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In the early stages of the central nervous system growth and development, γ-aminobutyric 
acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, 
synaptogenesis, and network formation. These actions are associated with increased 
concentration of chloride ions in immature neurons [(Cl−)i] that determines the depolarizing 
strength of ion currents mediated by GABAA receptors, a ligand-gated Cl− permeable ion 
channel. During neuron maturation the (Cl−)i progressively decreases leading to weakening of 
GABA induced depolarization and enforcing GABA function as principal inhibitory 
neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key 
molecule governing Cl− extrusion and determining the resting level of (Cl−)i in developing and 
mature mammalian neurons. Among factors controlling the functioning of KCC2 and the 
maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex 
of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action 
will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, 
and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical 
and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of 
KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the 
action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of 
KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network 
activity during postnatal development.
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INTRODUCTION

Developing neuronal circuits generate primitive patterns of network activity, that are necessary to 
support more complex neuronal processes and future cognitive functions. These primitive activities 
require γ-aminobutyric acid (GABA) synaptic transmission and chloride flux through GABAA 
ionotropic receptor channels (GABAAR). The inhibitory strength of GABAAR transmission is dependent 
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on intracellular neuronal chloride concentration [(Cl−)i], that is 
relatively high (15–25 mM) in immature neurons and decreases 
progressively to 4–6 mM in mature neurons. This developmental 
change of (Cl−)i is determined primarily by activity of two cation-
chloride cotransporters sodium-potassium-chloride cotransporter 
type 1 (NKCC1) and potassium-chloride cotransporter type 2 
(KCC2) (see reviews Medina et  al., 2014; Virtanen et  al., 2021). 
Several factors controlling the maturation of GABAergic transmission 
have been identified so far, including GABA itself, neurotrophic 
factors (Roussa et  al., 2016; Porcher et  al., 2018), pituitary 
neuropeptides (Tyzio et  al., 2006; Leonzino et  al., 2016; Spoljaric 
et al., 2017), peripheral metabolic and sex hormones (Galanopoulou 
and Moshé, 2003; Sawano et  al., 2013; Dumon et  al., 2018), and 
more recently the Sonic Hedgehog (Shh) peptide and its signal 
transducer Smoothened (Smo) receptor (Delmotte et  al., 2020b). 
In this review, we discuss the recent achievements in Shh-Smo 
signaling contribution to developmental and functional maturation 
of GABAergic transmission (Figure 1) and chloride ion homeostasis 
in the postnatal rodent brain (Figure  2).

SHH-SMO SIGNALING DURING 
POSTNATAL BRAIN DEVELOPMENT

Shh is a secreted glycoprotein preserved through the evolution 
and mostly known for its morphogenetic role during early phases 
of central nervous system development such as neural cell 
proliferation, neural progenitor cell fate, or neuronal differentiation 
(Ruat et  al., 2012, 2014; Briscoe and Thérond, 2013; Belgacem 
et  al., 2016). In the postnatal rodent brain the Shh signaling 
pathway, composed by the receptors complex Patched (Ptch) and 
Smo, is involved in neurogenesis (Breunig et  al., 2008; Shqirat 
et  al., 2021), growth of presynaptic terminals (Mitchell et  al., 
2012), connectivity of corticofugal projection neurons (Harwell 
et  al., 2012) and functional maturation of GABAergic inhibitory 
neurotransmission (Delmotte et al., 2020a,b). In the hippocampus, 
Shh is produced in both neurons and glial cells distributed in 
the pyramidal layer (Rivell et  al., 2019; Tirou et  al., 2020), and 
Shh receptors Ptch and Smo are further described to be expressed 
mostly at the postsynaptic membranes of CA1 and CA3 pyramidal 
neurons and at the mossy fibers terminals, thus indicating that 
the Shh-Smo pathway may regulate the strengthening of synaptic 
connectivity (Masdeu et  al., 2007; Sasaki et  al., 2010; Petralia 
et  al., 2011; Mitchell et  al., 2012).

Shh signaling can operate through canonical and non-canonical 
pathways (Carballo et  al., 2018; Figure  2A). In the presence of 
ligand, Shh receptor Ptch release its constitutive inhibition on its 
signal transducer Smo receptor, leading to the activation of Shh 
canonical signaling effector (Carballo et al., 2018). Among canonical 
Shh signaling downstream targets are Smo and activator (Gli1 
and Gli2A) or repressor (Gli3R) forms of Glioma-associated (Gli) 
gene transcription factors (Briscoe and Thérond, 2013; Rimkus 
et  al., 2016; Carballo et  al., 2018). In the central nervous system 
(CNS), during the late embryonic stage of mouse cortical 
development, canonical Shh-Smo signaling, acting through the 
inactivation of Gli3R, is essential to regulate the lineage change 
of cortical neural stem cells for the generation of olfactory bulb 

GABAergic interneurons (Zhang et  al., 2020a). In hippocampal 
neurons, Shh is involved in axonal elongation through Smo and 
the canonical transcription factor Gli (Yao et al., 2015). Concurrently, 
several non-canonical, Gli-independent, Shh pathways have been 
described (Riobo et  al., 2006; Ayers and Thérond, 2010). For 
instance, an interaction between Shh signaling and Ca2+-dependent 
spike activity in the developing spinal cord has been identified 
for spinal neuron differentiation and GABAergic phenotype 
homeostatic specification (Belgacem and Borodinsky, 2011; Belgacem 
et  al., 2016). Moreover, this non-canonical Ca2+-dependent Shh 
signaling pathway has been shown to inhibit the canonical Shh 
signaling as spinal cord development progresses (Belgacem and 
Borodinsky, 2015).

NON-CANONICAL SHH-SMO SIGNALING 
IN DEVELOPING GABAERGIC 
NETWORKS

The developing hippocampus is characterized by spontaneous 
network oscillations called Giant Depolarizing Potentials (GDPs) 
that occur during the first postnatal weeks (Ben-Ari et  al., 1989) 
and disappear when GABA currents became hyperpolarizing 
(Griguoli and Cherubini, 2017). In the developing human and 
mouse neocortex, Shh mRNA was identified in a subpopulation 
of glutamatergic and GABAergic neuronal cells (Komada et  al., 
2008; Memi et al., 2018). Interestingly, the gene expression profiles 
of both Ptch and Smo receptors in hippocampi of rat follow a 
similar pattern with a decreased expression levels when GABA 
became hyperpolarizing (Delmotte et al., 2020a). The GDPs could 
be  modulated by several factors including neurotrophic factors 
such as brain-derived neurotrophic factor (BDNF) (Mohajerani 
et al., 2007), the metabolic hormone leptin (Dumon et al., 2019), 
the chemical stromal cell-derived factor-1-alpha (SDF-1; Kasyanov 
et  al., 2006) and the hypothalamic neurohormone vasopressin 
(Spoljaric et  al., 2017). More recently, Shh emerged as a new 
trophic factor in the functional maturation of GABAergic network 
(Delmotte et  al., 2020a). In vitro experiments on hippocampal 
slices at postnatal days 5–7 showed that a non-canonical Ca2+-
dependent Shh-Smo signaling increased the GDPs frequency and 
spontaneous GABAergic inhibitory postsynaptic currents without 
affecting glutamatergic synaptic activity (Delmotte et  al., 2020a). 
The subcellular mechanism allowing the function of Shh-Smo 
pathway in GABAergic developmental plasticity depends on 
postsynaptic calcium-transients within the cytosol since the 
application of the Ca2+-chelator BAPTA in the recording pipette 
completely abolished this effect (Figure  2). This result suggests 
that Ca2+ serves as a second messenger in neuronal cells for the 
Smo receptor downstream pathway. However, the source for 
intracellular calcium signaling in neuronal cells following the 
binding of Shh or its agonist Shh Signaling Agonist (SAG; Chen 
et al., 2002) on their receptors remains to be determined (Figure 2). 
The interplay between Smo and Ca2+ activity has been also 
observed in embryonic spinal neurons where Smo receptor 
signaling leads to the recruitment of a heterotrimeric Gαi that 
in turn induces Inositol Triphosphate (IP3) oscillations apparent 
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at the neuronal primary cilium synchronous with Ca2+ waves in 
the neuronal soma. The Shh-induced increase in Ca2+ spike 
activity depends on both intracellular Ca2+ stores and extracellular 
Ca2+ influx through voltage dependent calcium channels and 
transient receptor potential 1 channel (Belgacem and Borodinsky, 
2011). Moreover, in embryonic spinal cord, the calcium increase 
generated by Smo signaling activates the PKA kinase which 
subsequently phosphorylates the cAMP response element-binding 
protein (CREB) transcription factor leading to the inhibition of 
Gli1 transcription factor (Belgacem and Borodinsky, 2015). These 
results are very similar to those observed during the first 2 weeks 
after birth in the rodent hippocampus where activation of the 
Smo signaling triggers phosphorylation of CREB as well as a 
decrease in Gli1 transcripts, suggesting an identical mechanism 
by a non-canonical Shh pathway (Delmotte et  al., 2020a). Other 

Shh-Smo-mediated Ca2+ increases have been described under 
epileptic seizure discharges in hippocampal neurons through 
increased levels of extracellular glutamate and NMDA receptors 
activity (Feng et  al., 2016). In this study, the authors suggest 
that Shh has no physiological function in adult hippocampal 
neuroplasticity. Interestingly, Delmotte et al. (2020a) reported that 
the application of SAG modulates the frequency of GDPs only 
during the first postnatal week of life and this action disappeared 
around P10. This divergence of the Shh-Smo effect between 
immature and mature hippocampal tissue may suggest that 
Shh-Smo signaling regulates the development of GABAergic 
neurotransmission only in immature neurons and disappears as 
soon as GABA becomes hyperpolarizing, thus reinforcing the 
hypothesis of a specific trophic role for Shh-Smo in the developing 
brain. This trophic function in the maturation of GABAergic 

FIGURE 1  |  A schematic model of action of the Smoothened receptor signaling on GABAergic transmission in the immature hippocampus. (1) Activation of the 
non-canonical Smo signaling pathway by its ligand (SAG) leads to an intracellular calcium increase in the post-synaptic neuron which can be mediated either 
through calcium channels or by the release of intracellular stores from the endoplasmic reticulum. (2) The intracellular increase in calcium concentration triggers the 
exocytosis of BDNF. (3) BDNF binds to its receptor TrkB on neighboring synapses and (4) increases GABAergic synaptic transmission.
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neurotransmission acts through the regulated release of BDNF 
and activation of its high affinity tyrosine kinase receptor TrkB, 
suggesting that BDNF is a downstream target of Smo (Figure  1; 
Delmotte et  al., 2020a). Other studies performed on different 
models of injury including cortical neurons, peripheral sciatic 
nerve, and cavernous nerve also showed an interplay between 
Shh-Smo and BDNF (Hashimoto et  al., 2008; Dai et  al., 2012; 
Bond et  al., 2013). Although the subcellular mechanism remains 
to be  demonstrated, a Shh-dependent increase of BDNF was 
found after SAG administration in lung organ cultures, and in 
hippocampal and spinal cord neuronal cells (Radzikinas et  al., 
2011; Liu et  al., 2018; Delmotte et  al., 2020a). In lung epithelial 
cells Shh promotes indirectly BDNF expression through a post-
transcriptional mechanism, whereas in hippocampal neurons 
Shh-Smo triggered the dendritic release of BDNF via a calcium 

signal. These data indicate that Shh-Smo might acts through the 
BDNF–TrkB signaling pathway in both injured and 
healthy conditions.

CANONICAL SHH-SMO SIGNALING 
REGULATES KCC2 CELL SURFACE 
EXPRESSION AND CHLORIDE 
HOMEOSTASIS

The postnatal maturation of GABAergic inhibitory transmission 
is linked to the developmental sequence of GABA shift from 
depolarizing to inhibitory actions which results from a 
developmental decrease in (Cl−)i, brought about by the increased 

A

B

FIGURE 2  |  A schematic model of the Smoothened receptor signaling pathways controlling KCC2 activity. (A) In the absence of the ligand Shh, the Patched (Ptch) receptor 
maintains the Smoothened (Smo) receptor in an inactive state. Smo signaling can be activated either by the binding of Shh which inactivates Ptch and releases Smo or by the 
binding of its agonist SAG (Shh Signaling Agonist). Smo signaling can operate through: (1) canonical pathway which activates the transcription factors Gli allowing transcription 
of Gli target genes, (2) Non-canonical pathway that is Gli-independent but triggers transient calcium currents allowing transcription of targeted genes. (B) Left: (1a) Constitutive 
activity of the Smo-CA receptor promotes Gli1 downstream target genes expression. (1b) The Smo-Gli1 signaling pathways activate the phosphorylation of KCC2 at the 
residue Serine 940, increasing KCC2 function and stability at the cell surface, which renders GABAergic transmission less depolarizing. (2) The Smo/Gli1 signaling pathways 
may modify the synthesis/transport of sterols, impacting the composition of the plasma membrane and lipid rafts and the stability of KCC2 at the cell surface. (3) The Smo-
Gli1 pathway may also regulate chloride ions homeostasis and KCC2 function through a second messenger. Right: (4) Dominant-negative activity of Smo-ΔN represses Gli1 
expression. (5) Inhibition of Smo-Gli1 signaling pathway induces dephosphorylation of residue Serine 940 and KCC2 internalization.
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contribution of the Cl− extruder KCC2 (Rivera et  al., 1999; 
Medina et  al., 2014). Using molecular tools to manipulate Smo 
activity in the pyramidal neurons of the rat somatosensory 
cortex, Delmotte et  al. (2020b) showed that Smo canonical 
signaling contributes to chloride ions homeostasis and KCC2 
cell membrane stability (Delmotte et  al., 2020b). Two Smo 
constructs were used, one mimicking Smo receptor in an activate 
state (Smo-CA) and a second blocking Smo signaling downstream 
pathway (Smo-ΔN). In this study, it has been demonstrated 
that Smo-CA accelerates the transition of GABA from depolarizing 
to hyperpolarizing, thus positioning the Shh-Smo pathway as 
a trigger of this GABAergic developmental sequence. This action 
on chloride ions homeostasis requires the activation of the 
Shh-Smo canonical signaling downstream target Gli1 as the 
inhibition of Gli1 abolished this effect (Delmotte et  al., 2020b; 
Figure  1B). The abnormal GABAergic developmental sequence 
observed at the cellular level leads to behavioral consequences 
since electroporated rodents with the Smo-CA construct showed 
an increased susceptibility to seizures induced by the 
pentylenetrazol (PTZ), a chemical convulsive agent. In human, 
many studies illustrated compromised Cl− homeostasis and altered 
GABAergic inhibition in patients with temporal lobe epilepsiy 
(TLE). On the other hand, an alteration of the Shh-Smo pathway 
has also been identified in TLE (Fang et al., 2011) and hypothalamic 
hamartoma with gelastic epilepsy (Hildebrand et al., 2016; Saitsu 
et  al., 2016). Although the (Cl−)i was not evaluated in the latter 
works, together above studies indicate the potential contribution 
of the Shh-Smo pathway to Cl− disruption in TLE patients.

The key molecule controlling the resting level of neuronal 
Cl− and directly linked to the switch of GABA from excitatory 
to inhibitory is KCC2 (Rivera et  al., 1999; Virtanen et  al., 2021 
for recent comprehensive review). The dysfunctions of KCC2 
are associated with large number of pathologies starting from 
pioneer observations of KCC2 change in different types of 
epilepsies (Miles et  al., 2012) and ending with recent findings 
of KCC2 link to different neurological disorders (Tang, 2020). 
Naturally, the observations of Smo-dependent control on 
GABAergic polarity shift raised the question whether Smo 
transducer regulates the KCC2. The total expression level and 
the phosphorylated state of KCC2 are fundamental determinants 
of KCC2 function affecting its Cl− extrusion ability and hence 
controlling neuronal Cl− homeostasis (Box 1). Analysis of the 
phosphorylation state of Ser940 and Thr1007 residues of KCC2 
revealed a strong and significant increase of Ser940 phosphorylation 
in neurons expressing Smo-CA, and significant decrease of Ser940 
phosphorylation in neurons with Smo-ΔN (Delmotte et al., 2020b; 
Figure  2B). No effect of Smo was detected on the level of 
Thr1007 phosphorylation indicating on the high selectivity of 
Smo-dependent pathways controlling KCC2. Consistent with 
previous observations of Ser940 – dependent control of plasma 
membrane stabilization of KCC2 (Lee et  al., 2007, 2011), the 
modulation of Smo pathway affected the surface expression of 
KCC2 construct harboring tag in extracellular domain and 
expressed in cultured hippocampal neurons (Delmotte et al., 2020b).

In the light of current knowledge on the regulation of 
KCC2 membrane trafficking, several hypotheses might 
be  considered to explain the interplay between Smo and 

KCC2: (1) Activation of Smo downstream pathway with 
Smo-CA construct increases phosphorylation of KCC2 at 
Ser940 and consequently the stability of the co-transporter at 
the cell surface and its activity, thereby decreasing the 
intracellular chloride concentration and rendering GABA 
hyperpolarizing (Lee et  al., 2007; Silayeva et  al., 2015); (2) 
Complementary, the canonical Shh-Smo-Gli1 pathway may 
also regulate chloride ions homeostasis and KCC2 function 
through a second messenger including a Ca2+ transient frequency 
and/or an intermediary factor such as BDNF (Figure  1). As 
mentioned before, non-canonical Shh-Smo signaling pathway 
induce BDNF secretion and a previous study showed that 
the loss of canonical Shh-Smo signaling also decreased the 
levels of BDNF transcripts (Zhou et  al., 2016). In line with 
this hypothesis, BDNF has been shown to modulate KCC2 
expression and activity, but depending on the physiological 
context and maturation stage of neurons it can either upregulate 
(Ludwig et  al., 2011) or down-regulate the KCC2 (Rivera 
et al., 2004); (3) A third hypothesis is based on the activation 
of Smo, which could affect the lipid organization of the 
membrane. Since the Smo binds sterols and endogenous 
cholesterol, a strong activation of the Smoothened receptor 

BOX 1: Phosphorylation-dependent control of KCC2.

A large number of phosphorylatable residues were revealed on KCC2 using 
mass spectrometry analysis (Rinehart et al., 2011; Weber et al., 2014; Agez 
et al., 2017; Cordshagen et al., 2018; Zhang et al., 2020b). The mutation of 
some residues (e.g., Ser932, Thr934, Ser937, Ser940, Thr906, Thr1007) results in 
change of the ion-transport activity of KCC2 measured in heterologous 
expression system (Weber et al., 2014; Zhang et al., 2020b). The importance 
of other residues is not clear yet. Among above phosphorylatable sites with 
ion-transport importance only two group of residues (Ser940 and Thr906 plus 
Thr1007) were extensively studied for their role in native neuronal environment 
both in-vivo and in-vitro. Briefly, the protein kinase C (pkC) phosphorylation 
of Ser940 leads to stabilization of KCC2 on neuron’s surface leading to 
enhancement of ion-transport activity, whereas Ser940 dephosphorylation is 
associated with transporter internalization and reduction of the KCC2 
activity (Lee et  al., 2007, 2011). The transgenic mice harboring 
nonphosphorylatable mutation S940A showed reduced sociability that is 
compatible with autism-like behavior (Moore et  al., 2019) and exhibited 
higher lethality when entering in kainate-induced status epilepticus (Silayeva 
et al., 2015). The phosphorylation of Thr906 and Thr1007 is associated with 
decrease of ion-transport ability of KCC2 (Rinehart et  al., 2009; Friedel 
et  al., 2015) due to enhancement of KCC2’s internalization rate (Friedel 
et al., 2015). In opposite, the dephosphorylation of Thr906 and Thr1007 results 
in increase of KCC2 activity and enhancement of its surface expression 
(Friedel et al., 2015). The mouse harboring phosphomimetic T906E/T1007E 
mutations in both alleles dies at birth (Watanabe et  al., 2019). The 
heterozygous T906E/T1007E mouse is characterized by deficit in neuronal 
Cl− homeostasis, network activity and has altered social interaction behavior 
(Pisella et al., 2019). In opposite, the mouse with T906A/T1007A mutations, 
mimicking non-phosphorylated state of respective threonine residues, 
exhibited increased basal neuronal Cl − extrusion, showed delayed onset 
and severity of chemoconvulsant-induced seizure activity (Moore et  al., 
2018), and exhibited enhanced social behavior (Moore et  al., 2019). The 
phosphorylation of both Thr906 and Thr1007 depend on activity of with no 
lysine kinase (WNK) including four members (WNK1–4) and the downstream 
SPAK/OSR1 (SPS1-related proline/alanine-rich kinase/oxidative stress 
responsive kinase-1) pathway (Alessi et  al., 2014; Friedel et  al., 2015), 
although the exact mechanisms of KCC2 phosphorylation by WNK/SPAK 
remain to be clarified.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Hamze et al.	 Smoothened Receptor Regulates KCC2 Activity

Frontiers in Physiology | www.frontiersin.org	 6	 December 2021 | Volume 12 | Article 798066

could prevent these bindings, leaving the unbound cholesterol 
free to move elsewhere in the membrane (Figure  1B). 
Cholesterol is an essential component of lipid rafts and is 
central to many mechanisms, including the stability of KCC2 
at the membrane (Hartmann et al., 2009; Watanabe et al., 2009).

CONCLUSION

In this review, we  highlight the significant potential role of 
Shh-Smo signaling in chloride homeostasis through the control 
of KCC2 cell surface expression and activity, which in turn 
fine-tune the strength of inhibitory synaptic transmission. A 
weak or an absence of Shh-Smo signaling delayed the GABA 
polarity shift, leading to an unbalanced excitation to inhibition 
ratio. A similar role of Shh-smo signaling has been shown on 
astrocytes in mature cortex (Hill et  al., 2019). The conditional 
knockout of Smo results in an early increase in synapse number 
and in neuronal excitability, induced by a reduction in Kir 
1.4 potassium inward rectifier currents, thus confirming an 
important role for the Shh pathway on synaptic transmission. 
It remains to determine whether modulation of Ptch receptor 
with Shh will have the same consequences as Smo activation 
on GABAergic developmental sequence. Indeed, activation of 
Smo by SAG or stimulation of Ptch with application of Shh 
results in the same outcome in a very large number of functions, 
both for regulation of axonal elongation and, activation of the 
ERK signaling pathway (Yao et  al., 2015, 2019). Finally, these 
recent data on Shh-Smo showed that this pathway continues 
to have a very important role in development after birth, both 
in early network activity such as GDPs and in the maturation 
of inhibitory synaptic transmission with the developmental 

GABAergic sequence. This signaling pathway can trigger the 
release of a key neurotrophic factor in CNS development, 
BDNF, but also modulate the activity of a central protein in 
chloride homeostasis and GABAergic polarity control, KCC2.

These open new research avenues on the interplay between 
Shh and GABA in neurodevelopmental disorders like Autism 
Spectrum Disorders (ASD), Down Syndrome and, epilepsy 
(Belgacem et  al., 2016; Feng et  al., 2016; Kumar et  al., 2019). 
As promising examples, treatments with SAG restored partially 
cerebellar morphology and behavioral deficits in a Down 
Syndrome mouse model (Roper et  al., 2006; Das et  al., 2013), 
and purmorphamine, a Smo agonist, ameliorated behavioral 
and cellular alterations in a rat model of ASD (Rahi et al., 2021).
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