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Synaptic plasticity is a cellular mechanism of learning and memory. The synaptic

strength can be persistently upregulated or downregulated to update the information

sent to the neuronal network and form a memory engram. For its molecular

mechanism, the stability of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-type

glutamate receptor (AMPAR), a glutamatergic ionotropic receptor, on the postsynaptic

membrane has been studied for these two decades. Since AMPAR is not saturated

on the postsynaptic membrane during a single event of neurotransmitter release, the

number and nanoscale localization of AMPAR is critical for regulating the efficacy of

synaptic transmission. The observation of AMPAR on the postsynaptic membrane by

super-resolution microscopy revealed that AMPAR forms a nanodomain that is defined

as a stable segregated cluster on the postsynaptic membrane to increase the efficacy

of synaptic transmission. Postsynaptic density (PSD), an intracellular protein condensate

underneath the postsynaptic membrane, regulates AMPAR dynamics via the intracellular

domain of Stargazin, an auxiliary subunit of AMPAR. Recently, it was reported that

PSD is organized by liquid-liquid phase separation (LLPS) to form liquid-like protein

condensates. Furthermore, the calcium signal induced by the learning event triggers

the persistent formation of sub-compartments of different protein groups inside protein

condensates. This explains the formation of nanodomains via synaptic activation. The

liquid-like properties of LLPS protein condensates are ideal for the molecular mechanism

of synaptic plasticity. In this review, we summarize the recent progress in the properties

and regulation of synaptic plasticity, postsynaptic receptors, PSD, and LLPS.
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INTRODUCTION

Memory formation is a process of the conversion of information from a transient state to
a permanent state. Synaptic plasticity, including long-term potentiation (LTP) and long-term
depression (LTD), is a cellular mechanism of this process (Malinow and Malenka, 2002; Kauer
and Malenka, 2007; Collingridge et al., 2010; Huganir and Nicoll, 2013). Synaptic activity evoked
by a learning event triggers transient calcium (Ca2+) influx into the postsynaptic site and
mediates downstream signals to establish persistent LTP/LTD. The bidirectional regulation and
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persistence of synaptic plasticity are the essence of memory
formation. The interaction between a ligand released from the
presynaptic active zone and a receptor on the postsynaptic
membrane accomplishes synaptic transmission. Thus, to
understand synaptic plasticity, the regulation of the dynamics
of postsynaptic membrane proteins is critical as a molecular
mechanism. In particular, the dynamics and stability of α-amino-
3-hydroxyl-5-methyl-4-isoxazolepropionate-type glutamate
receptors (AMPARs) have been studied for more than two
decades as major mediators of excitatory synaptic transmission
in the mammalian central nervous system (Hayashi et al., 2000;
Malinow andMalenka, 2002; Kennedy and Ehlers, 2006; Derkach
et al., 2007; Shepherd and Huganirl, 2007; Huganir and Nicoll,
2013). In general, membrane proteins show high mobility in
the lipid bilayer membrane with lateral diffusion. However,
postsynaptic membrane proteins are anchored by postsynaptic
density (PSD), a protein condensate underneath the postsynaptic
membrane. PSD is commonly found in excitatory synapses
(Palay, 1956; Akert et al., 1969; Harris et al., 1992; Petersen et al.,
2003) and stabilized at the postsynaptic site (Shinohara and
Hirase, 2009; Tarusawa et al., 2009; Budisantoso et al., 2012;
Fukazawa and Shigemoto, 2012; Holderith et al., 2012; Choquet
and Triller, 2013). PSD is composed of the intracellular domain
of membrane proteins, such as receptors and adhesionmolecules,
scaffolding proteins, and enzymatic signaling factors (Kennedy
et al., 1983; Sugiyama et al., 2005; Sheng and Hoogenraad, 2007).
Thus, investigating the interaction between the intracellular
domain of AMPAR and PSD proteins and their regulatory
mechanisms during synaptic activity is critical for understanding
the dynamics of AMPAR and synaptic plasticity.

THE NANODOMAIN OF AMPAR AS A
MOLECULAR MECHANISM OF SYNAPTIC
PLASTICITY

To observe the dynamic of AMPAR on the postsynaptic
membrane, the single-molecule tracking approach had been
performed and revealed that the moving speed of AMPAR was
decreased in a neuronal activity-dependent manner (Borgdorff
and Choquet, 2002). It has also been reported that the Ca2+

influx during LTP and subsequent CaMKII activation reduce
the movement of AMPARs and restrict the diffusion area of
AMPARs on the postsynaptic membrane (Opazo et al., 2010).
This synaptic trapping of AMPAR leads to the formation
of several segregated AMPAR clusters on the postsynaptic
membrane, which are then defined as the “nanodomains of
AMPAR.” AMPAR nanodomains have also been observed with
other super-resolution approaches, such as universal point

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;

AMPAR, AMPA-type glutamate receptor; CaMKII, Calcium/Calmodulin-

dependent kinase II; dSTORM, direct stochastic optical reconstruction

microscopy; LLPS, Liquid-Liquid Phase Separation; LTP, Long-term potentiation;

LTD, long-term depression; NMDA, N-methyl-D-aspartate; NMDAR, NMDA-

type glutamate receptor; PSD, Postsynaptic Density; STED, stimulated

emission depletion microscopy; uPAINT, universal point accumulation in

nanoscale topography.

accumulation in the nanoscale topography (uPAINT), stimulated
emission depletion (STED) microscopy, and direct stochastic
optical reconstruction microscopy (dSTORM) (Nair et al., 2013).
Based on these observations, it is known that each synapse
contains about 2.5 AMPAR nanodomains with an average
length of 77 nm approximately, and around 65% of AMPAR
on the entire postsynaptic membrane is concentrated in the
nanodomains. Similar structures with unevenly distributed and
segregated clusters have also been found in other types of
glutamate receptors, such as N-methyl-D-aspartate receptor
(NMDAR) (Kellermayer et al., 2018; Goncalves et al., 2020)
and metabotropic glutamate receptors (Goncalves et al., 2020),
scaffolding proteins, such as PSD-95, guanylate kinase-associated
protein (GKAP), Shank3, and Homer1c (MacGillavry et al.,
2013), and the adhesion molecule Neuroligin-1 (Haas et al.,
2018). This indicates that, in addition to AMPAR, various
nanoscale segregated clusters of different protein components
exist inside a single PSD structure. Interestingly, a dual-
color three-dimensional dSTORM analysis revealed that the
localization of the AMPAR nanodomain overlaps with the
segregated cluster of PSD-95 at PSD and the presynaptic protein
cluster of RIM1/2 (Tang et al., 2016), a marker for presynaptic
active zones (Südhof, 2012). Furthermore, the formation of the
AMPAR nanodomain by synaptic activity acts as a retrograde
signal via adhesion molecules to align the localization of
presynaptic protein clusters and active zones (Tang et al., 2016).
In this manner, synaptic activity mediates the formation of
a structure with aligned protein clusters from the PSD to
the presynaptic terminal via the AMPAR nanodomain and is
called a trans-synaptic nanocolumn. Since the ligand binding
of AMPAR is not saturated in a single glutamate event (Tong
and Jahr, 1994; Liu et al., 1999), this mechanism strengthens
the synaptic transmission as “retrograde plasticity” (Tang et al.,
2016). Therefore, determining the mechanism of the formation
and interaction of the nanodomain/cluster of AMPAR/PSD
proteins becomes crucial to understanding synaptic plasticity.

LIQUID-LIQUID PHASE SEPARATION AS A
REGULATORY MECHANISM OF PSD

A recent review paper by Groc and Choquet (2020) summarized
the movements of glutamate receptors and their mechanism.
They discussed the different behaviors between AMPAR and
NMDAR during LTP. They also specified the stabilization of
AMPAR in PSD via the interaction between Stargazin and PSD-
95, and the dynamics of NMDAR are regulated by the interaction
with CaMKII. However, emerging evidence suggests that the
proteins do not just have interaction, but they undergo liquid-
liquid phase separation (LLPS) to form protein condensates.

LLPS is a phenomenon that describes the formation of
liquid-like condensates as droplets from different types of
liquids, such as water and oil. Recent studies have revealed
that nucleic acids and/or proteins form condensates inside
the cell as compartmentalized droplets in the cytosol (Banani
et al., 2017; Boeynaems et al., 2018; Zhang et al., 2020).
Unlike an aggregation, the components in the condensates can
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maintain their dynamics by mixing freely inside the condensate
and getting exchanged with the same component molecules
from the surrounding environment, such as the cytosol. These
condensates have been found to play important roles in neuronal
function, such as the development of the central nervous
system and the release of neurotransmitters at the presynaptic
terminal (Milovanovic et al., 2018; Wu et al., 2020; Hayashi
et al., 2021). For PSD proteins, an in vitro experiment has
first revealed that the representative PSD scaffolding proteins,
PSD-95 and SynGAP, undergo LLPS (Zeng et al., 2016). Later,
other synaptic proteins, including GKAP, Shank, Homer, and
GluN2B, have also been reported to undergo LLPS through
their multiplexed interactions and/or interactions through their
intrinsically disordered regions (Zeng et al., 2018). These reports
raise the possibility that clusters of PSD protein components are
formed as LLPS protein condensates.

Postsynaptic density (PSD) has several features that could be
explained by the liquid-like properties of LLPS. First, PSD in
synapses shows the exchange of component proteins between
the inside and outside of PSD (Kuriu et al., 2006; Sharma
et al., 2006). PSD also shows the incorporation of cytosolic
proteins (Bosch et al., 2014) and the rapid rearrangement of its
structure (Blanpied et al., 2008; Kerr et al., 2011; Sun et al., 2021)
upon stimulation and Ca2+ influx. In addition, although PSD
is defined as a highly dense area under electron microscopy, it
exhibits multiplexed shapes, such as fenestrated, horseshoe, and
segmented (Toni et al., 2001; Borczyk et al., 2019). Similarly,
it has been reported that PSD-95 shows perforated or ring-
like structures with STED microscopy observation (Broadhead
et al., 2016; Masch et al., 2018; Wegner et al., 2018). The LLPS
protein condensates have also been found to show the ring-like
distribution of their components, especially when they have two
different phases inside as core-shell condensate (Gallego et al.,
2020; Fare et al., 2021). Nonetheless, the fusing event between
two protein condensates is another typical liquid-like property of
LLPS. Toni et al. (2001) revealed that the proportion of perforated
PSD increased 30min after LTP induction, and it backs to basal
level from 45 to 120min, which could also be explained by the
fusion between two PSDs.

THE PSD LLPS PROTEIN CONDENSATE
AND THE AMPAR NANODOMAIN

Considering the PSD as an LLPS protein condensate, it comes
with the following questions. (1) Can a PSD protein condensate
contain several uneven distributions of different component
proteins like the clustered nanodomains in PSD? (2) Can the
PSD protein condensate be regulated bidirectionally? (3) Can
the PSD protein condensate be maintained persistently? The
answers have been reported in a recent study. Hosokawa et al.
(2021) revealed that Ca2+ triggers the persistent formation of
nanodomain-like structures in the PSD protein condensate via
the activation of CaMKII. With purified proteins, the authors
found that activated CaMKII by Ca2+ influx signal undergoes
LLPS and forms a protein condensate with GluN2B, the subunit
of NMDAR. This finding is consistent with the observation

that CaMKII is incorporated into the PSD from the cytosolic
pool during LTP (Bosch et al., 2014). Interestingly, once the
CaMKII-GluN2B condensate is formed, it becomes independent
of the Ca2+ concentration and becomes a permanent protein
condensate. This can occur because of the autophosphorylation
of CaMKII, which locks CaMKII into an active conformation and
maintains its interaction with GluN2B (Bayer et al., 2001; Lisman
et al., 2002).

Since CaMKII is a major component of PSD (Kennedy
et al., 1983), the incorporation of CaMKII may be related to
the rearrangement of PSD. A previous study has reported that
PSD-95 undergoes LLPS and forms an autonomous protein
condensate with both GluN2B and Stargazin, an auxiliary subunit
of AMPAR (Zeng et al., 2018, 2019), as a possible mechanism
for the formation of the basal structure of PSD. Surprisingly,
the incorporation of CaMKII into the PSD-95-GluN2B-Stargazin
autonomous protein condensate leads to the segregation of the
Stargazin-PSD-95 protein condensate from the GluN2B-CaMKII
protein condensate, resulting in the formation of a nanodomain-
like structure in a single protein condensate (Figure 1A). This
explains the formation of the AMPAR nanodomain on the
postsynaptic membrane (Figure 1B). Furthermore, Neuroligin-
1, a postsynaptic adhesionmolecule that clusters with presynaptic
neurexin, also segregates together with the Stargazin-PSD-95
protein condensate. It has been known that the cluster formation
of Neuroligin-1 induces clustering of presynaptic neurexin,
which eventually forms the assembly of an exocytotic apparatus
(Dean et al., 2003). Thus, these results suggest a possible
mechanism for the formation of AMPAR nanodomains and
transsynaptic nanocolumns in a Ca2+-dependent manner.

FROM LLPS TO SYNAPTIC PLASTICITY

As mentioned above, there are three layers of the mechanisms
underlying synaptic plasticity: from bottom to top, the “LLPS” as
the regulatory mechanism of PSD, the “PSD” as the regulatory
mechanism of the dynamics of AMPAR, and the “dynamics
of AMPAR” as the molecular mechanism of synaptic plasticity.
However, the molecular mechanisms of synaptic plasticity
must satisfy at least two criteria. (1) The mechanism should
allow bidirectional regulation since the synapse can be both
potentiated and depressed. (2) The mechanism should have
a system to maintain its alteration persistently, as synaptic
plasticity and memory can be permanent. The three layers of
the mechanism satisfy these criteria. Here is a summary of the
reported bidirectional regulation (Table 1) and the persistency in
each layer.

Regulation and Stability of LLPS Protein
Condensate of PSD Proteins
For the bidirectional regulation of LLPS protein condensate,
the Ca2+ signal triggers the persistent formation of the
CaMKII-GluN2B protein condensate (Hosokawa et al., 2021).
In contrast, the endogenous proteins, Camk2n1 and Homer1a,
act as dissociation factors against PSD protein condensates
in different ways (Zeng et al., 2018; Hosokawa et al., 2021).
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FIGURE 1 | LLPS to synaptic plasticity. (A) Microscope images of protein

condensates consist of the following four proteins during calcium stimulation.

From left to right, confocal images of differential interference contrast and

confocal fluorescent images of CaMKII, Stargazin, GluN2B, and PSD-95.

Stargazin, GluN2B, and PSD-95 are homogenously distributed before Ca2+.

Ca2+ triggers the incorporation of CaMKII and the formation of a

nanodomain-like structure inside of condensate. The condensate is sustained

even after the removal of Ca2+ by ethylene glycol-bis(β-aminoethyl

ether)-N,N,N
′

,N
′

-tetraacetic acid (EGTA). Modified from Hosokawa et al.

(2021). (B) An end view of the postsynaptic membrane. Receptors and PSD

proteins in naïve synapses are evenly distributed. Ca2+ influx triggers

persistent sub-compartmentalization of proteins into the Stargazin-PSD-95

group and CaMKII-GluN2B group, resulting in the formation of the AMPAR

nanodomain. Modified from Hosokawa et al. (2021). (C) Side sectional view of

the synapse. Ca2+ influx triggers the formation of AMPAR nanodomains via

PSD clustering and LLPS. This affects protein assembly in the presynaptic

terminal through adhesion proteins as a retrograde signal. In contrast, a

dissociation of LLPS by Camk2n1 and Homer1a might act as a mechanism to

depress synaptic strength by disrupting the AMPAR nanodomain and PSD

clustering. Modified from Hosokawa et al. (2021). LLPS, liquid-liquid phase

separation; PSD, postsynaptic density; AMPAR,

α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-type glutamate receptor.

While Camk2n1 disrupts the Ca2+-dependent CaMKII-GluN2B
protein condensate, Homer1a disrupts the Ca2+-independent
protein condensate, which is composed of GluN2B, SynGAP,
PSD-95, GKAP, Shank3, and Homer3. Homer1a has been
reported to be related to synaptic depression (Diering et al.,

TABLE 1 | Corresponding relationship from LLPS to the synapse.

Up-regulation Down-regulation

LLPS Condensate with nanodomain-like structure Dispersion

PSD Clustering of proteins Loss of proteins

Receptor Stabilize as nanodomain Lateral diffusion

Synapse Potentiation Depression

LLPS-mediated condensation of PSD proteins with nanodomain-like structures

corresponds to the clustering of PSD, stabilization of AMPAR as nanodomain, and

synaptic potentiation. In contrast, the dispersion of PSD protein condensate corresponds

to the loss of scaffolding proteins in the PSD, increased lateral diffusion, and

synaptic depression.

2017). Nonetheless, LLPS protein condensate is known to
be a stable membrane-less protein condensate that enables
the formation of a stable structure for more than several
days (Ray et al., 2020). Being an LLPS protein condensate
allows PSD to overcome the limitation of metabolic turnover
of PSD proteins (Cohen et al., 2013) by exchanging the
component proteins between inside and outside of the PSD.
Also, LLPS protein condensates are possibly acting as a filter
of molecules (Alberti et al., 2019) to protect their components
from other proteins, such as proteases. Taken together, LLPS
protein condensate has ideal properties to guarantee bidirectional
regulation and persistence.

Regulation and Stability of PSD
Postsynaptic density (PSD) modifies the dynamics of AMPAR
through enlargement and shrinkage. It is known that the size
of PSD is correlated with the number of AMPAR nanodomains,
the size of dendritic spines, and synaptic strength (Harris
et al., 1992; Noguchi et al., 2005; Nair et al., 2013; Meyer
et al., 2014). The Ca2+ influx during LTP mediates an increase
in the size and complexity of PSD (Sun et al., 2021), and
the growth of PSD (Harris, 2020). On the contrary, LTD
induction results in a loss of PSD components, such as
PSD-95 (Bingol and Shang, 2011; Compans et al., 2021).
To maintain the persistency, PSD components also show
protein exchange between the inside and outside of PSD,
which contributes to its homeostasis. Also, the dendritic spine
as a proxy for PSD survives for more than 1 month in
general (Grutzendler et al., 2002). Taken together, PSD is a
stable structure but regulated bidirectionally in response to
synaptic activity.

Dynamics of AMPAR and Synaptic
Plasticity
The AMPAR nanodomain is known to be formed by
synaptic activity (Opazo et al., 2010; Nair et al., 2013). In
addition, LTD induction results in an increase in AMPAR
lateral diffusion, which may result in the disruption of the
nanodomain (Chowdhury and Hell, 2019; Compans et al.,
2021). It has been reported that more than 60% of AMPAR
nanodomains persist for at least 45min (Nair et al., 2013).
Even though a prolonged observation is lacking due to
technical difficulties, considering that nanodomains are
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commonly observed in unstimulated neurons, AMPAR
nanodomains must be able to be long-lasting structures. Taken
together, LLPS as a bidirectionally regulated persistent protein
condensate explains synaptic plasticity by regulating PSD
and the dynamics of AMPAR on the postsynaptic membrane
(Figure 1C).

DISCUSSION

In this review, we focused on the regulation of AMPAR on the
postsynaptic membrane by the intracellular PSD LLPS protein
condensate. LLPS protein condensate determines the stability of
AMPARs on the postsynaptic membrane by mediating persistent
condensation and dispersion of PSD proteins. The transient
information, such as synaptic activity-mediated Ca2+ influx, is
converted into a persistent structure as the protein condensate
and the AMPAR nanodomain. This can be accomplished only by
the protein condensate, not by a single protein. This is because
the protein itself cannot persistently maintain information
due to diffusion, de-modification, and degradation. Therefore,
the LLPS protein condensate, including PSD clusters and
AMPAR nanodomains, might be the minimum unit of memory

as “molecular memory engram,” which means the molecular
evidence of memory engram (Liu et al., 2012).
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