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Tissue degradation plays a crucial role in the formation and rupture of aneurysms.

Using numerical computer simulations, we study the combined effects of blood flow

and tissue degradation on intra-aneurysm hemodynamics. Our computational analysis

reveals that the degradation-induced changes of the time-averaged wall shear stress

(TAWSS) and oscillatory shear index (OSI) within the aneurysm dome are inversely

correlated. Importantly, their correlation is enhanced in the process of tissue degradation.

Regions with a low TAWSS and a high OSI experience still lower TAWSS and higher OSI

during degradation. Furthermore, we observed that degradation leads to an increase of

the endothelial cell activation potential index, in particular, at places experiencing low wall

shear stress. These findings are robust and occur for different geometries, degradation

intensities, heart rates and pressures. We interpret these findings in the context of recent

literature and argue that the degradation-induced hemodynamic changes may lead to a

self-amplification of the flow-induced progressive damage of the aneurysmal wall.

Keywords: aneurysms, tissue degradation, fluid-structure interaction (FSI), hemodynamics, wall shear stress

(WSS), oscillatory shear index (OSI)

1. INTRODUCTION

Both microscopic degradation in vascular tissues and hemodynamic (fluid-dynamic) forces play
a crucial role in the initiation, growth and focal rupture of aneurysms (Sforza et al., 2009;
Salman et al., 2019; Lipp et al., 2020; Wu et al., 2020). Aneurysms are vascular diseases
characterized by excessive tissue degradation and chronic inflammation (Frösen, 2014). There are
relations among aneurysmal geometry, intra-aneurysmal hemodynamics (flow), and aneurysm
pathobiology (Meng et al., 2014): Geometry instantaneously alters flow conditions (short-term
effect) (Wang et al., 2020, 2021a); abnormal-flow-induced hemodynamic-biomechanical triggers
are transduced into biological signals and lead to the degradation, growth and/or remodeling of
aneurysms via pathobiology (Meng et al., 2014); the interplay between the local flow environment
and aneurysm pathobiology dominates the growth and geometric changes of the aneurysm (long-
term effect) (Tarbell et al., 2014). Within an aneurysm wall, constructive (eutrophic) changes (cell
proliferation and extracellular matrix production) and destructive (degradative) changes (cell death
and extracellular matrix degradation) are ongoing concurrently (Frösen et al., 2012; Frösen, 2014;
Meng et al., 2014). Wall shear stress (WSS), defined as the tangential stress component induced
by the flowing blood and acting on endothelial cells, regulates the near-wall transport of chemicals
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and proteins (Kadirvel et al., 2007; Nixon et al., 2010;
Meng et al., 2014). WSS, however, is usually calculated for
a stationary/instantaneous blood flow and does not, per se,
consider the pulsatility within a cardiac cycle. In order to better
elucidate the mechanistic link between blood flow and vascular
diseases (in particular, aneurysms), a number of WSS-related
metrics have been proposed. Among these, the time-averaged
wall shear stress (TAWSS) (He and Ku, 1996) and oscillatory
shear index (OSI) (Ku et al., 1985) are the two most common
candidates that are important for aneurysms’ progression and
rupture. TAWSS measures the average magnitude of WSS
within a full cardiac cycle. OSI indicates the change in the
direction along which WSS is acting on the vascular tissue.
Abnormal WSS is a major cause of the imbalance between the
constructive and destructive processes (Meng et al., 2014) and
leads to vascular degradation and inflammation by activating
inflammatory markers of endothelial cells (Franck et al., 2013;
Meng et al., 2014), thereby causing the breakdown of the internal
elastic lamina and loss of structural strength within the vessel
wall (Kataoka et al., 1999). An aneurysm can grow and even
rupture with continuous vascular injury, inflammation, and
prolonged activation (Fisher and Demel, 2019).

On the one hand, although mechanisms underlying the
effects of hemodynamic forces on aneurysm pathogenesis remain
unclear, there is growing evidence that hemodynamic factors
(in particular, TAWSS and OSI) act as crucial contributors to
the progression and rupture of aneurysms. Low TAWSS and
high OSI are commonly used risk factors for a rupture-prone
phenotype (Xiang et al., 2011; Meng et al., 2014; Zhang et al.,
2016; Liu et al., 2019a). Previous in vitro (Davies et al., 1984;
Dai et al., 2004) and numerical (Sáez et al., 2015) studies have
indicated that the remodeling of endothelial cells is dependent
on the combined effects of TAWSS and OSI. Liu et al. (2019a)
have recently suggested that low WSS and high OSI shall be
considered as independent hemodynamic-morphological risk
factors and proposed to use them as predictors for intra-
operative aneurysm rupture. Low TAWSS and high OSI have
also been shown to be significantly associated with thrombus
formation in aneurysms (Les et al., 2010; Kelsey et al., 2017).
In addition, Cebral et al. (2019) have argued that high WSS
and low OSI, prevalent in the flow impingement region, may
be also associated with the degradation and local thinning of
aneurysmal walls. Both the TAWSS andOSI affect the endothelial
mechanobiology locally. To localize regions exposed to both low
TAWSS and high OSI, the so-called endothelial cell activation
potential (ECAP) is used (Di Achille et al., 2014; Zambrano et al.,
2016; Kelsey et al., 2017; Ong et al., 2019). It has been shown
that low TAWSS, high OSI ang high ECAP correlate with regions
of thrombus development in aneurysms (Zambrano et al., 2016;
Kelsey et al., 2017; Ong et al., 2019). The effects of geometry
on intra-aneurysmal hemodynamics have also been extensively
studied (Hassan et al., 2005; Cebral et al., 2007; Baharoglu et al.,
2010; Kawaguchi et al., 2012; Wang et al., 2020).

On the other hand, degradation-induced changes in
mechanical properties of an aneurysmal wall may have an
influence on hemodynamics inside the aneurysm, which is
poorly studied though. Recently, we have developed a novel

computational framework by combining a tissue degradation
model and a finite element-based fluid-structure interaction
(FSI) solver (Wang et al., 2021b). Using this model, we have
shown that TAWSS increases near the flow-impingement region
of idealized aneurysms and decreases away from it in the process
of degradation (Wang et al., 2021b).

While several longitudinal studies (Arzani et al., 2014;
Zambrano et al., 2016) have been conducted to understand the
role of TAWSS and OSI in thrombus deposition in aneurysms,
it remains unclear how degradation may affect the oscillatory
shear index and its potential connection to TAWSS, and the
endothelial cell activation potential. The present study aims
at investigating this topic. To the best of our knowledge, this
paper presents the first preliminary results uncovering qualitative
trends and correlations of biomechanically important metrics
upon degradation. Potential consequences of the central finding
are discussed in the context of recent literature.

2. MATERIALS AND METHODS

2.1. Numerical Model
As mentioned above, in this work, we use a recently developed
FSI framework to account for the interaction between blood
flow and aneurysmal walls, and at the same time to capture the
degradation of vascular tissues (Wang et al., 2021b). In this
computational framework, a tissue degradation model (Balzani
et al., 2012; Anttila et al., 2019) is combined with the open-
source software, SimVascular/svFSI (2021) which is finite-
element-method-based and uses an arbitrary Lagrangian-
Eulerian formulation of Navier-Stokes equations to model
incompressible Newtonian fluid (blood) flows on moving
domains (Vedula et al., 2017). The degradation model employed
here has been validated in previous studies (Balzani et al., 2012;
Anttila et al., 2019) and proved to reproduce the experimental
cyclic responses of different types of arteries. The current model
is able to account for stress softening (Balzani et al., 2012; Anttila
et al., 2019; Wang et al., 2021b), a phenomenon commonly
observed in biological tissues. The present study is qualitative
research and a first step toward a more realistic model.

For flow boundary conditions, we prescribe a pulsatile flow
(Figure 1A) at the inlet with a parabolic velocity profile, together
with a three-element Windkessel-type boundary condition at
each outlet. The Windkessel parameters are tuned to match
the systolic, diastolic and mean blood pressures. At each cross-
sectional end of the structural domain, homogeneous Dirichlet
boundary conditions are applied to anchor its location. The fluid
and wall domains share a contact surface. Through each contact
surface point, the flow velocity is projected onto the wall. Indeed,
we impose the non-slip condition on the surface regardless of the
thickness of the wall.

2.2. Study Cases
Three geometries are employed in this study (Figure 1). For the
idealized aneurysm (Figure 1B), the inner diameter of the parent
vessel is 0.41 cm (Chnafa et al., 2017) with an angle of 60◦

between the two vessel parts. The inner diameter of the spherical
cap (aneurysm) is 1.0 cm. The mean diameter of the parent vessel
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FIGURE 1 | (A) Temporal variation of the imposed flow rate at the inlet (period

T = 0.6 s or 0.8 s, depending on the studied case). (B–D) Geometries studied

in this work; (B) a canonical aneurysm model based on data in (Usmani and

Muralidhar, 2018; Chassagne et al., 2021); (C,D) patient-specific cerebral

aneurysm models based on the cases C0034 and C0020 in the open-source

Aneurisk dataset repository (Aneurisk-Team, 2012), respectively. In order to

keep the computational cost in a reasonable range, we select a short

representative section from each full image available in the Aneurisk repository.

All meshes use quadratic tetrahedrons having a mean effective spatial

resolution of 0.07 mm. Arrows serve to highlight the parabolic velocity profile

imposed at the inlet. The tissue degradation model is applied only on the

aneurysmal region (colored in blue); the remaining of the vessel (gray) is

modeled as Neo-Hookean.

in Figures 1C,D is approximately identical and equal to 0.4 cm.
The average diameter of the aneurysm dome in Figures 1C,D

is 1.2 and 0.8 cm, respectively. The aspect ratio (perpendicular
height to neck diameter) of the aneurysm sac in Figures 1C,D is
approximately 1.0 and 1.2, respectively.

Following the literature, the wall thickness has been chosen
to be 0.04cm (Isaksen et al., 2008; Wang et al., 2021b). As
shown in Figure 2, a variation of wall thickness by a factor of
three (from 0.02 to 0.06 cm) leads to less than 15% change in
degradation-induced effect on strain. Other quantities behave
similarly (not shown). Therefore, for simplicity, we assume a
spatially homogeneous wall thickness.

Unless otherwise stated, material parameters given in Table 1

are used in this study. The fluid density and viscosity are
1.055 g cm−3 and 0.04 g cm−1 s−1, respectively (Isaksen et al.,
2008).

The pressure levels are controlled by varying the three-
element Windkessel parameters (i.e., distal resistance Rd,
proximal resistance Rp, and capacitance C). For a bifurcation
artery, the total resistance, Rtot, at each outlet is calculated
assuming the power law relationship between the blood flow
rate and the internal vessel diameter (Chnafa et al., 2017). The
distal and proximal resistance at each outlet is given by Rd =

kdRtot, and Rp = (1 − kd)Rtot, where the factor kd defines the
ratio of distal to total resistance and is fixed for all outlets to
kd = 0.9 (Kim et al., 2010). Rd is often chosen to be higher

FIGURE 2 | Relative change in radial strain of a straight tube between

non-degraded (εnd ) and degraded (εd ) cases vs. wall thickness of the tube.

The tube diameter is 0.41 cm. The wall thickness varies from 0.02 cm to

0.06 cm. The imposed cyclic load ranges from 8.7 kPa to 20 kPa, having the

same waveform as shown in Figure 1A. Each simulation runs for five cycles.

T = 0.8 s; γ∞ = 18 kPa. Other material parameters are given in Table 1.

TABLE 1 | Material parameters for the aneurysm region (colored in blue in

Figures 1B–D) used in this study [based on data shown in Balzani et al. (2012)].

c1 [kPa] ǫ1 [kPa] ǫ2 [-] α1 [kPa] α2 [-] κ [-] βf [
◦] D∞ [kPa] γ∞ [kPa] βs [-]

9.02 499.8 2.4 1,400 2.2 1e-8 39.87 0.96 11 0.06

For the parent and branch vessels outside an aneurysm (gray regions

shown in Figures 1B–D), elastic modulus and Poisson’s ratio are chosen

as 1,000 kPa (Khamdaeng et al., 2012) and 0.49, respectively. See

Supplementary Material for more details on how the material parameters enter

the tissue degradation model.

than Rp as the most resistance occurs in the downstream vascular
system. The capacitance C controls the amplitude of the pressure
waveform; a low capacitance leads to a high pressure amplitude.

In order to gain a qualitative understanding of the effects
arising from tissue degradation, we start with an idealized
aneurysmmodel shown in Figure 1Bwith pressure ranging from
90 mmHg (diastole) to 160 mmHg (systole) and a heart rate
of 100 bpm (T = 0.6 s). The total resistance and capacitance
at each branch are Rtot = 7.3·104 g cm−4 s−1 and C =

10−6 cm4 s2 g−1, respectively. We then investigate the influence
of different parameters as follows:

1. Morphology-related effects: Here we perform simulations
using the same parameters as described above for two patient-
specific aneurysm geometries (Figures 1C,D).

2. Effect of degradation intensity: In this case we change the
value of the damage parameter γ∞ from 11 to 18 kPa ; note
that γ∞ = 18kPa corresponds to a lower damage intensity
than the case with γ∞ = 11kPa (see Supplementary Material

and Wang et al., 2021b).
3. Influence of heart rate (flow frequency): Here the heart rate is

changed from 100 bpm (T = 0.6 s) to 75 bpm (T = 0.8 s) for
the two patient-specific geometries.

4. Pressure (tension)-dependence: Here we impose a
different blood pressure ranging from 70 mmHg
(diastole) to 140 mmHg (systole), again for the two
patient-specific aneurysms.
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In order to highlight effects arising from the degradation of blood
vessel tissue, all the above simulations are performed twice: once
with and once without material degradation.

All meshes use quadratic tetrahedrons (Balzani et al., 2016;
Wang et al., 2021b). For each case investigated in the present
study, the fluid and solid domains consist of approximately
93,000 nodes/67,000 tetrahedral elements. The discrete time
step is set to 10−4 s; for a cycle with a duration of 0.8 s, the
temporal resolution is 8,000 time-steps per cardiac cycle. As to
the computation time, each simulation with a typical duration
of five cardiac cycles takes roughly 10 days using 38 cores on a
multi-core workstation (Intel(R) Xeon(R) Gold 6148, 2.40 GHz).

2.3. Metrics for Analysis
As motivated in the Introduction, time-averaged wall shear
stress and oscillatory shear index play a pivotal role in
mechanobiological development and focal rupture of aneurysms.

The TAWSS at an arbitrary position x is simply the average
magnitude of the wall shear stress vector τw over one cardiac
cycle of duration T at that point (He and Ku, 1996),

TAWSS(x) =
1

T

∫ T

0

∣

∣τw(x, t)
∣

∣ dt. (1)

The oscillatory shear index quantifies the change in the
orientation of the wall shear stress vector during a cardiac cycle
and is calculated as (Ku et al., 1985),

OSI(x) = 0.5









1−

∣

∣

∣

∣

1

T

∫ T
0 τw(x, t) dt

∣

∣

∣

∣

TAWSS(x)









. (2)

The value of OSI ranges from 0 in a uni-directional flow to 0.5 in
a reversing flow with a 180◦ change in the direction of the shear
force acting on the tissue surface.

Another interesting metric is the so-called endothelial cell
activation potential, ECAP, which combines TAWSS and OSI as

ECAP(x) =
OSI(x)

TAWSS(x)
. (3)

The ECAP is usually used to characterize the degree of
‘thrombotic susceptibility’ of arterial walls (Di Achille et al.,
2014). A large value of the ECAP signals low TAWSS
together with high OSI and vise versa. All the above-
mentioned hemodynamic quantities are used to quantify the
flow environment and flow-induced shear stress experienced
by endothelium.

To quantify the effects of tissue degradation on intra-
aneurysm hemodynamics, we analyze the relative changes in
these metrics upon degradation. For this purpose, given a time-
averaged quantity f (x) at point x, the relative percentage change
in f (x) between the degraded (f d) and non-degraded (f nd) cases
is defined via

1f (x) =
f d(x)− f nd(x)

f nd(x)
× 100. (4)

3. RESULTS

In this section, we investigate the effect of tissue degradation on
two commonly used intra-aneurysmal hemodynamic quantities,
TAWSS and OSI, and ECAP. Since the fluid is at rest at the
beginning of our simulations, we wait for two full cardiac cycles
before gathering the data onWSS and OSI. This way, we focus on
cyclic dynamics, which regularly repeats itself.

In order to quantify the effects of tissue degradation
on TAWSS, OSI and ECAP, we use Equation (4) and
determine the tissue-degradation-induced relative changes of
these hemodynamic quantities (Figure 3). Using this approach,
a decrease or increase of TAWSS, OSI, and ECAP upon
degradation shows itself in a negative or positive value and will
be made visible by blue or red color, respectively.

As revealed by our simulations, degradation effects seem
to be nearly homogeneous on wall stress (Figure 3C) and
strain magnitude (Figure 3D) [in line with our previous
study (Wang et al., 2021b)] but spatially heterogeneous on
TAWSS (Figure 3E), OSI (Figure 3F) and ECAP (Figure 3H).
Importantly, the degradation process appears to bring locally
opposite influences on the TAWSS and OSI; a region with a
decrease in TAWSS shows an increase in OSI (and thus an
increase in ECAP as visualized by red color in Figure 3H), and
vice versa.

To further highlight the enhancement of the inverse
correlation between TAWSS and OSI in the progress of
degradation, we quantify their correlation via

C1TAWSS·1OSI =
TAWSSd − TAWSSnd

TAWSSnd
(5)

×
OSId −OSInd

OSInd
× 100.

The degradation-induced local enhancement of the inverse
correlation between TAWSS and OSI is indicated by negative
C1TAWSS·1OSI and is visualized by blue color in Figure 3G. The
main advantage of introducing this quantity is that its negative
value indicates opposite changes of TAWSS and OSI during
degradation. When combined with the information contained
in ECAP, one can then uniquely distinguish which of the two
quantities has increased and which one has decreased. However,
if TAWSS and OSI change in a similar manner (both increase or
both decrease, leading to a positive correlation), ECAP will raise
if (i) the percentage increase in OSI is larger than that of TAWSS
but also if (ii) percentage decrease of OSI is lower than that of
TAWSS. Similarly, two possibilities exist for a decrease of ECAP
in the case of a positive correlation value.

In view of possible clinical consequences of an inverse
correlation between TAWSS and OSI, we have examined the
robustness of the observed behavior and have performed two new
sets of simulations using patient-specific aneurysm geometries
shown in Figures 1C,D. The data for these geometries are
obtained from the Aneurisk repository (Aneurisk-Team, 2012).

We find that, at certain areas of each aneurysm sac
investigated in this study, TAWSS andOSI are oppositely affected
by degradation. This feature is stronger at places with low WSS
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FIGURE 3 | (A) TAWSS and (B) OSI fields in the presence of degradation using an idealized aneurysm model. Relative percentage change (Equation 4) of (C) Von

Mises stress, (D) strain magnitude, (E) TAWSS and (F) OSI between non-degraded and degraded cases; the blue (red) color indicates a decrease (increase) of each

metric upon tissue degradation. Panel (G) illustrates the correlation function between the data shown in the panels (E,F), calculated via Equation (5) and digitized to –1

or 1 for all data points with a magnitude > 5%. The region with blue color corresponds to an inverse effect of degradation on TAWSS as opposed to OSI: In places

where TAWSS decreases due to degradation, OSI increases and vice versa. A positive correlation, on the other hand, is represented by a red color in (G). (H) shows

the relative change of ECAP upon degradation. In all cases, the pressure ranges from 90 (diastole) to 160 mmHg (systole) and T = 0.6 s. For each case investigated,

the locations of low-WSS (indicated by arrows) remain nearly intact during a full cardiac cycle. In order to better visualize the data, the second (fourth) row shows the

same simulated data as in the first (third) row but after rotating the aneurysm dome by an angle of π around the polar axis. In (C–H) we show only the aneurysm region

since the degradation model is applied only on the aneurysm domain.

(compare Figures 3A,G,H, 4A,C–F, 5A,C–F). In this study, a
threshold value of 25 dyn/cm2 is used to define the low and
high TAWSS, also in agreement with reported values in the
literature (Mendieta et al., 2020; Morbiducci et al., 2020; Tian
et al., 2021). High OSI is considered to be larger than 0.15 (Xu
et al., 2020).

As will be discussed in more detail below, this feature is robust
and is confirmed in the case of both ideal and patient-specific
geometries, and different degradation intensities, heart rates, and
blood pressures.

4. DISCUSSION

Although mechanisms in aneurysm pathogenesis have not
yet been fully elucidated, there is growing evidence that

hemodynamic factors and tissue degradation act as crucial
contributors to the progression of aneurysms (Kadirvel et al.,
2007; Sforza et al., 2009; Nixon et al., 2010; Meng et al., 2014;
Cebral et al., 2019; Salman et al., 2019). Abnormal flow-induced
WSS often causes disruption and dysfunction of endothelial
cells (Sorokin et al., 2020), initiating an aneurysm (Meng
et al., 2014). Subsequently, a vascular wall may degrade
due to inflammation-triggered biochemical reactions such as
apoptosis and migration of smooth muscle cells, infiltration of
inflammatory cells, and secretion of various cytokines (Pentimalli
et al., 2004; Kwak et al., 2014; Meng et al., 2014; Liu et al.,
2019b). Chronic hemodynamic stress and inflammation induce
the structure change or damage in the endothelial cells and lead to
the progression and eventual rupture of aneurysms (Frösen et al.,
2012; Signorelli et al., 2018). Time-averaged wall shear stress and
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FIGURE 4 | (A) TAWSS and (B) OSI field in the presence of degradation using a patient-specific aneurysm geometry [C0034 in Aneurisk dataset

repository (Aneurisk-Team, 2012); Figure 1C]. (C–F) Product of degradation-induced relative changes in TAWSS and OSI (two left-hand columns; Equation 5) and the

relative change in ECAP (two right-hand columns; Equation 4) under different damage intensities and flow conditions. The damage intensity in (C) is larger than that in

(D). (C,E) differ in only the heart rate (or duration of cardiac cycle T ). Compared to (E), the pressure P in (F) is lower. In (C–F), all negative and positive products

(threshold= ∓5%) of the relative changes in TAWSS and OSI are set to –1 and 1, respectively. As indicated by comparisons between (A) and (C–F), the

degradation-enhanced inverse correlation between TAWSS and OSI remains intact particularly at regions with low WSS. For each case investigated, the locations of

low-WSS (indicated by arrows) remain intact during a full cardiac cycle. The second (fourth) column shows the same simulated data as in the first (third) column but

after rotating the aneurysm dome by an angle of π around the polar axis. In (C–F) we show only the aneurysm region since the degradation model is applied only on

the aneurysm domain.

oscillatory shear index are commonly used to quantify changes in
magnitude and direction of WSS.

Using computer simulations, we studied the effects of tissue
degradation on these two hemodynamic stimuli, TAWSS and
OSI, for the case of aneurysm geometry. The results obtained
within this work revealed a strong heterogeneity in the effects
arising from degradation on TAWSS and OSI.

Importantly, the degradation-induced variations of these two
hemodynamic factors turned out to be opposite to each other.
In places with decreased TAWSS due to tissue degradation, we
found an increase in OSI and vice versa. For both the ideal
and patient-specific aneurysm geometries investigated in this
work, we observed that the degradation-related enhancement

of this inverse correlation between TAWSS and OSI occurs
predominantly at low-WSS regions.

Although intra-aneurysm flow patterns and hemodynamic
quantities depend on the specific geometry (Varble et al., 2016;
Wang et al., 2020, 2021a; Khan et al., 2021), effects of tissue
degradation turn out to be qualitatively similar in all the
investigated cases, i.e., for different geometries, degradation
intensities, heart rates and blood pressures: at low-WSS sites,
degradation leads to a lower TAWSS and at the same time a
higher OSI.

Low TAWSS accompanied by high OSI has been associated
with the thrombus accumulation in aneurysms (Frösen et al.,
2012; Zambrano et al., 2016; Kelsey et al., 2017; Ong et al.,
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FIGURE 5 | The same type of data as in Figure 4 but now for a different patient-specific aneurysm [C0020 in Aneurisk dataset repository (Aneurisk-Team, 2012); see

as Figure 1D]. For each case investigated, the locations of low-WSS (indicated by arrows) remain intact during a full cardiac cycle.

2019) via promoting a prothrombogenic phenotype (Chiu and
Chien, 2011; Wolberg et al., 2012), and with the aneurysm’s
progression and a rupture-prone phenotype (Les et al., 2010;
Xiang et al., 2011; Meng et al., 2014; Zhang et al., 2016; Liu et al.,
2019a). Such hemodynamic characteristics also promote the
formation of atherosclerotic plaques on aneurysms (Galis et al.,
1999; Tateshima et al., 2008; Chiu and Chien, 2011; Yang et al.,
2011; Frösen et al., 2012) and thus make the aneurysmal walls
vulnerable to rupture. A number of molecules are involved in
the formation and rupture of aneurysms. The combination of low
WSS and high OSI is known to elicit the inflammatory response
in the endothelium (Meng et al., 2014). When endothelial cells
are exposed to low and oscillatory shear stress, they respond
by producing reactive oxygen species (Galis et al., 1999; Chiu

and Chien, 2011), recruiting more inflammatory cells (van Varik
et al., 2012), upregulating vascular cell adhesion molecules and
cytokines in the vessel wall (Aoki et al., 2011; van Varik et al.,
2012), and increasing endothelial permeability (Malek et al.,
1999; Bian et al., 2009; Chiu and Chien, 2011). Conway et al.
(2010) have reported that low average shear stress and high
OSI (or flow reversal) act as significant mechanical stimuli on
the regulation of endothelial cell gene expression and monocyte
adhesion, respectively. A “sticky” and “leaky” proinflammatory
endothelium tends to promote leukocyte transmigration into
the vascular wall during the progression of aneurysms (Chiu
and Chien, 2011; Meng et al., 2014). Low WSS together with
high OSI also causes smooth muscle cells to undergo phenotypic
modulation and apoptosis (Hsu et al., 2011; Liu et al., 2019b),
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and facilitates inflammatory cell infiltration (Malek et al., 1999;
Nixon et al., 2010; Soldozy et al., 2019). These inflammatory
responses in vessel walls can produce matrix metalloproteinases
to destroy internal elastic lamina and degrade the extracellular
matrix (Galis et al., 1994), thereby leading to an imbalance
between the constructive and destructive processes (Meng et al.,
2014).

Importantly, if we combine our findings with prior
observations, we obtain a ‘degradation loop’: Degradation
of an aneurysm wall leads to lower TAWSS and higher OSI
which correspond to a favorable environment for pathological
changes such as atherosclerosis and thrombus formation in the
aneurysm; such flow environment, in turn, may induce further
degradation. Hence, the present study suggests that degradation
enhances this pathological process via a self-amplification
mechanism: sites with a low TAWSS and at the same time
a high OSI experience still lower TAWSS and higher OSI
during degradation.

A degradation process may thus self-amplify/accelerate itself
via enhancing the contrast between TAWSS and OSI. That is,
tissue degradation may promote the aneurysm’s pathological
progression to rupture by accelerating the usually slow processes,
which leads to enhanced vulnerability of the wall.

Several improvements can be added to the numerical
approach used in this study. First, it assumes the blood to
be a Newtonian fluid with constant viscosity. This is a good
approximation at low flow rates but may need correction in
large arteries, where shear rate varies over a wider range from
the center toward the vessel wall. Second, active response and
fatigue of the aneurysmal wall are not accounted for in the
material model. Third, idealized fiber orientations are employed.
Fourth, a uniform wall thickness is assumed in this study. Fifth,
we assume a parabolic velocity profile at the inlet. The main
reason for these simplifying assumptions is that the patient-
specific data of the mechanical response of aneurysmal walls,
the fiber architecture, the distribution of wall thickness and the
boundary conditions are not yet available. This is presumably
related to the complexity of the degradation phenomenon and
difficulties associated with the measurements of these properties
of the arterial wall during the degradation process. Indeed, the
model can be easily improved if the corresponding experimental
and clinical data become available.

This study is a first step to investigate the effects of tissue
degradation on the hemodynamic factors and the potential
evolution of an aneurysm. In the future, if clinical/experimental
data of fiber orientations in an individual aneurysm becomes
available, the current model could be used to predict if the
aneurysm is susceptible to develop further damage and, if so, to
estimate the regions where rupture is more likely to occur.

5. CONCLUSION

Using computer simulations with an idealized aneurysm and
two patient-specific ones, we investigated the effects of tissue
degradation on the mechanical stimuli, time-averaged wall
shear stress and oscillatory shear index, which are commonly
associated with aneurysms.

We found that the degradation-induced variations of TAWSS
andOSI are opposite to each other: If in the course of degradation
the time-averaged wall shear stress is decreased at a given site,
we observed an increase in OSI at the same site and vice
versa. This process is most prominent at sites that are already
subject to a low TAWSS and at the same time a high OSI. This
finding turned out to be robust and was confirmed in the case
of all the three investigated aneurysm geometries and different
degradation intensities, heart rates, and blood pressures.

Our findings are discussed in the light of the present state
of understanding in the literature regarding biomechanical
mechanisms responsible for aneurysm development and rupture.
We argue that degradation is likely to enhance the existing
contrast between these two hemodynamic factors (in particular,
at sites subject to a low time-averaged wall shear stress and a
high oscillatory shear index), and thereby pave the way for the
next degradation step. This study thus underlines the importance
of the inverse correlation between TAWSS and OSI as an
independent risk factor for aneurysm degradation and rupture.
Further investigations are warranted to examine these findings in
a clinical setting.
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