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Coronary heart disease (CHD) is one of the leading causes of deaths globally.
Identification of serum metabolic biomarkers for its early diagnosis is thus much
desirable. Serum samples were collected from healthy controls (n = 86) and patients
with CHD (n = 166) and subjected to untargeted and targeted metabolomics
analyses. Subsequently, potential biomarkers were detected and screened, and a
clinical model was developed for diagnosing CHD. Four dysregulated metabolites,
namely PC(17:0/0:0), oxyneurine, acetylcarnitine, and isoundecylic acid, were identified.
Isoundecylic acid was not found in Human Metabolome Database, so we could not
validate differences in its relative abundance levels. Further, the clinical model combining
serum oxyneurine, triglyceride, and weight was found to be more robust than that
based on PC(17:0/0:0), oxyneurine, and acetylcarnitine (AUC = 0.731 vs. 0.579,
sensitivity = 83.0 vs. 75.5%, and specificity = 64.0 vs. 46.5%). Our findings indicated
that serum metabolomics is an effective method to identify differential metabolites and
that serum oxyneurine, triglyceride, and weight appear to be promising biomarkers for
the early diagnosis of CHD.

Keywords: coronary heart disease, metabolomics, biomarkers, liquid chromatography, mass spectrometry

INTRODUCTION

Coronary heart disease (CHD) is a major public health problem worldwide, contributing to
180 million disability-adjusted life years and 9.14 million deaths annually (Jeemon et al., 2021).
According to Global Burden of Disease study estimates, China accounts for about 38.2% of the
increased deaths as a result of CHD in the world (Zhou et al., 2019; Roth et al., 2020). With the
aging of population, the prevalence of CHD continues to increase (Tzoulaki et al., 2016; Wirtz
et al., 2016; Wang et al., 2017). Epidemiological investigations have shown that various risk factors,
including smoking, alcohol intake, diabetes, hypertension, obesity, and family history, contribute to
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CHD occurrence and development (Dinicolantonio et al., 2016;
Khera and Kathiresan, 2017). Such investigations have facilitated
the development of prevention and treatment strategies, leading
to a reduction in mortality rates. Coronary angiography is the
gold standard method to diagnose CHD; however, it is not only
invasive and expensive but also unsuitable for early risk screening
at a large scale. Thus, a non-invasive, safe, and effective clinical
method needs to be developed for the early diagnosis of CHD.

Metabolites, which are downstream products of metabolic
reactions and include very low-density lipoproteins, low-
density lipoproteins, and triglyceride (TG)-rich lipoproteins, are
involved in lipid oxidation and plaque formation, and they have
been associated with a high risk of CHD (Ambrose et al., 1985;
Pongrac et al., 2020). However, the roles of these metabolites
identified from epidemiological studies are unclear; thus, they
cannot be used for the early diagnosis of CHD. The development
of serum metabolic biomarkers for diagnosing CHD is therefore
highly desirable.

Metabolomics refer to global analyses of small molecule
metabolites in a biological system (Nicholson and Lindon, 2008).

FIGURE 1 | Study design depicting the development of our metabolite-based
clinical model. HCs, healthy controls; CHD, coronary heart disease; ECG,
electrocardiogram; cTnI, cardiac troponin I; CAG, coronary angiography;
LC/MS, Liquid chromatography tandem-mass spectrometry; ROC, receiver
operating characteristic curve.

High-throughput metabolomics-based methods have been
widely employed for screening novel biomarkers and elucidating
the multiple targets and metabolic pathways of heart disease
(Jiang et al., 2020; Deidda et al., 2021; Gladding et al., 2021).
Further, metabolic profiling provides integrative information
on physiological as well as pathological changes (Mamas
et al., 2011; Johnson and Gonzalez, 2012). Few previous
studies have indicated the significance of metabolomics in
the screening of biomarkers in several diseases, including
Alzheimer’s disease (Sato et al., 2012; Trushina et al., 2012; Polis
and Samson, 2020), diabetes (Yan et al., 2020), tuberculosis
(Albors-Vaquer et al., 2020; Luies and du Preez, 2020), and
cancer (Conroy et al., 2020; Ishak et al., 2020; Wang et al.,
2020). Paynter et al. (2018) identified that metabolites were
significantly dysregulated in CHD, and could act as predictors
of incident CHD in women. Dugani et al. (2021) found
that the lipid, inflammatory, and metabolic biomarkers were
associated with age at onset for incident CHD in women.
However, CHD led to much more death in men than women.
Meanwhile, due to the differences in diet structure and
race between the east and the west countries, the results
cannot fully reflect the metabolomic changes of CHD in
Chinese patients.

In this metabolomics-based study, our objective was to
identify serum metabolic biomarkers that could be used for

TABLE 1 | The characteristics of the population in untargeted metabolomics
analysis.

Characteristics HC (n = 33) CHD (n = 65) P

Age, y 60.48 (10.64) 58.38 (10.50) 0.647

Male Sex, n (%) 20 (60.6) 45 (69.2) 0.498

Height, cm 162.42 (8.08) 162.29 (7.60) 0.938

Weight, kg 66.39 (12.22) 65.65 (10.86) 0.761

Smoking, n (%) 12 (36.4) 22 (34.0) 0.825

Drinking, n (%) 3 (9.1) 6 (9.2) 1.000

Hypertension, n (%) 22 (66.7) 44 (67.7) 1.000

Diabetes, n (%) 8 (24.2) 17 (26.2) 1.000

CREA µmol/L 81.57 (24.07) 84.77 (25.12) 0.547

URIC µmol/L 374.42 (85.5) 395.59 (112.98) 0.346

TCHO mmol/L 4.23 (0.99) 4.40 (1.0) 0.427

TG mmol/L 1.51 (1.02) 1.81 (1.22) 0.228

HDLC mmol/L 1.17 (0.37) 1.13 (0.30) 0.566

LDLC mmol/L 2.84 (0.94) 3.03 (1.19) 0.426

EF 65.52 (6.34) 63.97 (7.20) 0.298

Lesion (%) <0.001

0 0 (0.0) 8 (12.3)

1 0 (0.0) 41 (63.1)

2 0 (0.0) 9 (13.9)

3 0 (0.0) 7 (10.7)

NA 33 (100.0) 0 (0.0)

Abbreviations: HC, healthy control; CHD, coronary heart disease; CREA,
Creatinine; URIC, Uric acid; TCHO, Total cholesterol; TG, Triglyceride; HDLC,
High density lipoprotein cholesterol; LDLC, Low density lipoprotein cholesterol; EF,
Ejection fraction. Continuous variables are presented as mean (SD). Categorical
variables are presented as n (%). The bold values provided mean “The difference
was statistically significant”.
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FIGURE 2 | Partial least squares-discriminant analysis (PLS-DA) for the HC
and CHD patient groups. HC, healthy control; CHD, coronary heart disease.

the early diagnosis of CHD. Further, a clinical model was
developed and validated based on logistic regression and fold
cross-validation analyses.

MATERIALS AND METHODS

Chemicals and Reagents
HPLC-grade methanol was obtained from Thermo Fisher
Scientific (MA, United States). Ultrapure-grade water was
purified using a Milli-Q system (Millipore, MA, United States).
Ammonium acetate, acetylcarnitine, and formic acid were
purchased from Sigma Aldrich (St. Louis, MO, United States).
Oxyneurine and PC(17:0/0:0) were from ChromaBio
(Chengdu, China).

Patients and Sample Collection
We recruited eligible participants in Tungwah Hospital of
Sun Yat-sen University. Exclusion criteria were as follows:
participants with severe liver or kidney diseases, marrow and
hematological system diseases, chest pain caused by other factors,
such as, trauma, malignancy, or previously diagnosed with
coronary disease in 2 months and/or were treated accordingly. Of
them, 166 were diagnosed with CHD based on clinical features,
electrocardiogram examination, cardiac troponin I levels, and
coronary angiography, and the remaining 86 were enrolled
as healthy controls (HCs). This study was approved by the
Institutional Review Board of Tungwah Hospital of Sun Yat-
sen University. Serum samples were obtained and stored at
−80◦C until needed.

Serum Sample Preparation
Low molecular weight metabolites (<1500 Da) were isolated
using a previously reported method (Luan et al., 2015), with

some modifications. The serum samples were thawed and quality
tested. To achieve protein precipitation, 200 µL methanol was
added to 100 µL serum, followed by centrifugation at 14000 × g
and 4◦C for 10 min. The supernatant thus obtained was
transferred into a 1.5-mL EP tube for further analyses.

Untargeted Metabolomics
After screening using propensity score matching (PSM), serum
samples of 33 HCs and 65 patients with CHD were subjected to
UM analysis. We used previously reported protocols (Chen et al.,
2016, 2017; Shivanna et al., 2016), with slight modifications on
processing time. Solvent A was 0.1% formic acid, and solvent B
was 0.1% acetonitrile. The gradient was as follows: 0–5 min, 5%
B; 5–10 min, 100% B; 10–15 min, 100% B; and 15–20 min, 5% B.
The Q-Exactive Focus Orbitrap mass spectrometer was operated
in both positive and negative ion modes.

Targeted Metabolomics
After screening using PSM, serum samples of 53 HCs and 101
patients with CHD were subjected to TM analysis. The samples
were processed in a similar manner as that for UM analysis.
Helium was maintained at a constant flow rate of 0.5 mL/min for
favorable separation, and the equilibration time was 3 min. The
test parameters were as follows: spray voltage, 2800 V; auxiliary
gas, 40 Pa; evaporation temperature, 550◦C; collision energies,
30 eV; maximum TT, 100 ms; and scan range, 25–1,000 m/z.

Metabolite Identification
Metabolites were identified by matching their exact molecular
mass (m/z) with those in Human Metabolome Database
(HMDB1) and METLIN2.

Biological Pathway Analysis
Briefly, differential metabolites were first screened based on false
discovery rate and fold change, and biological pathway analysis
was performed using the ingenuity pathway analysis3 method.
CHD-related biological pathways were identified based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database4.

Statistics Analysis
Given the differences in the baseline characteristics between
eligible participants in the untargeted metabolomics (UM) and
targeted metabolomics (TM) analysis, PSM was used to identify
a cohort of patients with the similar baseline characteristics.
The propensity score is a conditional probability of having
a particular exposure (such as, age, sex, smoking, drinking,
diabetes, and so on) given a set of baseline measured as covariates.
Differential metabolites were screened with multidimensional
statistical analysis [variable importance in projection (VIP)
value of >1 and P < 0.05]. Receiver operating characteristic
(ROC) analysis was used for sensitivity and specificity evaluation.
Values are expressed as mean ± standard deviation (SD).

1http://www.hmdb.ca
2https://metlin.scripps.edu
3http://www.ingenuity.com
4http://www.genome.jp/kegg/
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FIGURE 3 | Heatmap of 41 significantly dysregulated metabolites between the HC (n = 33) and CHD patient (n = 65) groups. Rows represent differential metabolites
and columns represent an individual. Red indicates upregulated metabolite levels, and blue indicates downregulated metabolites levels in patients. HC, healthy
control; CHD, coronary heart disease.

Continuous variables were performed using SPSS 21.0 (Chicago,
IL, United States) with Student’s t-test. Categorical variables
were tested by chi square test. ∗P < 0.05 was considered
statistically significant.

RESULTS

Clinical Characteristics of Participants
Our study design is depicted by Figure 1. To identify differences
in metabolites in patients with CHD, serum samples of HCs
(n = 33) and patients with CHD (n = 65) were subjected
to UM analysis. Table 1 shows the clinical characteristics of
study participants. Fifteen CHD-related clinical indices were
evaluated, including age, gender, body mass index (BMI),
smoking status, drinking status, hypertension, diabetes, ejection
fraction, and blood biochemistry (creatinine, uric acid, total
cholesterol, TG, high-density lipoprotein cholesterol, and low-
density lipoprotein cholesterol). No obvious differences in these

CHD-related clinical indices were observed between the HC and
CHD patient groups.

Detection of Dysregulated Metabolites
by Untargeted Metabolomics Analysis
Metabolites in serum samples of 33 HCs and 65 patients
with CHD were characterized and compared. A total of
3,069 molecular features were acquired and further analyzed
(Supplementary Table 1). As shown in Supplementary
Figures 1A,B, mass spectra of the CHD patient and HC groups
showed differential peak heights. A comprehensive view of
metabolite data was subjected to statistical analysis using
MetaboAnalyst 3.0. Figure 2 shows PLS-DA score plots for the
two groups; an obvious trend of separation (Q2 = 0.36, R2 = 0.84)
was observed between the CHD patient and HC groups.

Further, ANOVA led to the identification of 41 dysregulated
metabolites between the groups (Figure 3). KEGG analysis
showed that they were involved in various metabolic pathways,
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FIGURE 4 | Screening four dysregulated metabolites by UM analysis. Relative abundance of oxyneurine (A), acetylcarnitine (B), PC(17:0/0:0) (C), and isoundecylic
acid (D) in serum samples. AUC values of oxyneurine (E), acetylcarnitine (F), PC(17:0/0:0) (G), and isoundecylic acid (H) in the HC and CHD patient groups. UM,
untargeted metabolomics; HC, healthy control; CHD, coronary heart disease.

TABLE 2 | Characteristics of the population in targeted metabolomics analysis.

Characteristics HC (n = 53) CHD (n = 101) P

Age, y 59.60 (10.41) 58.28 (11.52) 0.486

Male Sex, n (%) 33 (62.3) 70 (69.3) 0.471

Height, cm 162.98 (7.32) 162.73 (7.91) 0.849

Weight, kg 67.05 (11.39) 66.40 (11.40) 0.737

Smoking, n (%) 18 (34.0) 36 (35.6) 0.861

Drinking, n (%) 6 (11.3) 10 (9.9) 0.206

Hypertension, n (%) 32 (60.4) 59 (58.4) 0.864

Diabetes, n (%) 16 (30.2) 27 (26.7) 0.707

CREA µmol/L 83.51 (23.22) 85.47 (29.90) 0.678

URIC µmol/L 379.23 (91.29) 389.36 (113.77) 0.576

TCHO mmol/L 4.26 (0.93) 4.38 (1.09) 0.497

TG mmol/L 1.54 (0.93) 1.86 (1.53) 0.166

HDLC mmol/L 1.13 (0.35) 1.16 (0.40) 0.645

LDLC mmol/L 2.81 (0.94) 2.99 (1.17) 0.335

EF 64.47 (7.61) 64.24 (7.18) 0.854

Lesion (%) <0.001

0 0 (0.0) 11 (10.9)

1 0 (0.0) 58 (57.4)

2 0 (0.0) 19 (18.8)

3 0 (0.0) 13 (12.9)

NA 33 (100.0) 0 (0.0)

Abbreviations: HC, healthy control; CHD, coronary heart disease; CREA,
Creatinine; URIC, Uric acid; TCHO, Total cholesterol; TG, Triglyceride; HDLC,
High density lipoprotein cholesterol; LDLC, Low density lipoprotein cholesterol; EF,
Ejection fraction. Continuous variables are presented as mean (SD). Categorical
variables are presented as n (%). The bold values provided mean “The difference
was statistically significant”.

including phosphotransferase system, bile secretion, insulin
secretion, and cholesterol metabolism (Supplementary Table 2).

To assess the diagnostic potential of dysregulated metabolites,
the differential metabolites in the CHD patient and HC
groups were further screened by area under curve of ROC
curve >0.6. As shown in Figures 4A–D, four dysregulated
metabolites [oxyneurine, acetylcarnitine, PC(17:0/0:0), and
isoundecylic acid] showed significant differences in abundance
levels between the groups. The AUC values of oxyneurine,
acetylcarnitine, PC(17:0/0:0), and isoundecylic acid in the
CHD patient vs. HC groups were 0.779, 0.696, 0.667, and
0.610, respectively; the sensitivity was 69.7, 69.7, 66.7,
and 54.5% and the specificity were 78.8, 69.7, 72.7, and
75.8%, respectively (Figures 4E–H). Altogether, our data
suggested that oxyneurine, acetylcarnitine, PC(17:0/0:0), and
isoundecylic acid are involved in metabolomics changes that
occur during CHD.

Detection of Dysregulated Metabolites
by Targeted Metabolomics Analysis
To further investigate the potential roles of the aforementioned
dysregulated metabolites, serum samples of 101 patients with
CHD and 53 HCs were screened and subjected to TM
analysis. The clinical characteristics are shown in Table 2.
As isoundecylic acid was not found in HMDB, we could
not validate differences in its relative abundance levels. The
other three metabolites [i.e., oxyneurine, acetylcarnitine, and
PC(17:0/0:0)] were systematically and comprehensively analyzed.
The abundance level of oxyneurine was significantly different
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FIGURE 5 | Screening three dysregulated metabolites by TM analysis. Relative abundance of oxyneurine (A), acetylcarnitine (B), and PC(17:0/0:0) (C). AUC values
of oxyneurine (D), acetylcarnitine (E), and PC(17:0/0:0) (F) in the HC and CHD patient groups. TM, targeted metabolomics; HC, healthy control; CHD, coronary
heart disease.

in the CHD patient group as compared with that in the HC
group; this finding was similar to that of UM analysis (P < 0.05;
Figure 5A). However, the abundance levels of acetylcarnitine
and PC(17:0/0:0) showed no differences between the groups
(Figures 5B,C). These results suggested that oxyneurine can serve
as a serum metabolic biomarker to diagnose CHD. ROC analysis
showed that the AUC values of oxyneurine, acetylcarnitine, and
PC(17:0/0:0) in the CHD patient vs. HC groups were 0.596,
0.541, and 0.546, respectively; the sensitivity was 47.2, 64.2, and
86.8% and the specificity was 72.5, 52.9, and 27.6%, respectively
(Figures 5D–F). Collectively, our data suggested that all three of
these dysregulated metabolites, particularly oxyneurine, can be
used for the early diagnosis of CHD.

Construction of Our Clinical Model
To assess the clinical significance of oxyneurine, acetylcarnitine,
and PC(17:0/0:0), we developed a clinical model related to
the early diagnosis of CHD. However, the AUC value of this
combined diagnostic model was only 0.579; the sensitivity
was 75.5% and the specificity was 46.5% (Figure 6A). These
results indicated that dysregulated metabolites alone are not

enough to establish the diagnosis of CHD; other CHD-related
biochemical indices should also be included when constructing
a clinical model.

To improve the accuracy of CHD diagnosis, stepwise
backward selection and fold cross-validation analysis
were used to finetune the clinical model. The optimal
model was listed as following: logit (P = CHD patients vs.
HCs) = 0.020 × oxyneurine + 0.389 × TG – 0.036 × weight –
0.393 (Figure 6B). The AUC value was 0.731; the sensitivity was
83.0% and the specificity was 64.0%. The findings revealed that
combining oxyneurine, TG, and weight considerably increased
the accuracy of the clinical model, making it suitable for the
diagnosis of CHD.

DISCUSSION

Coronary heart disease is a complex human disease associated
with inflammation and oxidative stress, and its onset is related
to diverse environmental and genetic factors. Its incidence
is increasing each year, consequently leading to a major
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FIGURE 6 | Clinical model for CHD diagnosis. (A) AUC value of the three-metabolite [oxyneurine, acetylcarnitine, and PC(17:0/0:0)] clinical model. (B) AUC value of
the clinical model combining serum oxyneurine, TG, and weight. TG, triglyceride; HC, healthy control; CHD, coronary heart disease.

socioeconomic burden. Advancements in metabolomics have
facilitated the elucidation of potential mechanisms underlying
CHD development and progression. In this study, we performed
UM and TM analyses to detect differential metabolites between
CHD and HCs. Our findings indicated that oxyneurine,
acetylcarnitine, and PC(17:0/0:0) were significantly dysregulated
in patients with CHD. Furthermore, the inclusion of oxyneurine,
TG, and weight in our clinical model markedly increased its
robustness (AUC = 0.731), suggesting that they can serve as
biomarkers for the early diagnosis of CHD.

Oxidative stress evidently plays a crucial role in atherosclerotic
cardiovascular diseases, and some of its effects are mediated
by lipid oxidation (Pouralijan et al., 2019; Chandler et al.,
2020; Gianazza et al., 2021). Herein KEGG pathway analysis
showed that differential metabolites were associated with the
phosphotransferase system, bile secretion, insulin secretion, and
cholesterol metabolism. However, there were also different roles
on the activation of pathways. For example, the upregulation
of acetylcholine was associated with bile secretion, neuroactive
ligand-receptor interaction, synaptic vesicle cycle, cholinergic
synapse, regulation of actin cytoskeleton, salivary secretion,
gastric acid secretion, and pancreatic secretion. However, the
downregulation of glycocholate, was not only involved in bile
secretion, but also associated with cholesterol metabolism,
secondary bile acid biosynthesis, primary bile acid biosynthesis.
These results indicated that the dysregulated metabolites
constituted the interaction network of metabolic-related
signaling pathways, which may involve in progression of CHD.

Four dysregulated metabolites–oxyneurine, acetylcarnitine,
PC(17:0/0:0), and isoundecylic acid–showed significant

differences in their abundance levels between the CHD
patient and HC groups. Oxyneurine, a methyl glycine derivative
and a commonly used nutrient supplement, shows antioxidant
activity in animals and plants; it has also been reported to
increase plasma glutathione peroxidase levels and regulate
insulin secretion (Goncalves et al., 2020; Hall et al., 2020;
Hassanpour et al., 2020; Sofy et al., 2020). Acetylcarnitine, a
product of the reaction between acetyl-CoA and carnitine in
mitochondria, is an effective antioxidant and anti-inflammatory
marker. It has been found to attenuate arsenic-induced
oxidative stress and hippocampal mitochondrial dysfunction,
modulate the antioxidant defense capacity, and protect
hippocampal neurons from oxidative damage (Farrell et al.,
1986; Keshavarz-Bahaghighat et al., 2018). PC(17:0/0:0),
a lysophospholipid, is involved in the acylation cycle and
regulates the composition of lipids and sugars (Lingwood and
Simons, 2010). Isoundecylic acid has been reported to exhibit
5-lipoxygenase inhibitory activities in vitro (Ohkuma et al.,
1993). Based on this information, it appears that the four
aforementioned dysregulated metabolites play a pivotal role in
lipid oxidative stress in patients with CHD; thus, targeting them
may be a novel approach for the clinical treatment of CHD.
Nevertheless, further studies are warranted to elucidate their
precise role and underlying mechanisms.

In the current study, we further detected changes in metabolic
profiles by performing UM and TM analyses. A metabolite-
based clinical model was developed; however, as isoundecylic
acid was not found in HMDB, only oxyneurine, acetylcarnitine,
and PC(17:0/0:0) were subjected to TM analysis. The role of
isoundecylic acid needs to be further explored. Finally, as the
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clinic model was validated using a small sample, its sensitivity and
specificity warrant deeper investigations.

CONCLUSION

To summarize, we found that oxyneurine, acetylcarnitine,
PC(17:0/0:0), and isoundecylic acid were dysregulated in patients
with CHD, which is suggestive of their involvement in the
development of this chronic disease. Moreover, using the
combination of serum oxyneurine, TG, and weight seems
promising for the early diagnosis of CHD.
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