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Stroke volume (SV) is a major biomarker of cardiac function, reflecting ventricular-
vascular coupling. Despite this, hemodynamic monitoring and management seldomly
includes assessments of SV and remains predominantly guided by brachial cuff blood
pressure (BP). Recently, we proposed a mathematical inverse-problem solving method
for acquiring non-invasive estimates of mean aortic flow and SV using age, weight,
height and measurements of brachial BP and carotid-femoral pulse wave velocity
(cfPWV). This approach relies on the adjustment of a validated one-dimensional
model of the systemic circulation and applies an optimization process for deriving
a quasi-personalized profile of an individual’s arterial hemodynamics. Following the
promising results of our initial validation, our first aim was to validate our method
against measurements of SV derived from magnetic resonance imaging (MRI) in healthy
individuals covering a wide range of ages (n = 144; age range 18–85 years). Our
second aim was to investigate whether the performance of the inverse problem-solving
method for estimating SV is superior to traditional statistical approaches using multilinear
regression models. We showed that the inverse method yielded higher agreement
between estimated and reference data (r = 0.83, P < 0.001) in comparison to the
agreement achieved using a traditional regression model (r = 0.74, P < 0.001) across a
wide range of age decades. Our findings further verify the utility of the inverse method
in the clinical setting and highlight the importance of physics-based mathematical
modeling in improving predictive tools for hemodynamic monitoring.

Keywords: vascular aging, cardiac output, mathematical modeling, data assimilation, non-invasive monitoring

INTRODUCTION

Over the last decade, hemodynamic monitoring has risen to the forefront of efficient
and sustainable healthcare. Monitoring of biomarkers for vascular and cardiac function
is a crucial factor in cardiovascular disease identification, treatment, and assessment of
therapeutic response (Vincent et al., 2015). Stroke volume (SV) is a major biomarker of
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cardiovascular function, reflecting the interdependent
performance of the heart and major blood vessels. Despite
this, hemodynamic management of patients via SV remains
limited and guided predominantly by simple brachial cuff
blood pressure (BP) observations alone (Phillips et al., 2017).
Such approaches compromise the utility and effectiveness of
hemodynamically guided interventions (Thiel et al., 2009;
Meng and Heerdt, 2016).

Clinically, the most reliable and accurate technique for
cardiac output (CO) estimation is thermodilution, with
SV derived by dividing CO by heart rate (HR). Although
thermodilution is clinically feasible, it is highly invasive and
associated with increased risk, and therefore is not suitable
for routine investigation. To overcome these limitations,
several less invasive methods for assessing CO and SV have
been developed. Such methods include either minimally
invasive techniques such as pulse contour analysis or
oesophageal doppler, which are still relatively invasive and
thus are excluded from the routine clinical examination,
or non-invasive techniques such as inert gas rebreathing,
doppler ultrasound or magnetic resonance imaging (MRI).
The latter, while completely non-invasive and reasonably
accurate, is expensive and requires costly equipment and
expert technical staff (Porter et al., 2015). Moreover, none of
these methods are practical for routine, continuous bedside
monitoring of SV.

Recently, we proposed a mathematical inverse-problem
solving method for acquiring non-invasive estimates of mean
aortic flow using age, weight, height and measurements of
brachial BP and cfPWV (Bikia et al., 2020). CfPWV can be
routinely measured in clinical practice, has a satisfactory
repeatability, and has been identified as an independent
predictor of clinical outcomes (Laurent et al., 2006), making it
a valuable adjunct to BP measurements in routine assessments
of risk. Therefore, the required (input) measurements for
our proposed method are simple and readily available
from the clinic. Moreover, our approach relies on the
adjustment of a validated one-dimensional (1-D) model of
the systemic circulation (Reymond et al., 2009) and applies
an optimization process for deriving a quasi-personalized
profile of an individual’s arterial hemodynamics. As such,
we believe it provides a more sophisticated method for SV
estimation compared with traditional statistical modeling
approaches. An initial clinical validation of the method was
conducted in 20 healthy individuals against aortic flow data
measured using ultrasound (Papaioannou et al., 2014), with
the results indicating that the estimates of mean aortic flow
were in good agreement with the reference ultrasound-derived
flow values.

Following the promising results of our initial validation, we
wished to validate our method using a more precise MRI-derived
measure of SV in a larger group of individuals covering a
wide age range. A second aim was to investigate whether the
performance of our inverse problem-solving method is indeed
superior to traditional statistical approaches using multilinear
regression models.

MATERIALS AND METHODS

Study Population
The dataset used for the current study was obtained from a
previous investigation of MRI-derived regional aortic stiffness
and diameter, as part of the Anglo-Cardiff Collaborative Trial
(ACCT) (Hickson et al., 2010). Subjects were recruited from the
Cambridge arm of ACCT and were free of clinical cardiovascular
disease and medication. Approval was obtained from the local
research ethics committee, and written informed consent was
obtained from all participants.

Protocol
All participants fasted for 4 h before any measurements were
undertaken. Brachial cuff BP and cfPWV were measured
after 10 min of supine rest. After a further 20 min of rest,
participants entered the MRI scanner. Cine phase contrast
magnetic resonance imaging (PC-MRI) sequences were then
performed perpendicular to the aorta at the level of the ascending
aorta, located 1 cm distal to the aortic valve. Image acquisition
sequences and image analysis procedures have been described in
detail elsewhere (Hickson et al., 2010) and have been summarized
in the Supplementary Material. The MRI-derived SV values
(SVMRI) were used as the reference data, against which the model-
derived SV estimations (SVinverse) were compared. It should be
noted that PC-MRI constitutes a very well validated technique
and, most importantly, is considered as the non-invasive gold
standard for SV derivation (Lotz et al., 2002).

Arm Cuff Pressure and Pulse Wave
Velocity
Brachial SBP (brSBPoscillometric) and DBP (brDBPoscillometric) were
measured in duplicate in the non-dominant arm, according to
the British Hypertension Society Guidelines using a validated
oscillometric device (HEM-711A-E, Omron Corp., Matsusaka,
Japan). CfPWV (cfPWVSphygmoCor) was measured using the
SphygmoCor (AtCor Medical) device by sequentially recording
electrocardiographic-gated carotid and femoral artery waveforms
as previously described (Wilkinson et al., 1998).

Inverse Problem-Solving Method to
Estimate Stroke Volume
The inverse problem-solving method relies on an optimization
algorithm in order to partially adjust a generic 1-D arterial tree
model (Reymond et al., 2009; see Supplementary Material
1-D arterial tree model) and to the specific participant
under consideration (Figure 1). The rationale behind this
approach was that adjusting some of the model parameters
may be sufficient to approximate the measured data, namely
brSBPoscillometric, brDBPoscillometric, and cfPWVSphygmoCor
(Watts and Bates, 1988).

The arterial tree model of this study is fully characterized by
its geometry, the distensibility of all arterial segments and the
peripheral impedances (described by terminal compliances and
resistances). Additionally, aortic flow is needed as a proximal
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FIGURE 1 | Schematic representation of the optimization process for estimating non-invasive stroke volume. brSBP, brachial systolic blood pressure; brDBP,
brachial diastolic blood pressure; cfPWV, carotid-femoral pulse wave velocity; SV, stroke volume. Adapted from Bikia et al. (2020).

boundary condition. Identifiability analysis (Brun et al., 2001)
demonstrated that, for any individual with a given set of brSBP,
brDBP, cfPWV, HR, and SV values, there will be only one solution
for the arterial tree model (Bikia et al., 2020). Therefore, if the
generic arterial tree model modifies its parameters in order to
approximate the measured brSBP, brDBP, and cfPWV, the model
will approximate the hemodynamic profile of the participant
under consideration and will yield a partially personalized model.
This personalized model will allow for the derivation of SV.

Inverse Method
In applying our optimization algorithm, for an individual,
the following information is required: gender, age, height,
weight, brSBP, brDBP, HR, and cfPWV. In the first step, the
method uses the demographic data (i.e., gender, age, height, and
weight) for adjusting the geometry of the arterial tree model
(see Supplementary Material Anatomical adjustment of 1-D
arterial tree model).

The inverse method additionally accounts for the non-
uniform aortic stiffening which occurs with aging (Kaess
et al., 2012). For older individuals, stiffening is considered
as non-uniform and more pronounced in the proximal aorta.
This gradient in distensibility is adjusted by changing the
relative regional distensibility of the proximal aorta through
multiplication with an age-related proximal factor based on
published literature (Kimoto et al., 2003). Subsequently, the
heart cycle period (Tperiod) is computed from the HR, whereas

previously published data on the HR-related changes in systolic
duration (Tsystole) (Weissler et al., 1968) are used to adapt the
Tsystole with respect to the measured HR. As a result, the only
remaining flow-related parameter to be optimized for the aortic
flow input is the aortic flow peak (Qmax).

Following these model adaptations, the optimization
algorithm is employed for adjusting the Qmax, and the properties
of the arterial tree, namely arterial compliance (C) and total
peripheral resistance (R). An arbitrary parameter set of {C,
R, Qmax} is used in the first optimization iteration of the
algorithm. Under all conditions, the 1-D model computes the
simulated flows and pressure waves throughout the arterial tree,
including the variables that correspond to the measured data
(brSBPoscillometric, brDBPoscillometric, and cfPWVSphygmoCor) as
well as the quantity of interest, namely the SV. The standard
(non-optimized) model is expected to estimate inaccurate flows
and pressures (and thus brSBPsimulated and brDBPsimulated) due
to the inaccurate input model parameters and the inaccurate
input aortic flow for the specific individual under investigation.
Similarly, the simulated cfPWV (cfPWVsimulated) is not the same
as the measured cfPWVSphygmoCor. To address this issue, the non-
invasive, participant-specific measurements are integrated into
the model using a gradient descent optimization algorithm. The
reference C, R, and Qmax of the generic arterial tree are adjusted
by multiplication with different scaling factors until the model-
simulated brSBPsimulated, brDBPsimulated, and cfPWVsimulated
(see Supplementary Material Model-simulated pulse wave
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velocity) are identical with the measured brSBPoscillometric,
brDBPoscillometric, and cfPWVSphygmoCor. Once convergence is
achieved, the simulated SV is considered as the final estimation
for the specific participant. A more analytical description of the
inverse problem-solving method can be found in the original
publication (Bikia et al., 2020). The methodology described
above was repeated for the entire study population (n = 144).
The estimated SVinverse were compared to the SVMRI. Accuracy
was also assessed independently for the different age groups, i.e.,
20–29, 30–39, 40–49, 50–59, 60–69, and ≥70 years.

Finally, we evaluated the errors resulting from the use of an
approximated aortic flow waveform. We compared the Tsystole,
Qmax, as well as the time of Qmax (tQmax) derived from the
approximated flow waveform to the actual values extracted
from the reference MRI aortic flow waveform. Consequently,
we performed one-way analysis of variance (ANOVA) for the
three estimated characteristics across the different age groups to
investigate whether an age-dependent effect was observed.

Multilinear Regression Analysis to
Estimate Stroke Volume
In addition to the modeling analyses described above, we tested
the performance of multilinear regression analysis using SVMRI
as the dependent variable. Overall, this approach allowed us
to compare our inverse method with the more traditional
multilinear regression method for estimating SV. For the
multilinear regression method, the same parameters used as
inputs to the inverse method were used as independent variables,
namely age, gender, weight, height, HR, brSBP, brDBP, and
cfPWV. We followed two different approaches for testing the
performance of multilinear regression to: (i) a train/test split
cross validation (CV) (1CV), and (ii) a 10-fold CV (10CV).
For the 1CV approach, 100 out of the 144 participants were
kept for defining the regression coefficients. Subsequently, the
resulting regression equation was tested on the remaining 44
participants. This resulted in one multilinear regression model.
The 10CV approach required that the group of 144 participants
was randomly split into 10 equal subsets. One subset was
allocated as the testing group to validate the regression equation,
while the other nine subsets were used for defining the regression
coefficients. This procedure was repeated 10 times so that all
participants were used for testing. The performance metrics
were derived by the average performance of all 10 models.
The reason for adopting two CV approaches was to facilitate
a more complete comparison between the two methods for
estimating SV, i.e., inverse method and multilinear regression.
We performed ordinary least squares (OLS) estimation of the
regression coefficients using the statsmodels library (Seabold and
Josef, 2010) for only 1CV setting. Hypothesis testing for each
regression coefficient was realized using the t-statistic.

Statistical Analysis
The statistical analysis was performed in Python (Python
Software Foundation, Python Language Reference, version
3.6.8)1. All values are presented as means ± SD. The agreement,

1http://www.python.org

bias and precision between the model estimations (estimated
data) and the reference data obtained from the MRI images were
evaluated using the Pearson’s correlation coefficient (r), the mean
absolute error (MAE), the normalized root mean square error
(nRMSE) and Bland-Altman analyses (Bland and Altman, 1986).
The computed nRMSE was based on the difference between the
minimum and maximum values of the dependent variable (y)
and was computed as RMSE/(ymax–ymin). Linear least-squares
regression was performed for the estimated and reference data.
The slope and the intercept of the regression line were reported.
Two-sided P-values for hypothesis tests were calculated using
Wald Tests with t-distribution of the test statistic. The null
hypothesis was that the slope is zero. One-way ANOVA for
unbalanced data (each group had different sample sizes) was
performed on the estimations for the six age groups. A P < 0.05
was considered statistically significant.

RESULTS

Table 1 shows the subject characteristics of the study population
(n = 144), including the MRI-derived SV reference data. The
comparisons between the model-derived estimations for SV
using (i) the inverse method and (ii) multilinear regression, and
the reference SV data are presented below.

Estimation of Stroke Volume Using the
Inverse Method
The comparison between SVinverse and SVMRI is presented in
Figure 2. The slope and intercept of the regression line were 1.1
(P < 0.001) and −8.8 mL, respectively. The nRMSE was 13.8%.
Bland-Altman analysis yielded a low bias of 1.5 mL and limits of
agreement (LoA) of (−29.7, 32.7) mL. The estimation error was
outside of the LoA for only 7% of the study population. Variability
of the mean difference between estimated and measured SV
values was 15.9 mL. Although several overestimations were
observed for high values of SV, the majority of the estimated
data were tightly distributed around the line of equality (x = y).
The MAE in SV estimation was computed for the different age
groups of the study population (Figure 3). The overall variability
of the MAE was ± 2.2 mL (P < 0.0001), while higher MAE
values (>12 mL) were reported for participants aged between
30 and 49 years. Estimations of SV had the lowest errors for
participants aged between 60 and 69 years. Overall, the MAE
values differed significantly between age groups of the study
population (P < 0.001).

Approximated Aortic Flow
Characteristics
Table 2 reports the measured (MRI) and estimated aortic flow
characteristics for all participants and the different age groups.
The estimated Tsystole was slightly lower than the measured values
for all age groups. The correlation between the estimated and
measured data was r = 0.6 and the mean absolute percentage
error was 10%. The estimation of Qmax was satisfactory with
r = 0.7, and a small overestimation of the measured values.
Finally, assuming a fixed aortic flow wave shape led to a less
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TABLE 1 | Subject characteristics and hemodynamic parameters according to age group.

Parameter All
(n = 144)

20–29 years
(n = 27)

30–39 years
(n = 23)

40–49 years
(n = 24)

50–59 years
(n = 24)

60–69 years
(n = 23)

≥70 years
(n = 23)

Age (years) 49 ± 17 24 ± 3 34 ± 3 44 ± 2 57 ± 3 63 ± 2 74 ± 3

Gender (M/F) 62/82 11/16 12/11 9/15 10/14 9/14 11/12

Height (cm) 169 ± 10 172 ± 9 171 ± 9 169 ± 10 168 ± 9 169 ± 10 165 ± 10

Weight (kg) 70 ± 12 67 ± 11 73 ± 11 73 ± 15 68 ± 10 73 ± 13 68 ± 10

Brachial SBP (mmHg) 122 ± 16 112 ± 13 116 ± 9 120 ± 14 117 ± 12 128 ± 16 138 ± 16

Brachial DBP (mmHg) 71 ± 8 63 ± 4 68 ± 5 72 ± 9 71 ± 8 75 ± 6 75 ± 8

Brachial PP (mmHg) 51 ± 12 48 ± 12 48 ± 9 48 ± 8 46 ± 8 53 ± 13 63 ± 13

Mean arterial pressure (mmHg) 88 ± 10 79 ± 6 84 ± 6 88 ± 10 86 ± 8 93 ± 9 96 ± 10

Carotid-femoral PWV (m/s) 7 ± 2 6 ± 1 6 ± 1 7 ± 1 7 ± 1 8 ± 1 10 ± 2

Heart rate (bpm) 66 ± 12 68 ± 12 61 ± 9 66 ± 12 65 ± 11 66 ± 10 69 ± 14

Stroke volume (mL) 84 ± 21 92 ± 26 97 ± 17 90 ± 19 80 ± 16 79 ± 15 68 ± 11

precise approximation of tQmax with a correlation coefficient of
r = 0.41.

Estimation of Stroke Volume Using
Multilinear Regression Analysis
Hypothesis testing indicated that all of the specified coefficients,
except for those corresponding to gender (P = 0.52) and brDBP
(P = 0.28), were significantly different from zero. Therefore, the

FIGURE 2 | Scatterplot and Bland–Altman plot demonstrating the association
between the estimated stroke volume (SV) (using the inverse method) and the
reference SV (MRI). The solid line of the scatterplots represents equality. In
Bland–Altman plots, limits of agreement (LoA) are defined by the two
horizontal dashed lines.

multilinear regression analysis was repeated, excluding gender
and brDBP from the model.

The regression equation for the 1CV scheme was as follows:

SV = −0.34× (age)+ 0.38× (weight)+ 40.14× (height)

+ 0.47 × (brSBP)− 0.45 × (HR)− 4.23 × (cfPWV).

For the 10CV scheme, the comparison between the regression-
estimated SV (SVregression) and the reference SVMRI is presented
in Figure 4. The slope and intercept of the regression line were
0.57 (P < 0.0001) and 36.32 mL, respectively. The LoA were
equal to ± 27 mL and the bias was zero. Results of the new
hypothesis testing for the OLS regression coefficients reported
a P-value below 0.01 for all independent variables. Correlation
and agreement between SVregression values (using both testing
schemes) and the reference SVMRI values are presented in
Table 3. Multilinear regression models yielded a lower correlation
(r = 0.74) compared with the inverse method (r = 0.83),

FIGURE 3 | Variation of mean absolute error (MAE) of stroke volume (SV)
across age groups.
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FIGURE 4 | Scatterplot and Bland–Altman plot between the predicted stroke
volume (SV) (using multilinear regression) and the reference (MRI) SV. The solid
line of the scatterplots represents equality. In Bland–Altman plots, limits of
agreement (LoA) are defined by the two horizontal dashed lines.

TABLE 3 | Overall comparison among stroke volume (SV) estimates and
reference MRI SV.

mean ± SD (mL) r MAE (mL) Bias (LoA) (mL)

Measured (n = 144) 84.4 ± 20.4 – – –

Measured (n = 44)* 82.6 ± 19 – – –

Inverse (n = 144) 86 ± 27.8 0.83 10.4 1.5 (−29.7, 32.7)

Inverse (n = 44)* 84.5 ± 26.1 0.85 10.1 1.9 (−25.4, 29.2)

MLR10CV (n = 144) 84.5 ± 15.8 0.74 11 0.02 (−27, 27.1)

MLR1CV (n = 44)* 84.6 ± 14.5 0.79 10.8 2 (−20.7, 24.8)

MAE, mean absolute error; LoA, limits of agreement; MLR, multilinear regression;
CV, cross validation.
1CV corresponds to train/test split equal to 100/44.
10CV corresponds to 10-fold CV.
*Values correspond only to the test set (44 subjects).

whereas the LoA were narrower in the case of multilinear
regression analysis.

DISCUSSION

In the present study, we validated a previously developed
inverse problem-solving method for the estimation of a major
hemodynamic parameter, the SV. The original method, based on
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non-invasive measurements of brachial BP and cfPWV (Bikia
et al., 2020) underwent a preliminary validation in a small
(n = 20) cohort of human subjects. Here, we have implemented
and tested our method on a further 144 healthy individuals
and compared the SVinverse (estimated data derived from the
inverse method) to SVMRI (measured data derived from the non-
invasive gold standard of MRI). Additionally, we have compared
the performance of the inverse method against the predictive
capacity of a traditional linear regression approach which uses the
same set of inputs as those used in the inverse method. The two
key findings of this study are that the inverse problem-solving
method yields accurate estimates of SV across a wide range of
ages and SV values, in a simple and cost-efficient manner in
comparison to PC-MRI; and that a traditional statistical approach
such as multilinear regression analysis is inferior to the more
sophisticated inverse problem-solving technique, for a given set
of clinical data.

The SV, together with BP, are fundamental and independent
indicators of cardiovascular function and are essential for
the understanding of cardiovascular physiology and pathology
(Nichols et al., 2011). However, in clinical practice, BP and BP-
derived surrogates of SV are often used either interchangeably
with, or as replacements for, direct measurements of flow.
This simplification potentially compromises our understanding
of cardiovascular physiology and limits the clinical utility of
hemodynamic analyses (Thiel et al., 2009; Asfar et al., 2014).
While notable research efforts have been made for estimating SV
using BP recordings (Jansen et al., 2001; Swamy and Mukkamala,
2008; Fazeli and Hahn, 2012; Ganter et al., 2016), none of
these techniques accounts for the specific arterial tree properties
unique to each individual.

Current doppler ultrasound technologies for SV in the clinical
setting include echocardiography, transoesophageal doppler,
and transcutaneous doppler. However, these techniques are
associated with several limitations concerning applicability, cost
and accuracy. For instance, transoesophageal doppler is largely
limited to perioperative monitoring as the ultrasound transducer
is inserted into the oesophagus and requires sedation. On the
other hand, MRI allows for improved spatial resolution, larger
imaging windows and higher tissue contrast than ultrasound-
based techniques. Specifically, PC-MRI allows for accurate
determination of the presence, magnitude, and direction of flow,
as well as for the estimation of flow velocity, volume flow
rate, and displaced volumes. In spite of these advantages, MRI
remains inconvenient and expensive for routine examinations
and requires long imaging times. As a result, monitoring
SV effectively in a reliable, simple and cost-efficient way
remains an unmet need.

Mathematical modeling of the human cardiovascular system
offers valuable tools to investigate patient-specific aspects of
arterial hemodynamics, which are difficult to assess in clinical
practice. Data assimilation aims to address relevant challenges
and can significantly promote patient-specific modeling (Wang
et al., 2018). Rather than relying on simplified equations, we
have followed a data assimilation approach, which is based
on the adjustment of a generic 1-D arterial model using the
non-invasive data of the peripheral cuff-based SBP, DBP, and

cfPWV, which are easily obtained in a clinical setting. Successful
tuning permits the creation of a personalized cardiovascular
model which, consequently, provides access to key hemodynamic
information including SV. The tuning is conducted via an
optimization process which allows for the fusion between the
computational model and the measured data. This study, along
with the initial validation (Bikia et al., 2020), demonstrated
that creating a partially personalized model can improve the
prediction of SV.

Acquisition of cfPWV requires sequential recording of the
carotid and femoral pressure pulse via applanation tonometry
(Adji et al., 2011). CfPWV has a satisfactory reproducibility,
while being an independent index of cardiovascular risk and/or
mortality (Laurent et al., 2006). In our study, the role of
cfPWV, as an index of arterial stiffness, was to facilitate the
adjustment of the generic arterial tree model. Given that arterial
distensibility, the inverse of arterial stiffness, constitutes a
major parameter of the vasculature, combining the information
provided by arterial stiffness and BP allowed us to determine
aortic hemodynamics and thus SV.

The data from the ACCT allowed us to have an approximately
equally split dataset for seven age decades, i.e., 20, 30, 40, 50, 60,
and >70 years, which enabled an accurate comparison of the age-
based results. Predictions of SV were precise across the different
age groups, with a low variability of the MAE (± 2.2 mL). Lower
errors were reported for the sixth decade of life. It was observed
that the highest absolute errors corresponded to high values of
SV, while predictions were more accurate for SV values below
130 mL. Overall, there was good agreement and high precision
between the SVinverse and the SVMRI data across different age
decades and SV values, which indicates a robust performance of
the inverse method.

We also investigated the validity of the assumption of a fixed
aortic flow shape by comparing the estimated values of Tsystole,
Qmax, and tQmax with their actual values. The inverse method
relies on a previously published formula (Weissler et al., 1968)
which provides a HR-related approximation of Tsystole. Overall,
it was observed that the estimated Tsystole values did not vary
significantly between age groups, while the variability within the
same age group was also rather small. Our results also indicated
that the formula slightly underestimated the Tsystole values. It
is likely that this underestimation led to the overestimation of
Qmax. Given that the method yielded accurate estimates of SV,
for achieving the same SV, an underestimated Tsystole would
naturally lead to an overestimated Qmax. Finally, assuming a
fixed shape for aortic flow wave resulted in deviations in the
value of tQmax (mean absolute percentage error was equal to
47%). Despite the reported deviations in the timing features of
the aortic flow wave, the estimated Qmax was in satisfactory
agreement with the reference Qmax. Given that our method
aims to minimize the required inputs for estimating SV, the
use of a fixed shape wave is a well-advised approximation.
Nonetheless, future work will aim to personalize the aortic
flow wave shape with respect to subject characteristics, such
as age and gender.

Multilinear regression analysis was performed using two
cross-validation approaches, namely 1CV and 10CV. Hypothesis
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testing was conducted, where the P-value for each independent
variable tested the null hypothesis that the variable has no
correlation with the dependent variable. Coefficients of gender
and brDBP were not statistically significantly different to
zero, indicating that there was insufficient evidence in our
sample to conclude that a non-zero correlation exists. All
other regression coefficients were reported to be statistically
significantly different from zero.

We compared the inverse method with the conventional
multilinear regression analysis. Comparison indicated a higher
correlation for the former. The LoA were broader for the
inverse method, which also reported a higher bias. This
outcome was expected, if we consider that the regression
equation was constructed using a subset of the study
population. The MAE was lower for the inverse method.
A notable advantage of the inverse method relies on its
generalization ability. Statistical learning models (such as
linear regression) are often prone to generalization issues.
These models are dependent on the specific training data
used for developing the regression equation, and while
they are able to provide accurate estimates for a hold-out
(not considered in the process of developing the regression
model) test subset of the same dataset, they are not likely to
perform adequately for other independent datasets (Shameer
et al., 2018). This lack of accuracy might be attributed to
differences in the measurement protocol (e.g., physician
preferences, local care standards), medication selection
or other clinical decisions which influence the model
development (Shameer et al., 2018). Specifically, regression
analysis requires prior knowledge of large sets of collected
data in order to estimate the coefficients of the regression
equation. On the other hand, the inverse method is able to offer
improved performance without dependency on pre-defined,
dataset-derived regression coefficients.

The limitations of the inverse method have been
acknowledged in the original publication (Bikia et al., 2020).
Moreover, the present study does not include validation of the
method’s performance for continuous monitoring applications.
According to a meta-analysis for a new method to equal or better
the performance of thermodilution (invasive gold-standard
technique), it should achieve a percentage error <30% (Critchley
and Critchley, 1999). Although the percentage error addresses
the accuracy requirement, it does not provide explicit assessment
of the method’s ability for continuous monitoring, which is
essential in critically ill or hemodynamically unstable patients.
In this respect, the next step of this work is the validation of
the method for continuous SV (or CO) monitoring. In addition,
validation of our method is limited to a healthy population.
In critical conditions (e.g., ICU), there might be extreme cases
which may lead to abnormal hemodynamical interdependencies.
We assessed the performance of the inverse method in a patient
with diastolic dysfunction, which is a pivotal component of
heart failure with preserved ejection fraction (HFpEF). Given
the lack of relevant in vivo data in the literature, we tested a
virtual subject which was generated using a computational model
of diastolic dysfunction (Kadry et al., 2020). We evaluated an
extreme case of diastolic dysfunction (the restricted phenotype)

with brSBP = 127 mmHg, brDBP = 61 mmHg, HR = 75 bpm,
cfPWV = 5.97 m/s, and SV = 83 mL. The inverse method
yielded an estimate of 80 mL, suggesting that the proposed
methodology might provide precise estimations for this
pathological condition. Nonetheless, this cannot lead to a
certain generalized conclusion and proper in vivo validation
using diseased populations should be conducted. A simplified
approximation approach was selected for modeling Tsystole.
The rationale behind our approach relied on the effort to
simplify the acquisition of the measurements required to
estimate SV. The Tsystole is not readily available in routine
clinical practice (acquired from Ultrasound velocity recording
for instance), and cannot be effectively modeled using the
input measurements that we have at our disposal (namely SBP,
DBP, and cfPWV). Therefore, this approach might come with
a compromise in accuracy in the approximation of Tsystole.
However, the sensitivity analysis that was performed in the
original publication showed that Tsystole is less sensitive in
comparison to more prominent model parameters, such as the
HR, C, R, and Qmax) (Bikia et al., 2020). At large, this approach
may be considered as a fair trade-off between simplicity and
relative accuracy for SV estimation; as also indicated by the
agreement between the estimated and the reference SV data.
Another limitation pertains to the synchronization of the clinical
measurements. In particular, contrary to the simulated data
produced by the 1-D arterial tree model, which corresponds
to completely simultaneous pressure and flow waves, the
in vivo measurements were performed with a time difference.
Nevertheless, the intervals between the measurements were
rather short and therefore, we may deduce that there was not
a high variation in the measured data. In addition, we used
aortic flow data derived from PC-MRI as a reference method
with which to compare our estimated SV values. Although
PC-MRI is considered a well-validated method for aortic
flow measurements, the invasive gold standard technique is
thermodilution. Next validation steps will include testing our
method against thermodilution-derived SV data. Finally, it
should be clarified that this study compares the proposed
inverse methodology against the most simplified version of a
multivariate linear regression method. A more suitable regression
model would account for non-linear relationships between the
dependent and the independent variables. Nevertheless, such
models, while being simplistic, may be commonly used in the
clinical evaluation.

CONCLUSION

We have demonstrated that SV can be estimated accurately
from non-invasive, easily obtained clinical measurements
of brachial cuff BP and cfPWV using an inverse problem-
solving method. Values of SV estimated using our inverse
method compared favorably with the reference SV data
derived from PC-MRI. Importantly, agreement between
predictions and reference values was higher with the
inverse method than traditional linear regression. These
results, along with the inherent generalization limitations of
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regression equations, highlight the importance of physics-
based mathematical modeling in improving predictive tools for
hemodynamic monitoring.
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