., 2020; Hughes-Austin et al., 2020; Yin et al., 2020

CKD4 343.5 ± 141.4 Kim et al., 2013; Seiler et al., 2014; Khodeir et al., 2019; Bielesz et al., 2020; Yin et al., 2020; Chen et al., 2021

CKD5 289.2 ± 160.6 Kim et al., 2013; Khodeir et al., 2019; Bielesz et al., 2020; Yin et al., 2020; Chen et al., 2021

Dialysis 435.0 ± 111.8 Yokoyama et al., 2012; Buiten et al., 2014; Fukasawa et al., 2014; Lima et al., 2014; Nowak et al., 2014; Otani-Takei et al.,
2015; Desbiens et al., 2018; Valenzuela et al., 2019; Chan et al., 2020; Nakamura et al., 2020; Zbroch et al., 2020; Pizzarelli
et al., 2021

Mean values are obtained as the mean ± SD of the values found in the different cohorts studied. Those studies carried on diabetic or cardiovascular patient cohorts, with
pediatric cohorts excluded.

FIGURE 2 | Schematic diagram of possible strategies to impede deleterious FGF-23 cardiac effects. The above illustration shows the FGF-23 synthesis stimuli and
FGF-23 effects, along with the different treatments studied to avoid FGF-23 cardiac effects. FGFR, Fibroblast growth factor receptor; FGF-23, fibroblast growth
factor 23; NaPi-2b, Sodium-Phosphate cotransporter 2b.

of the Transient Receptor Potential Cation Channel Subfamily C
Member 6 (TRPC6) associated with HF (Xie et al., 2015; Hu et al.,
2017; Han et al., 2020). Furthermore, it has been demonstrated
that sKL prevents cardiac hypertrophy by direct regulation of
several ion channels (Xie et al., 2012), or even in the context
of uremic cardiomyopathy (Xie et al., 2015; Hu et al., 2017).
Interestingly, it has been recently described that FGF-23-induced

cardiac hypertrophy is also attenuated by sKL in mice. Han et al.
(2020) proposed a possible switch on the signaling pathways
induced by FGF-23 in the presence of sKL. The presence of
Klotho might induce a change in the intracellular pathways
activated in cardiomyocytes by FGF-23. Thus, in the absence of
Klotho, FGF-23 activates the PLC-NFAT intracellular pathway,
while when Klotho is available, the intracellular pathway activated
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TABLE 3 | Therapeutic strategies directed to decreased serum FGF-23 levels or to avoid FGF-23 effects.

Treatment Study Specie Renal disease Serum FGF-23 Outcomes

Decrease FGF-23 synthesis

Reduced Pi intake Chang et al.,
2017

Human Early CKD Unchanged No changes in albuminuria

Sigrist et al., 2013 Human CKD Reduced

Xie et al., 2015 Mouse CKD (5/6 Nfx) Unchanged No prevention of cardiac hypertrophy

Finch et al., 2013 Rat CKD (5/6 Nfx) Reduced Reduced aortic calcification Partially reduced cardiac fibrosis
Prevented cardiomyocyte hypertrophy

Duayer et al., 2021 Rat CKD (5/6 Nfx) Reduced Improved kidney function

Pi binders Ruggiero et al., 2019 Human CKD Unchanged Unchanged Klotho levels Ameliorated inflammation Improved
dyslipidemia

Mason et al., 2021 Human CKD (stage 3-4) Reduced Decreased inflammatory levels Improved vascular calcification

Ketteler et al., 2019 Human ESRD Reduced Improved bone metabolism

Chue et al., 2013 Human CKD (stage 3) Unchanged No changes in left ventricular mass, systolic and diastolic
functions, or arterial stiffness

Toussaint et al., 2020 Human CKD (stage 3b-4) Unchanged No amelioration of arterial stiffness Non-improved of aortic
calcification

Ghorbanihaghjo et al.,
2018

Rat CKD (adenine diet) Reduced

Finch et al., 2013 Rat CKD (5/6 Nfx) Reduced Non-reduced aortic calcification Reduced mortality
Non-reduced cardiac fibrosis Increased cardiomyocyte area

Neven et al., 2020 Rat CKD (adenine diet) Reduced Improved kidney function Decreased bone fibrosis

Wu-Wong et al., 2016 Rat CKD (5/6 Nfx) Reduced Reduced aorta calcification

NPT2 inhibitiion Rao et al., 2014 Human CKD Unchanged

Ix et al., 2019 Human CKD (stage 3b-4) Unchanged

Thomas et al., 2019 Mouse CKD (5/6 Nfx) Increased in the
long term

Reduced PTH

Increased FGF-23 clearance

Dialysis Kawabata et al., 2020 Human ESRD Reduced Unchanged Klotho levels

Tiong et al., 2021 Human ESRD Reduced

FGF-23 neutralization

Anti-FGF-23 antibody Sun et al., 2015 Mouse CKD (5/6 Nfx) Reduced Improved bone quality

Shalhoub et al., 2012 Rat CKD (High Pi diet) Unchanged Increased aortic calcification Increased mortality

Blockage of FGFR

Pan-FGFR antibody Di Marco et al., 2014 Rat CKD (5/6 Nfx) Unchanged Improved cardiac structure and function

Faul et al., 2011 Rat CKD (5/6 Nfx) Unchanged Attenuation of cardiac hypertrophy

Anti-FGFR4 antibody Grabner et al., 2017 Rat CKD (5/6 Nfx) Unchanged Reduced cardiac hypertrophy

Klotho treatment

Recombinant Klotho Navarro-García et al.,
2020

Mouse CKD (5/6 Nfx) Unchanged Prevention of cardiac dysfunction

Suassuna et al., 2020 Rat CKD (5/6 Nfx) Unchanged Prevented cardiac hypertrophy and fibrosis

Transgenic Klotho
expression

Xie et al., 2015 Mouse CKD Unchanged Reduced cardiac hypertrophy and fibrosis

Works that evaluate serum FGF-23 levels in renal disease in clinical or experimental studies with any of the treatments reviewed in this study have been included in this
table.
Pi, phosphate; CKD, chronic kidney disease; ESRD, end-stage renal disease; FGF-23, fibroblast growth factor-23; FGFR, fibroblast growth factor receptor; Nfx,
nephrectomy; NPT2, sodium-phosphate cotransporter 2.

by FGF-23 is the ERK pathway. Furthermore, enhanced Klotho
availability has also been shown to protect against FGF-23-
induced cardiac dysfunction in vitro (Navarro-García et al., 2019)
and even in CKD mice (Navarro-García et al., 2020). Increased
Klotho availability has additionally been found to protect against
cardiovascular alterations developed in mice with reduced Klotho
expression (Lim et al., 2012; Chen et al., 2016).

In conclusion, the cardioprotective role of Klotho, although
promising, remains poorly understood. Some authors have

proposed different mechanism for Klotho cardioprotection: (i)
sKL would be able to bind to an unknown receptor activating
an intracellular pathways that impede FGF-23 effects; (ii) in
cells where the FGF-23 effect is Klotho-independent (as occurs
in cardiomyocytes), the presence of sKL would block FGF-
23 signaling once it binds to the FGFR, probably the FGFR4
isoform; or (iii) sKL might function as a soluble “lure” for FGF-
23, binding to FGF-23 at the circulatory level and impeding
its subsequent interaction with FGFR (Grabner and Faul, 2016;
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FIGURE 3 | Ratio between serum sKL and FGF-23 levels in healthy population and renal patients alongside CKD and dialysis. Ratio was obtained between sKL and
FGF-23 from the same cohort of patients included in Tables 1, 2; only studies where both values of these markers were reported were used for this graph.

Navarro-García et al., 2019). More studies are needed to clarify
Klotho’s actions and its relationship with FGF-23 in the heart
from a functional perspective and especially in a uremic
cardiomyopathy setting.

FIBROBLAST GROWTH
FACTOR-23-KLOTHO AXIS AS
THERAPEUTIC TARGET IN RENAL
DISEASE

As reviewed recently by Verbueken and Moe (2021) there are
different treatments designed to block high FGF-23 levels that
vary depending on the target (see Figure 2 and Table 3),
although not all of these are recommended for use with renal
patients. The first target is to decrease FGF-23 production. FGF-
23 production is lowered by decreasing serum phosphate levels
by reducing dietary phosphate intake (Calvo et al., 2019), a crucial
recommended management in renal patients. It has been shown
that phosphate dietary restrictions reduce FGF-23 serum load in
CKD patients (Sigrist et al., 2013; Chang et al., 2017), although no
effect has been observed in the healthy population (Larsson et al.,
2003). At experimental level, dietary phosphate restriction has
been also demonstrated to reduced systemic FGF-23 levels in 5/6
nephrectomized rats with a significant improvement of kidney
function (Duayer et al., 2021) and prevention of cardiac fibrosis
and hypertrophy (Finch et al., 2013). However, Xie et al. (2015)
has described no effect on serum FGF-23 levels and no prevention
of cardiac hypertrophy after dietary phosphate restriction. Serum
phosphate load can also be reduced clinically using phosphate
binders, a typical therapy in renal patients. Several clinical
and experimental studies have demonstrated that pathological
synthesis of FGF-23 can be prevented with a phosphate binder
in uremic conditions (Ketteler et al., 2019; Neven et al., 2020;
Mason et al., 2021) although other studies has no probed any
changes in serum FGF-23 levels after the use of these treatments

(Chue et al., 2013; Ruggiero et al., 2019; Toussaint et al., 2020).
When used in experimental animal models of CKD, phosphate
binder reduced serum FGF-23 levels (Ghorbanihaghjo et al.,
2018) with a significant reduction in aortic calcification (Finch
et al., 2013; Wu-Wong et al., 2016). Moreover, serum phosphate
levels can be controlled through the reduction of intestinal
phosphate absorption by inhibiting the NaPi-2b cotransporter.
In this sense, nicotinamide and niacin, both NaPi-2b inhibitors,
have been demonstrated to reduce FGF-23 serum levels in a
controlled trial of ESRD (Liu et al., 2020). However, this effect
has not been found in clinical trial with stage 3 CKD patients
treated with niacin (Rao et al., 2014) or nicotinamide (Ix et al.,
2019). Furthermore, in an experimental mouse model of CKD,
serum FGF-23 levels increased in long term after the use of this
inhibitors (Thomas et al., 2019).

Increased FGF-23 serum levels can be also corrected by
increasing FGF-23 clearance. In this sense, it has been described
that dialysis reduced FGF-23 levels (Kawabata et al., 2020; Tiong
et al., 2021), possibly as a consequence of reduction in phosphate
serum levels (Chan et al., 2020). In this case, FGF-23 reduction
might be a direct effect of dialysis, as different FGF-23 reductions
have been found depending on the type of hemodialysis in
use (Patrier et al., 2013). It is important to note that FGF-23
levels in dialysis-dependent renal patients are extremely high
despite the dialysis process, and that these patients are usually
treated with phosphate binders and under dietary phosphate
restrictions. Consequently, recent approaches are exploring other
mechanisms to block the deleterious effects of FGF-23 in
renal patients. To this aim, some researchers have studied
experimentally the effect of FGF-23-neutralizing antibodies. In
spite of reducing serum FGF-23 levels improving bone quality in
CKD mice (Sun et al., 2015), anti-FGF-23 antibodies treatment
was found to significantly augment phosphate levels, vascular
calcification, and death risk in an experimental CKD model
(Shalhoub et al., 2012). A complete FGF-23 function inhibition
would also block its phosphaturic action, which is still important
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when renal function is not completely lost. Thus, completely
blocking the effects of FGF-23 would increase phosphate levels in
early stage renal patients, likely with undesirable consequences.
It is probably for this reason that no studies of anti-FGF-23
antibodies have carried out in renal patients thus far to date.

Another proposed strategy is the blockage of deleterious off-
target FGF-23 action (such as that in the heart) by specific FGFR
inhibitors. In this line, a pan-FGFR inhibitor has been shown to
impede cardiac hypertrophy (Faul et al., 2011; Di Marco et al.,
2014) and dysfunction (Navarro-García et al., 2019) induced by
FGF-23. However, the inhibition of all FGFR would also block
FGF-23 phosphaturic actions in the kidney, mediated by FGFR1,
which may in turn increase serum phosphate levels promoting
the synthesis of FGF-23. Since FGFR4 has been proposed as the
necessary mediator of cardiac FGF-23 effects (Grabner et al.,
2015, 2017) a better strategy to prevent the deleterious cardiac
effects of FGF-23 would be the use of specific FGFR4 blockers.
The use of a specific FGFR4 inhibitor would avoid the inhibition
of the physiologic phosphaturic effect of FGF-23 on the kidney
mediated by FGFR1. However, no FGFR inhibitors have been
used in humans with renal disease so far.

As discussed above there are different approaches to reduce
FGF-23 actions preventing deleterious actions on the heart.
However, all of them could block the actions of FGF-23, not only
the pathological but also de physiological phosphaturic action.
The loss of the FGF-23 phosphaturic action would increase
even more the serum phosphate levels in those renal patients
with remaining kidney function that would be an important
side effect to be considered in those treatments. New therapies
to prevent cardiac effect of FGF-23 without impeding FGF-
23 phosphaturic effect are needed. Thus, the use of sKL as a
therapeutic strategy to block the deleterious effects of FGF-23 on
the heart without altering its physiological phosphaturic function
is becoming increasingly important nowadays. In this sense,
Law et al. (2020) has reviewed recently different approaches to
increase Klotho levels as a possible therapeutic strategy to prevent
cardiac alterations described under uremic conditions. Several
experimental studies have demonstrated that sKL treatment
prevents heart alterations found following renal dysfunction.
Thus, sKL treatment was found to prevent FGF-23-induced
cardiac hypertrophy (Han et al., 2020; Suassuna et al., 2020) and
dysfunction (Navarro-García et al., 2020) in experimental CKD
models. In this line, Klotho overexpression has been shown to
prevent cardiac alterations in a uremic milieu (Navarro-García
et al., 2020). Nevertheless, some authors propose that Klotho’s
cardioprotective role is FGF-23- and phosphate-independent
(Xie et al., 2015). Thus, maintaining adequate Klotho levels
might represent a new therapeutic strategy to avoid the cardiac
dysfunction described in renal patients, including those cardiac
effects mediated directly by FGF-23, while at the same time
guaranteeing its physiological phosphaturic action. Studies on
the inhibition of FGF-23 effects on the heart in the presence
of sKL remark on the importance of the role of not only FGF-
23 but also sKL in the heart. In the present review, we propose
the balance between FGF-23 and sKL availability as a new
prognostic tool for renal patients (Figure 3). Decreased Klotho
availability together with increased systemic FGF-23 levels should

be taken into consideration as a warning sign for increased risk
of deleterious cardiac prognosis in renal patients. Whether a
ratio sKL/FGF-23 is used as a tool to characterize the balance
between both mineral components in renal patients, we can
observe a significant reduction of this ratio from the early stages
of CKD. In early CKD, the reduction of sKL/FGF-23 ratio occurs
mainly due to the reduction of sKL values, as FGF-23 values are
higher than in the healthy population but similar from CKD1 to
CKD3. However, from CKD4 onward, the reduced sKL/FGF-23
must be the consequence of the highly increased serum FGF-
23 levels in these patients. The sKL/FGF-23 ratio could be used
as a tool to choose an adequate treatment that impedes FGF-
23 side effects on organs other than the kidney, such as the
heart. Thus, in those CKD stages where the misbalance is the
result of decreased sKL levels, it would be useful to increase sKL
values; exogenous Klotho administration could be an adequate
option under these circumstances. However, in advanced CKD
stages where the FGF-23 levels are enormously high, treatment
directed at reducing FGF-23 synthesis could be more adequate
for renal patients.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In conclusion, there is growing evidence to support the important
role played by the FGF-23-Klotho axis in the CRS. Thus, FGF-
23 and Klotho should be considered not only as important
biomarkers in renal patients to evaluate cardiovascular events
and mortality risks, but also as a therapeutic target. Many human
and experimental studies have demonstrated that high levels
of FGF-23 or low levels of sKL are linked with cardiovascular
risk and mortality, although few of these have considered the
balance between them as a possible therapeutic target. Recent
studies have shown that increased Klotho availability might
protect the heart even in high FGF-23 conditions with and
without hyperphosphatemia and with no renal modifications,
indicating that Klotho may be the best therapeutic target to
prevent FGF-23’s deleterious effects on the heart identified thus
far. However, more studies are needed to analyze more adequate
strategies to block FGF-23 action and enhance Klotho availability,
especially in humans.
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