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Beyond its use in a clinical environment, photoplethysmogram (PPG) is increasingly
used for measuring the physiological state of an individual in daily life. This review
aims to examine existing research on photoplethysmogram concerning its generation
mechanisms, measurement principles, clinical applications, noise definition, pre-
processing techniques, feature detection techniques, and post-processing techniques
for photoplethysmogram processing, especially from an engineering point of view. We
performed an extensive search with the PubMed, Google Scholar, Institute of Electrical
and Electronics Engineers (IEEE), ScienceDirect, and Web of Science databases.
Exclusion conditions did not include the year of publication, but articles not published
in English were excluded. Based on 118 articles, we identified four main topics of
enabling PPG: (A) PPG waveform, (B) PPG features and clinical applications including
basic features based on the original PPG waveform, combined features of PPG, and
derivative features of PPG, (C) PPG noise including motion artifact baseline wandering
and hypoperfusion, and (D) PPG signal processing including PPG preprocessing, PPG
peak detection, and signal quality index. The application field of photoplethysmogram
has been extending from the clinical to the mobile environment. Although there is
no standardized pre-processing pipeline for PPG signal processing, as PPG data are
acquired and accumulated in various ways, the recently proposed machine learning-
based method is expected to offer a promising solution.

Keywords: bio-signal processing, motion artifacts, photoplethysmography, physiological signal, signal quality
assessment, noise reduction, physiological measurement

INTRODUCTION

Photoplethysmography (PPG) is a non-invasive method for measuring blood volume changes in
a microvascular bed of the skin based on optical properties, such as absorption, scattering, and
transmission properties of human body composition under a specific light wavelength (Challoner,
1979). PPG is a compound word that consists of “photo,” meaning light; “plethysmo,” meaning
volume; and “graphy,” meaning recording (Alnaeb et al., 2007). In 1937, Hertzman found that
the amount of light detected by back scattering after irradiating light to the skin was significantly
changed according to cardiac activity. He suggested that PPG was a technique for measuring blood
volume changes in a specific area irradiated with light (Hertzman, 1937, 1938). PPG records the
amount of light transmitted or reflected by the change in concentration of substances in the blood
and the optical path according to pulsation, which can be explained by the Beer–Lambert law that
defines the attenuation of light intensity by the extinction coefficient, concentration, and optical
path length of a medium when light passes through it (Beer, 1851). The Beer–Lambert law, as
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shown inI = I0e−εlc, defines that the transmitted light intensity
(I) through a medium will decrease exponentially in irradiated
light intensity (I0) in relation to the absorption coefficient
(ε), optical path length (l), and concentration of the medium
(c). The exponent part of the Beer–Lambert law is defined as
absorbance (A), which can be expressed as A = −εlc. The Beer–
Lambert law is used in various PPG applications that include
calculating oxygen saturation (Nitzan et al., 2014) and developing
multi-layer light–skin interaction models (Liu et al., 2016a).
A recent study, based on modified Beer–Lambert law, measured
PPG depending on skin depth by applying different extinction
coefficients according to characteristics of the microvascular bed
of the skin (Baker et al., 2014; Liu et al., 2016a). Figure 1
shows skin structure, optical path, and light intensity change
represented by the Beer–Lambert law in photoplethysmogram
measurement. Light irradiated into the skin will pass through
skin structures, such as tissues, veins, and arteries; then, finally
it is detected by a photodetector. The amount of light absorbed
or scattered during this process may vary depending on the
composition of the skin structure. In Figure 1, the total
absorbance throughout skin layers is equal to the total sum of the
absorbances of the k layers (Ak = −εkcklk), where ε, c, and l are
the extinction coefficient, concentration, and optical path length,
respectively, and the amount of light that is finally transmitted
can be expressed as I = I0e

∑
Ak . In this case, the total absorbance

depends on the skin structure.

Unlike transmissive-mode PPG that has a straight optical
pathway, reflective-mode PPG requires a more complex physical
model, because the optical path between the emitter and
the photodetector is curved and has a nonlinear pathway.
Rubynok and Kyriacou assumed that the optical path between
the emitter and the photodetector has multiple “canoe” shapes
and modeled the absorbance of the Beer–Lambert law Apiλ
as Apiλ = − log(IDpiλ/IEpiλ) = µλlpiλ =

∑mλ

j=0 µsjλlpisjλthrough
the banana-shaped mean light pathway representing each
“canoe” shape (Rybynok and Kyriacou, 2010), where, IDpiλ and
IEpiλ are the radiation and detection light intensity, respectively,
in the banana-shaped light pathway, µλ is the absorption
coefficient for the whole optical pathway in the scattering
sample, lpiλ is the mean optical pathway corresponding to the
pi fraction of the transmitted light power in the vascular tissue,
m is the matter segments along the mean light pathway with
different absorption coefficients, µsjλ is the total absorption
coefficient tilde within the scattering matter segment sj, and
lpisjλ is a part of the mean light pathway within the scattering
matter segment sj. The total absorption coefficient µsjλ can be
further extended by absorptivities and concentrations of the
absorbing components present in the light pathway segment
sj:µsjλ =

∑nsj
k=0 εkλcksj, where nsj is the number of light-absorbing

components in the j, εkλis the Beer–Lambert law absorptivity
of the absorbing component k at wavelength λ, and cksj
is the concentration of the light absorbing component k
in the light pathway segment j. In addition, the extinction
coefficient of the reflective mode can be modeled as 1A =
log(1I0/1I) = ε1cl · DPF through the differential path length
factor (DPF) based on the Modified Beer–Lambert Law (MBLL),

where DPF(λ) ≈ 1
2 (3µ

′

s(λ)/µa(λ))1/2 and µa(λ) and µ
′

s(λ) are
the absorption coefficient and reduced scattering coefficient,
respectively (Pintavirooj et al., 2021).

The volume of blood volume in the measurement site, arterial
diameter, hemoglobin concentration, and hemoglobin direction
according to the cardiac cycle are also major factors that affect the
detected light intensity (De Trafford and Lafferty, 1984; Kamal
et al., 1989; Lindberg and Oberg, 1993). For example, during the
diastolic phase, blood volume, arterial diameter, and hemoglobin
concentration in the measurement site are minimized. Thus,
absorbance is minimized, while the amount of light detected
by the photodetector is maximized. Conversely, in the systolic
phase, the light intensity detected by the photodetector becomes
minimum (Ding and Zhang, 2015; Ding et al., 2017).

Photoplethysmography (PPG) can be measured using light
sources of various wavelengths. In general, when the wavelength
of light increases, the depth of penetration also increases (Spigulis
et al., 2007a,b; Ruggiero et al., 2016). For example, it is known
that wavelengths of 470, 570, and 660 nm or more can reach
the epidermis with capillaries, dermis with arterioles, and arteries
of subcutaneous tissues, respectively (Liu et al., 2015, 2016a,b,
2018). Major blood vessels and arteries with strong pulsation
are mainly located in the skin dermis or subcutaneous tissue.
Thus, light with a red wavelength of 640–660 nm and infrared
wavelength of 880–940 nm is mainly used for PPG measurement
(Jones, 1987). PPG is mainly obtained at the extremities of
the human body, such as fingers, toes, and earlobes that are
advantageous for measuring changes in blood volume, because
the vascular bed is shallow and widely spread (Stern, 1974; Allen
and Murray, 2002; Millasseau et al., 2006). PPG can also be
obtained from the forehead, esophagus, and nose (Barnes et al.,
1977; Kyriacou et al., 2002; Choi et al., 2018).

A PPG device is composed of a light-emitting diode (LED) that
emits light, and a photodetector that detects the emitted light. The
device can be divided into transmissive type and reflective type
according to the position of the LED and photodetector. Figure 2
shows configurations for a photoplethysmogram measurement
device. For the transmissive type, the photodetector is located
on the opposite side of the LED, with skin tissues in between.
For the reflective type, the photodetector is located next to
the LED. Since the transmissive type measures attenuated light
intensity after the light passes through skin tissues, it is mainly
used for measuring PPG in the distal part of the body, where
skin tissues, such as those of fingers, toes, and earlobes, are
thin. The transmission-type PPG sensor shows more stable PPG
measurement performance than the reflective type (Li et al.,
2018). On the other hand, since the reflective type measures
scattered light intensity after light irradiates the skin tissue, the
measured light intensity is relatively smaller than that of the
transmissive type, and the quality of the signal may be degraded.
However, it has the advantage of being able to measure PPG not
only in the distal part of the body but also in parts of the body,
such as the forehead, wrist, carotid artery, and esophagus, where
light transmission is difficult (Venema et al., 2012; Wannenburg
and Malekian, 2015). The PPG measurement system has the basic
hardware structure of an LED to irradiate light, and a photo
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detector to measure the amount of transmitted light; in addition,
it includes an emitter driver to drive the LED, a filter to remove
noise and enhance the quality of the obtained signal, an analog-
to-digital converter, and a microprocessor. Due to its low cost and
a simple hardware structure characteristic, PPG has been used in
various applications.

In a clinical environment, PPG is typically used for measuring
blood oxygen saturation (pulse oximetry), peripheral vascular
tone, and changes in peripheral blood flow according to the
respiratory cycle. Blood oxygen saturation is calculated as the
ratio of the concentration of oxyhemoglobin to total hemoglobin
in the blood. Traditionally, both infrared wavelength (∼880 nm)
and red wavelength (∼660 nm) are used for measuring
oxygen saturation, because deoxyhemoglobin absorbs more red
wavelength, while oxygenated hemoglobin absorbs more infrared
wavelength (Zijlstra et al., 1991; Webster, 1997; Sinex, 1999).

Perfusion index measured with PPG is defined as the ratio
of pulsatile component to non-pulsatile component of PPG. It
indicates the contraction of peripheral vascular smooth muscle.
It is used for peripheral vascular tone evaluation related to
hypertension and coronary artery diseases (Shelley et al., 1997;
Hummler et al., 2006; Landsverk et al., 2008; Mowafi et al., 2008,
2009). The Pleth variability index indicates the fluctuation of
perfusion index, which is known to have an inverse relationship
with blood flow in blood vessels (Cannesson et al., 2008b;
Zimmermann et al., 2010). Changes in blood flow in peripheral
blood vessels according to the respiratory cycle can be measured
to monitor patients with respiratory distress or heart failure; this
technique is also used to evaluate the intrathoracic pressure–
cardiac function correlation (Cannesson et al., 2005; Monnet
et al., 2005). PPG is also used in arterial blood pressure
estimation, heart function evaluation, and pain assessment
studies. Using PPG, arterial blood pressure can be estimated by
hemodynamic modeling (Chen et al., 2000; Poon and Zhang,
2005). It can also be estimated using a linear or nonlinear
regression model based on pulse transit time (PTT) derived by
PPG (Fung et al., 2004; Muehlsteff et al., 2006; Baek et al., 2009;
Wong et al., 2009; Mase et al., 2011; Ma, 2014; Mousavi et al.,
2019). In pain assessment research using PPG, the surgical Pleth
index (SPI; GE Healthcare, Chicago, IL, United States) has been
calculated through the amplitude and heart beat interval of PPG
for intraoperative pain evaluation (Ahonen et al., 2007; Struys
et al., 2007; Kallio et al., 2008). Another study has shown that
the amplitude variation, area, triangulated area, width, ascending
slope, and descending slope of PPG are significantly correlated
with pain (Yang et al., 2018; Seok et al., 2019). PPG measured
with a mobile device can be used to evaluate the exercise state,
sleep state, and stress index of a user through various approaches
based on pulse rate and respiratory rate analysis or waveform
analysis (Choi et al., 2011; Lin et al., 2011; Madhav et al., 2011;
Karlen et al., 2013; Parak and Korhonen, 2014; Temko, 2017;
Zangróniz et al., 2018; Saganowski et al., 2020). Compared with
other hemodynamic analysis devices, PPG is an inexpensive and
noninvasive technique with higher mobility. It is also an easy
technique for attaching electrodes and measuring signals. Thus,
its use in the clinical and mobile fields is increasing. However,
PPG is easily affected by various external factors, such as the body

FIGURE 1 | Light intensity change represented with the Beer–Lambert law in
photoplethysmogram measurement, where Ak, εk, ck, and lk are the k-th layer
absorbance, extinction coefficient, concentration, and optical path length,
respectively.

temperature of the measurement site (Senay et al., 1963; Bohusch
et al., 1994), intensity of ambient light in the experimental space
(Kim et al., 2015), and individual differences, such as skin type
(Adler et al., 1998; Spigulis et al., 2007a; Fallow et al., 2013);
therefore, additional research on advanced signal processing
techniques is needed to obtain a robust PPG waveform.

The purpose of this study was to examine PPG from
an engineering viewpoint through the previous research and
literature, and review the current status and vision of PPG,
including its measurement principle and mechanism, waveform
characteristics, representative noise, pre-processing technology,
feature extraction technology, and post-processing technology.
Reviewing the results of the research performed to date on the
above contents is expected to contribute to the application of
PPG, which, with the recent growth of mobile healthcare for daily
health care or clinical environment, is increasingly being utilized.

METHODS

Search Strategy
A review of the literature was conducted using the following
five databases: PubMed, Institute of Electrical and Electronics
Engineers (IEEE), Google Scholar, ScienceDirect, and Web
of Science. Search terms photoplethysmogram, review, motion
artifacts (MA), preprocessing, signal processing, noise reduction,
derivative, feature, feature detection, peak, peak detection, noise,
waveform, signal quality, and perfusion were combined.

Inclusion Criteria
To be eligible for inclusion in this review, the primary
requirement was that an article needed to focus on signal
characteristics, waveform analysis, noise reduction, peak
detection, waveform reconstruction, or quality assessment of
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FIGURE 2 | Configuration for photoplethysmography measurement: (A) transmissive type and (B) reflective type.

PPG. If possible, the literature review was focused on recently
published articles or articles with a high number of citations, but
reports were not excluded because of their year of publication.
However, review articles and original articles not published in
English were excluded.

Review Process
The searched articles were reviewed, and detailed subcategories
were organized according to the characteristics and processing
procedures of PPG. In this process, the authors selected
appropriate articles focusing on subcategories, and detailed
technological items were listed through in-depth review. In
discussion, all the authors presented the details and trends of
subcategories and drew conclusions based on common trends.

RESULTS

Photoplethysmogram Waveform
Figure 3 shows that PPG waveform is obtained from the amount
of light absorption by inverting the light intensity recorded with
a photodetector after the light is transmitted through or reflected
from human tissue. In general, the PPG waveform is divided
into a pulsatile component and a non-pulsatile component (Lee
et al., 2011a). The pulsatile component, known as the alternating
current (AC) component, is related to changes in blood volume
in the artery. It is synchronized with the cardiac cycle and is
related to vasodilation, vasomotor, and vascular tones (Nitzan
et al., 2006; Shelley et al., 2006, 2014; Allen, 2007; Shelley,
2007; Reisner et al., 2008). It can be used to detect ventricular
tachycardia and ventricular fibrillation (Alian and Shelley, 2014).
The non-pulsatile component, known as the direct current (DC)
component, refers to the remaining components excluding the
pulsatile component of the PPG waveform (Challoner, 1979;
Nilsson et al., 2003a,b). Non-pulsatile components are affected
by biological characteristics, such as tissue composition and basic
blood volume of the measurement site, as well as external factors,
such as ambient light and measurement device specifications. It
has been reported that respiration, vasomotor activity, Traube–
Hering–Mayer wave, and thermoregulation can also affect the
non-pulsatile component (Hertzman and Dillon, 1940; Hertzman
and Roth, 1942; Senay et al., 1963; Allen and Murray, 2000a,b).
The amplitude of the PPG waveform has an arbitrary unit,
because the physical characteristics, such as oxygen-carrying

capacity, bone size, skin color, blood vessel distribution, cardiac
output, vascular stiffness, and vascular compliance, differ from
person to person (Zhang et al., 2001; Krishnaswamy and
Baranoski, 2004; Valencell, 2015). Its measurement depends on
experimental environment, such as ambient light (Li et al., 2014;
Xu et al., 2017).

The PPG waveform changes according to cardiac activity.
It may also change because of respiration, autonomic nervous
system activity, arterial activity, and venous activity (McKay et al.,
2014; Pimentel et al., 2015; Bentham et al., 2018; Lakshmanan
et al., 2018; Yuan et al., 2018). The PPG waveform includes
cardiac activity and lung activity by frequency analysis. Shin
and Min reported that most of the energy of the waveform
is contained up to the 3rd harmonics (Shin and Min, 2017).
The PPG waveform has a rising curve according to increase in
capillary blood volume by cardiac contraction, and a descending

FIGURE 3 | Principle of phototoplethysmogram generation and waveform
features.
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curve according to decrease in capillary blood volume by cardiac
dilation. It is repeated according to cardiac activity. At that
time, rising curve is defined as the systolic phase of the PPG
waveform, while descending curve is defined as the diastolic
phase of the PPG waveform. Figure 3 shows the PPG waveform
of one pulsation and various feature points. Pulse onset is
defined as the point where pulsation begins at the point where
blood volume is lowest before the systolic phase. Systolic peak
is defined at the point where blood volume is maximized.
Transient rising and falling of the PPG waveform during diastole
occur when blood volume in capillaries temporarily increases
again because of the occurrence of a pressure gradient in the
opposite direction to the blood flow, just before the aortic
valve closes (Dahlgren et al., 1991; He et al., 1995). At this
time, recessed point is defined as a dicrotic notch, and the
point at which the first derivative of the waveform is closest
to zero after the systolic peak is defined as a diastolic peak
(Millasseau et al., 2002). PPG waveform can change because
of body composition, physiological status, and external stimuli.
A previous study reported that it is difficult to use the absolute
value of PPG amplitude for comparison, because it can change
according to the characteristics of body tissues and individual
characteristics, such as race, skin color, fingernail color, and
finger size (Alian and Shelley, 2014). Moreover, PPG baseline is
affected by respiration, vascular compliance, vascular tone, pain,
and drug use (Nitzan et al., 2000; Shelley et al., 2006; Shelley,
2007). The amplitude of the systolic peak, a representative
characteristic of the PPG waveform, has been reported to have
a significant correlation with microvascular expansion, and
is in proportion to the cardiac output (Dorlas and Nijboer,
1985; Murray and Foster, 1996). In addition, results from
studies related to anesthesia, sympathetic activation, and use of
vasoconstrictors related to autonomic nervous system activity
have confirmed that when the peripheral vasculature is dilated,
the amplitude of the systolic peak is increased, while when
vasculature is constricted, it is decreased (Korhonen and Yli-
Hankala, 2009). Dicotic notch changes with vascular tone and
vascular compliance. It has been found that the location of
notch occurrence is advanced at a high vascular tone (Shi et al.,
2009). In addition, it has been reported that the time difference

between diastolic peak and systole peak decreases with aging
(Yousef et al., 2012).

Photoplethysmogram Features and
Clinical Applications
Basic Features Based on the Original
Photoplethysmogram Waveform
Figure 4 shows the basic features obtained directly from the PPG
waveform. Such PPG features are frequently used clinically (see
Table 1). Systolic amplitude refers to the maximum amplitude
of the PPG systolic phase. This is a feature related to the
pulsatile component of blood volume (Asada et al., 2003). Systolic
amplitude is highly correlated to stroke volume (Murray and
Foster, 1996). It is directly proportional to the vasodilatation
of the local body site where PPG is measured (Dorlas and
Nijboer, 1985). A pulse width related index, PW50, refers to
the pulse width between points corresponding to 50% of the
PPG systolic peak amplitude, and shows a high correlation
with systemic vascular resistance (Awad et al., 2007). Regarding
pulse area, this is a feature that is calculated as the total
area of the PPG waveform; it changes according to surgical
skin incision (Seitsonen et al., 2005). Inflection point area
ratio is calculated as the area ratio between the systolic and
diastolic sections based on the dicrotic notch, and is correlated
with total peripheral resistance (Wang et al., 2009). Pulse-to-
pulse interval is obtained from the time interval between the
characteristic points of two adjacent pulses of PPG. Pulse onset,
systolic peak, and maximum value of derivative PPG are mainly
used to measure pulse-to-pulse intervals. Pulse-to-pulse interval
refers to one cycle of cardiac activity (Linder et al., 2006;
Fu et al., 2008; Jubadi and Sahak, 2009; Gil et al., 2010). By
calculating the pulse width ratio at different systolic amplitudes,
the characteristic of an individual’s cardiovascular system by
exercise could be determined (Poon et al., 2004). Pulse rate
variability obtained through the pulse-to-pulse interval of PPG
shows high correlation with the traditional heart rate variability
obtained through electrocardiogram, and has been introduced
as a surrogate method for measuring electrocardiogram-based
heart rate variability under resting conditions (Lu et al., 2008).

FIGURE 4 | Features of the photoplethysmogram waveform. PPIsystolic, interval between systolic peaks of adjacent pulse; PPIdV/dt, interval between maximum dV/dt
of adjacent pulse; PPIonset, interval between pulse onsets of adjacent pulse; PWx, pulse width at x% of systolic amplitude; Asys, systolic area; Adia, diastolic area;
Atotal, total pulse area.
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TABLE 1 | Summary of photoplethysmogram (PPG) features and clinical relationship.

Feature type Definition Description Clinical use

Basic Systolic amplitude • Maximum amplitude of the PPG systolic phase. • Pulsatile component of blood volume
(Asada et al., 2003; Chua and Heneghan, 2006)
• Stroke volume (Murray and Foster, 1996)
• Local vasodilatation (Dorlas and Nijboer, 1985)

Pulse width • The width of pulse. It usually represented as a
time interval between the x% of the maximum
systolic amplitude of PPG.

• Systemic vascular resistance
(Awad et al., 2007; Lee et al., 2011c)

Pulse Area • The total area of the PPG in a pulsation.
• The area of the systolic section, or the area of the

diastolic section, divided based on the dicrotic
notch.

• Surgical skin incision (Seitsonen et al., 2005)
• Total peripheral resistance (Wang et al., 2009)

Pulse-to-pulse
interval

• The time interval between the maximum systolic
amplitudes of two adjacent pulsations of PPG.
• The time interval between the pulse onsets of two

adjacent pulsations of PPG.
• Time interval between the points of maximum

derivative of two adjacent pulsations of PPG.

• Cardiac cycle (Linder et al., 2006; Fu et al., 2008;
Jubadi and Sahak, 2009; Gil et al., 2010)
• The systolic amplitude and pulse interval ratio

reflect the individual’s cardiovascular system
characteristics (Poon et al., 2004)
• Heart (or Pulse) rate variability (Lu et al., 2008)

Combined Perfusion index • The ratio of the amplitude of the pulsatile
component to the non-pulsatile component of
PPG.

• Peripheral perfusion (Lima and Bakker, 2006;
Hasanin et al., 2017; Chu et al., 2018)

Large artery
stiffness index

• Index calculated by dividing the subject’s height
by the time interval between the systolic peak and
the diastolic peak.

• Arterial stiffness (Millasseau et al., 2002, 2003;
Yousef et al., 2012))

PPG augmentation
index

• The ratio of the systolic peak amplitude to the
diastolic peak amplitude of a PPG.
• The ratio of the difference between the systolic

peak amplitude and diastolic peak amplitude to
the diastolic peak amplitude of a PPG.

• Arterial stiffness (Takazawa et al., 1998;
Brillante et al., 2008; Rubins et al., 2008)

Pulse transit time • Time difference between the specific features of
PPGs measured at two different body sites.

• Cuffless blood pressure
(Foo et al., 2006; Liu et al., 2018)

Derivative 1st Crest time • Time interval between the pulse onset and the
first zero-crossing of the derivative PPG.

• Longer in vascular disease or hypertension
patients (Hertzman, 1937;
Dillon and Hertzman, 1941)

1T • Time difference between the first and the second
zero-crossing points proceeding in the positive to
negative value of PPG derivative.

• Time taken for the blood ejected from the heart to
pass to the peripheral blood vessel
(Alty et al., 2007)

2nd b/a • Ratio of the amplitude of the early systolic
negative peak to the amplitude of the early
systolic positive peak of SDPTG.

• Proportional to the stiffness of blood vessels, and
increases with age (Takazawa, 1993;
Imanaga et al., 1998; Baek et al., 2007)
• Inversely related to lead poisoning

(Aiba et al., 1999)
• Proportional to the Framingham risk score

(Otsuka et al., 2006)

c/a • Ratio of the amplitude of the late systolic
re-increasing peak to the amplitude of the early
systolic positive peak of SDPTG.

• Vascular stiffness, and decreases with age
(Takazawa, 1993; Baek et al., 2007)
• Identifying hypertensive patients

(Simek et al., 2005)

d/a • Ratio of the amplitude of the late systolic
re-decreasing peak to the amplitude of the early
systolic positive peak of SDPTG.

• Inversely proportional to vascular stiffness, and
decreases with age (Takazawa, 1993;
Baek et al., 2007)
• Evaluation of vasoactive agents (Takazawa, 1993;

Baek et al., 2007)

e/a • Ratio of the amplitude of the early diastolic
positive peak to the amplitude of the early systolic
positive peak of SDPTG.

• Inversely proportional to vascular stiffness, and
decreases with age (Takazawa, 1993;
Baek et al., 2007)

(Continued)

Frontiers in Physiology | www.frontiersin.org 6 March 2022 | Volume 12 | Article 808451

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-808451 February 14, 2022 Time: 15:45 # 7

Park et al. Photoplethysmogram Analysis and Applications

TABLE 1 | (Continued)

Feature type Definition Description Clinical use

(b-c-d-e)/a • Ratio of the amplitude of all of the late systolic
re-increasing peaks, the late systolic
re-decreasing peak, and the early diastolic
positive peak subtracted from the early systolic
negative peak, to the amplitude of the early
systolic positive peak of SDPTG.

• Vascular aging assessment (Takazawa, 1993;
Baek et al., 2007)
• Atherosclerosis assessment (Takazawa, 1993;

Baek et al., 2007)

(b-e)/a • Ratio of the amplitude of the early diastolic
positive peak subtracted from the early systolic
negative peak, to the amplitude of the early
systolic positive peak of SDPTG.

• Substitute indicator when c and d waveforms of
indicator (b-c-d-e)/a are not identified

(Takazawa, 1993; Baek et al., 2007)

(b-c-d)/a • Ratio of the amplitude of all of the late systolic
re-increasing peaks and the late systolic
re-decreasing peak subtracted from the early
systolic negative peak, to the amplitude of the

early systolic positive peak of SDPTG.

• Increases with chilly sensation (Ushiroyama, 2005)

PPG, photoplethysmogram; SDPTG, second derivative PPG.

However, it was reported that PRV could be differ from HRV
under dynamic conditions, such as exercise or mental stress
conditions (Schäfer and Vagedes, 2013; Mejía-Mejía et al., 2020).

Combined Features of Photoplethysmogram
Features that combine several characteristic points of PPG
include perfusion index, large artery stiffness index, PPG
augmentation index, and PTT. Perfusion index is calculated
as the ratio of the pulsatile component to the non-pulsatile
component of the PPG. It is used as an index to evaluate
peripheral perfusion (Lima and Bakker, 2006; Hasanin et al.,
2017; Chu et al., 2018). Aortic stiffness index is calculated
by dividing the height of a subject by the time interval of
the maximum amplitude of the systolic and diastolic peaks. It
represents the stiffness of an artery (Millasseau et al., 2002, 2003;
Yousef et al., 2012)). PPG augmentation index is used as a feature
for the stiffness of arterial vessels; it is calculated as the ratio of
the amplitude of the systolic peak to the amplitude of the diastolic
peak (Takazawa et al., 1998; Brillante et al., 2008) or by dividing
the difference between the amplitude of the systolic and diastolic
peaks by the amplitude of the systolic peak (Rubins et al., 2008).
PTT is obtained through the time difference between specific
feature points of PPGs measured in two different body sites. It
is used as a feature to estimate blood pressure (Foo et al., 2006;
Liu et al., 2018). Table 1 describes the common features.

Derivative Features of Photoplethysmogram
Since the 1970s, studies have shown that the differential
waveform of PPG has physiological significance. After Takazawa
et al. (1998) showed a correlation between the second derivative
PPG and aging, PPG derivative studies began to receive full-scale
attention. Figure 5 shows a PPG waveform, derivative PPG, and
second derivative PPG. Derivative and second derivative PPGs
are advantageous for representing spatiotemporal variations of
PPG with respect to peak position, inflection point, number
of peaks, ascending slope, and descending slope. They can be
used as an alternative method to detect dicrotic and diastolic
peaks that are difficult to detect in original PPG waveforms. The
first-order derivative waveform of PPG is also called velocity

FIGURE 5 | Waveform and features of photoplethysmogram (PPG, top),
derivative PPG (middle), and second derivative PPG (bottom). Crest time is
the elapsed time from pulse onset to systolic peak. 1T is the time interval
between systolic peak and diastolic peak that is defined by the second
downward zero-crossing time in derivative PPG. In the second derivative
PPG, a, b, c, d, and e are the early systolic positive peak, early systolic
negative peak, late systolic re-increasing peak, late systolic re-decreasing
peak, and early diastolic positive peak, respectively.

plethysmography (VPG). The first derivative waveform of PPG
can be used to extract crest time, the time taken to contract from
the pulse onset of the original signal to the systolic peak, or time
interval 1T from the systolic peak to the diastolic peak. Crest
time can be defined as the time taken from the start point of the
VPG waveform to the following zero-crossing. Hertzman (1937)
and Dillon and Hertzman (1941) proposed that crest time could
be longer in patients with vascular disease or hypertension than
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in a normal group. Alty et al. (2007) reported that among the
features extracted from the first derivative PPG, 1T, defined as
the time difference between the first and second zero-crossing
points proceeding in the positive to negative value in the VPG
waveform and crest time shows high accuracy for predicting
cardiovascular disease. They showed that 1T is related to the
time it takes for blood ejected from the heart to pass to peripheral
blood vessels, and that it can classify cardiovascular diseases
with an accuracy of 87.5% using a support vector machine.
The second-order derivative PPG waveform is also called the
second derivative of phothoplethysmogram (SDPTG), second
derivative of the digital volume pulse (SDDVP), and acceleration
plethysmogram (APG). Takazawa et al. (1998) defined the peaks
and valleys of the second-order differentiated PPG waveform
as a, b, c, d, and e, as shown in Figure 5. They showed that
combined indices, such as b/a, c/a, d/a, and e/a, had a significant
correlation with aging.

Other Clinical Applications
In addition, studies for predicting various parameters or
diagnosing diseases have been conducted using PPG. In addition
to basic heart rate estimation, PPG is used for blood pressure
estimation (Poon and Zhang, 2005; Muehlsteff et al., 2006; He
et al., 2014; Nabeel et al., 2017; Wang et al., 2018; El Hajj and
Kyriacou, 2020), vascular aging assessment (Takazawa et al.,
1998; Bortolotto et al., 2000; Millasseau et al., 2003; Baek et al.,
2007; Jubadi and Sahak, 2009; Wang et al., 2009; Yousef et al.,
2012; Dall’Olio et al., 2020; Korkalainen et al., 2020), arterial
fibrillation prediction (Poh et al., 2018; Kwon et al., 2019;
Aschbacher et al., 2020; Cheng et al., 2020; Pereira et al., 2020),
diabetes prediction (Shan et al., 2016; Tang et al., 2017; Poh
et al., 2018; Eerikäinen et al., 2019; Guo et al., 2019; Kwon
et al., 2019; Proesmans et al., 2019; Yang et al., 2019; Aschbacher
et al., 2020; Cheng et al., 2020; Pereira et al., 2020), peripheral
vascular disease assessment (Allen and Murray, 1993; Alnaeb
et al., 2007; Bentham et al., 2018; Allen et al., 2021), surgical
and postoperative pain assessment (Ahonen et al., 2007; Struys
et al., 2007; Kallio et al., 2008; Hasanin et al., 2017; Yang
et al., 2018; Seok et al., 2019), heterogeneous bio-signal (e.g.,
ECG) reconstruction (Zhu et al., 2021), hemodynamic parameter
estimation such as cardiac output (McCombie et al., 2005; Wang
et al., 2009, Wang et al., 2010, 2014; Lee et al., 2013) or stroke
volume (Liu et al., 2020a,b), sleep monitoring including apnea
and hypopnea detection (Behar et al., 2014; Uçar et al., 2015; Park
and Choi, 2019; Hilmisson et al., 2020; Lazazzera et al., 2020),
and emotional recognition (Rakshit et al., 2016; Ayata et al., 2018;
Goshvarpour and Goshvarpour, 2018, 2020; Lee et al., 2019).

Photoplethysmogram Noise
The results of our literature research related to PPG noise
reduction are summarized. Representative noises that affect
PPG analysis results include MAs related to body movement
and sensor attachment, baseline change due to respiration
and body movement, and hypoperfusion due to decreased
peripheral perfusion. Figure 6 describes these representative
photoplethysmogram distortions. Each noise is described in the
following subsections.

FIGURE 6 | Examples of representative PPG distortion due to motion artifact,
baseline wandering, and hypoperfusion (from top to bottom).

Motion Artifact
Motion artifact, which is mainly caused by body motions, such
as hand movement, walking, and running, is a critical noise
when measuring PPG. Depending on probe type and light source,
PPG measurement may be more sensitive to MA; it has been
reported that red and green wavelengths are more robust to MA
(Matsumura et al., 2020). In addition, depending on measuring
sites, it was shown that MA in ear PPG is less than in finger
or forehead PPG (Selvaraj et al., 2011). Since MA is known to
have a frequency range of 0.01–10 Hz, the major component of
PPG can be distorted by overlapping with the main frequency
band (0.5– 5 Hz) of PPG (Bagha and Shaw, 2011; Rojano and
Isaza, 2016; Lee et al., 2020). Such distortion makes it difficult
to detect important features during analysis, and that causes
false diagnosis. Therefore, an MA must be removed or corrected
prior to analysis. In MA removal using a frequency domain
filter, a high-pass filter is mainly used. Joseph et al. reported
that a high-pass filter with a cut-off frequency of 0.15 Hz does
not change pulse shape, while maintaining an ideal ratio of the
pulsatile and non-pulsatile components of PPG (Joseph et al.,
2014). In addition, a study by Allen and Murray comparing
the performance of a total of 90 filters by combining 9 filter
types and 10 filter orders found the fourth-order Chebyshev
type II filter to have the best performance in improving PPG
signal quality (Allen and Murray, 2004). However, since the
frequency domain filter alone has limitations in removing MA
according to various motion intensities and motion types, studies
on removal of MAs are being conducted using algorithms based
on filters, accelerometers, and multiple wavelengths. The MA
reduction method by independent component analysis (ICA) is
a method of removing only the MA component by extracting
independent components corresponding to PPG and MA from
PPG containing MAs, assuming that PPG and MA are random
vectors. Kim and Yoo (2006) qualitatively confirmed that the
PPG and MA components can be separated by ICA. Lee et al.
(2020) proposed a method to reduce MA by applying ICA to
the multi-channel PPG obtained with a multi-wavelength light
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source. In their study, the MA included in PPG during walking,
fast walking, and running was reduced by ICA. PPG peak was
then detected. The position of the detected PPG peak was 99,
96.2, and 82.0%, consistent with the QRS position of the ECG in
walking, fast walking, and running, respectively. In MA removal
using adaptive noise cancelation (ANC), the accelerometer and
PPG are measured simultaneously. The damaged part of the
PPG is found and removed by the motion detected by the
accelerometer (Widrow et al., 1975). Foo and Wilson (2006) used
ANC to remove the MA generated from light motion, while
Poh et al. (2010) used ANC to remove the MA generated from
walking and running. In addition, Han et al. (2007) proposed
a method of removing MA by simultaneously measuring PPG
and acceleration, and applying a two-dimensional active noise
cancelation algorithm. This algorithm can reduce the signal
distortion rate from 52.3 to 3.53 at a frequency of 1–2.5 Hz using
the 4th-order normalized least mean square (NLMS) adaptive
filter. Seyedtabaii and Seyedtabaii (2008) proposed that adaptive
filtering based on the Kalman filter may be effectively used for
MA reduction. A study by Reddy et al. (2008) reduced the
normalized root mean squared error by 35 dB after eliminating
MA components in a frequency domain by cycle-by-cycle
Fourier series analysis for each pulse in PPG. Patterson and
Yang (2011) showed that MA for vertical finger movement
and rotational movement could be removed through stationary
wavelet transform. The error with HR and HRV obtained from
ECG can be reduced (Joseph et al., 2014).

Baseline Wandering
The baseline of the pulsatile component of PPG and AC
amplitude of PPG can be changed by various factors, such
as respiration, sympathetic nervous system activities, and
thermoregulation (Allen, 2007). The change in PPG baseline
interferes with the analysis of the AC component of PPG.
Therefore, to accurately analyze the AC component of PPG,
Timimi et al. (2017) proposed a method of directly removing
the change in baseline and a method of removing the change
in baseline by subtraction from the measured signal based
on estimation of the change in baseline. Jang et al. (2014)
reported that high-pass filtering (HPF) is frequently performed
in the method of directly removing the baseline. The frequency
component of the AC of PPG is a component related to pulsation.
This is normally higher than 0.5 Hz (30 bpm) in a healthy person.
However, the respiratory component that causes baseline change
has a frequency range of 0.15–0.5 Hz. HPF is performed to
remove baseline movement located in the low-frequency range
without damaging the AC component, based on the frequency
range difference of signals. HPF is simpler and more convenient
to performed than the method of baseline removal based on
direct estimation. However, when the frequency component of
PPG AC is lower than the cut-off frequency band of HPF, this
method may cause signal distortion. As a method of indirectly
estimating and removing the baseline, interpolation methods,
such as linear interpolation and cubic spline interpolation, can
be used for baseline estimation. A method combining wavelet
and least mean square (LMS) adaptive filter can also be used
(Wang et al., 2003). The linear interpolation method can simply

estimate the baseline with a low-order polynomial. However,
linear interpolation has the disadvantage that it is not very
precise and the interpolant is not differentiable. Cubic spline
interpolation can compensate for this discontinuity of signal by
estimating the change in baseline through a cubic polynomial.
In baseline removal using the interpolation technique, baseline
wander is removed by subtracting the estimated baseline from
PPG. In the method of removing baseline variation by combining
wavelet transformation and LMS adaptive filter, the baseline
component extracted by wavelet transformation is applied to
the LMS adaptive filter to remove the baseline component.
Then, the PPG from which the baseline is removed is obtained
through inverse wavelet transform. Considering that PPG has
non-stationary characteristics, wavelet-based baseline estimation
may be appropriate. However, since both wavelet and adaptive
filtering must be performed, its computational complexity may
be high compared to other methods. In addition, due to the
transition band of the filter, such method is unsuitable for cases
with short signals.

Hypoperfusion
Hypovolemia, hypothermia, vasoconstriction, and decreased
cardiac output or mean arterial pressure may weaken changes
of blood volume in blood vessels, called poor perfusion or
low perfusion (Alnaeb et al., 2007). Hypoperfusion becomes
more pronounced toward the peripheries of the body. It affects
the pulsatile component of PPG, thus weakening amplitude
change (Kyriacou et al., 2002). To improve the low perfusion
waveform, Foo and Wilson applied a non-causal Wiener filter
with a 0.1- to 15-Hz pass band (Foo and Wilson, 2006);
they showed that the heart rate error estimated from low-
perfusion PPG could be reduced to less than 5.12%. Shafique
et al. (2012) proposed a method to improve low perfusion by
simultaneously measuring PPG using a transmission-type and
a reflection-type measuring device, and reconstructing the PPG
using a summing amplifier. The reconstituted PPG showed
higher sensitivity than single-mode PPG in PPG measurement in
a low perfusion state that was forcibly generated using the cuff.
Oxygen saturation measurement also showed lower failure rate
than commercial products.

In addition to the movement, respiration, and low perfusion
of a subject, there are numerous factors that can distort the PPG
waveform. Typical examples include ambient light, temperature
of the measuring site, skin pigmentation in the measurement
body site, alignment of light source and photodetector, method
of attaching the sensor to the skin, contact pressure between
the sensor and the skin, and posture of a subject (Reynolds
et al., 1991; Adler et al., 1998; Teng and Zhang, 2006; Zhang and
Zhang, 2006; Lee et al., 2011b; Kim et al., 2016). Ambient noise
reduction is mainly attempted through hardware improvement.
Kim et al. (2016) developed a PPG readout chip equipped
with a technique that can remove the effect of ambient light
through a charge redistribution method after cross-sampling
PPG mixed with ambient light with complementary metal–
oxide–semiconductor (CMOS) process. Cold site temperature
causes vasoconstriction of the measurement site and reduces
perfusion, thereby degrading the quality of the measured signal
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(Khan et al., 2016). Massage or warming is known to be effective
for increasing blood flow or perfusion, and improvement of
signal quality through this method has also been reported
(Bohusch et al., 1994; Foo, 2007; Freckmann et al., 2012). It is
known through several studies that the signal-to-noise ratio of
PPG measured according to skin color or pigmentation shows
a significant difference (Fallow et al., 2013; Yan et al., 2017;
Sañudo et al., 2019). Yan et al. (2017) suggested multi-wavelength
measurement to be effective as a method to reduce deviation
by skin type. In addition, Fallow et al. (2013) reported that
high-resolution PPG can be obtained for various skin types
with green wavelength under resting conditions, and green or
blue wavelength under exercise conditions. When measuring
PPG, probe pressure causes change in PPG waveform and could
affect analysis result (Dresher and Mendelson, 2006b; Liu et al.,
2015). A method of adjusting the contact force by optimizing
the housing design of the PPG probe (Dresher and Mendelson,
2006a) or using a measuring platform with a built-in force
regulator in the probe (Sim et al., 2018) has been proposed as a
method to improve non-uniform contact force.

Photoplethysmogram Signal Processing
Photoplethysmogram Preprocessing
Table 2 summarizes the pre-processing techniques of PPG.
Because of the simplicity of its waveform, PPG has a relatively
simple pre-processing process. Our literature search found that
most PPG pre-processing was dependent on frequency filtering
to remove high-frequency or low-frequency noise. In frequency
filtering, the lower bound of the passband in most studies is
about 0.5 Hz (Sukor et al., 2011; Papini et al., 2018; Canac et al.,
2019; Pradhan et al., 2019) to remove the DC component below
0.1 Hz and respiratory component in the 0.1–0.5 Hz band while
obtaining only the AC component of PPG. The upper bound
of the bandpass filter is usually determined considering that
the main frequency components of PPG are included within
the fourth harmonics in the frequency domain. The upper
bound of the frequency filter at 10 Hz as the position of the
fourth harmonics is often used when heart rate is 150 bpm
(2.5 Hz). Thus, in the general case, the low pass filter that has
a 10-Hz cutoff frequency can include most PPG frequencies
(Papini et al., 2018; Canac et al., 2019; Liu et al., 2020a,b). The
Butterworth, Chebychev I, and finite impulse response (FIR)
filters are mainly used for frequency filtering. PPG pre-processing
is also performed by decomposing the waveform into several
frequency components, removing noise for each component, and
then recombining them. A representative of these methods is
the method based on empirical mode decomposition (EMD) or
wavelet decomposition. With the EMD-based method, the noise
component is removed by excluding the intrinsic mode function
(IMF) based on a specific frequency after obtaining the IMF of
PPG and then recombining it. Lu et al. (2008) removed low-
frequency noise and the trend of PPG by recombining only
IMF with a dominant frequency > 0.5 Hz. Similarly, in a study
using a wavelet transform, noise is removed by obtaining a
sub-band signal through wavelet decomposition and combining
specific sub-bands. Vadrevu and Manikandan (2018) showed

that low-frequency and high-frequency noise of PPG can be
effectively removed in the preprocessing step to detect the peak
by recombining the sub-band signal after applying the stationary
wavelet transform. Shin et al. (2010) used the discrete cosine
transform to remove noise outside the 0.5- to 10-Hz band, and
found that it can be used for PPG pre-processing with sparse
frequency characteristics. Selvaraj et al. (2011) showed that a
high-order polynomial can be used to handle non-stationary
dynamics. In addition to noise reduction, pre-processing is
also performed for signal enhancement purposes. Kim et al.
(2019) proposed an amplitude regularization technique using
an envelope curve to reduce the fluctuation of PPG amplitude.
Canac et al. (2019) used a moving differentiation filter to sharpen
PPG upslope and eliminate high-frequency noise.

Photoplethysmogram Peak Detection
Peak detection is essential for analyzing PPG. Detection methods
based on zero-crossing, local maxima or minima (LCM), adaptive
threshold, and machine learning have been proposed. Zero-
crossing is a method that can find the point where the sign of
the slope changes, in the same way as a quasi-periodic signal
peak detection method. However, since the zero-crossing-based
method is highly likely to erroneously detect peaks due to
tiny fluctuations of signals, various filtering methods must be
applied in the peak detection method based on zero-crossing to
simplify the PPG waveform. To detect PPG peaks using the zero-
crossing method, Canac et al. (2019) used a 0.5- to 10-Hz 4th
order Butterworth filter and a moving difference filter for the
detection of pulsating wave peaks, while Kavsaoğlu et al. (2016)
segmented the PPG signal and divided it by the sign of each
slope. In addition, a method for detecting peaks through zero-
crossing after wavelet or Hilbert transform of the PPG signal
has been reported (Scholkmann et al., 2012; Ferro et al., 2015).
Ferro et al. (2015) detected onsets and systolic peaks of a pulse
wave with low complexity and low computation cost; however,
their study was validated with only a small number of study
subjects (N = 10) in a noise-free environment. Vadrevu and
Manikandan (2018) decomposed the PPG component through
wavelet decomposition and then detected systolic and onset
peaks, without by knowledge rule-based post-processing. This
approach showed over 99% of sensitivity and predictivity on the
total number of 116,255 beats taken from three PPG databases;
however, it has relatively high complexity from the use of wavelet
decomposition. Also, it is hard to apply for real-time application
because of being designed for a non-causal system. One of the
most frequently used PPG peak detection methods is a method
based on LCM detection. LCM is a method of finding the
maximum or minimum value within a specific region based
on a pre-defined threshold. In LCM peak detection, peaks are
detected by repeated window sliding and peak detection. The
detection threshold can have a fixed value or an adaptive value.
Lu et al. (2008) determined the threshold at a certain ratio of
the maximum PPG value. Xu et al. (2008) set the threshold
based on pulse height and detected peaks by comparing the
heights of candidate peaks within a 2-s window. The LCM
method requires appropriate window size selection. It has the
disadvantage that if there are large-scale baseline changes due to
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TABLE 2 | Summary of preprocessing methods for PPG.

Preprocessing
method

Details Purpose

Frequency
filtering

Bandpass filter Reduction for
high-frequency noise,
baseline movement
reduction

- 1st order Butterworth [(0.5 – 5) Hz] (Sukor et al., 2011)

- 2nd order Butterworth [(0.2 – 10) Hz] (Liu et al., 2020b)

- 3rd order Butterworth [(0.4 – 10) Hz] (Papini et al., 2018)

- 4th order Butterworth [(0.5 – 50) Hz] (Pradhan et al., 2019)

- 4th Chebychev I [(0.5 – 16) Hz] (Ferro et al., 2015)

- 4th order Butterworth [(0.5 – 10) Hz] (Canac et al., 2019)

- 64th order FIR [(0.1 – 10) Hz] (Selvaraj et al., 2011)

- Discrete cosine transform filtering [(0.5 – 10) Hz] (Shin et al., 2010)
High pass filter

- 4th order Butterworth, cut-off: 0.01 Hz (Fischer et al., 2017)
Low pass filter

- 2nd order Butterworth, cut-off 10 Hz (Liu et al., 2020a)

- 4th order Butterworth, cut-off 15 Hz (Fischer et al., 2017)

Empirical mode
decomposition

Waveform reconstruction using intrinsic mode functions whose dominent frequency is > 0.5 Hz
(Lu et al., 2008)

Reduction for
low-frequency (<0.5 Hz)
noise and baseline noise
reduction

Wavelet
transform

Signal reconstruction using specific sub-bands after stationary wavelet transform (Vadrevu and
Manikandan, 2018)

Suppression of background
artifacts and noises

Independent
component
analysis

Reducing motion artifact using frequency domain independent component analysis based on red
and infrared signal (Krishnan et al., 2008)

Motion artifacts reduction

Moving
difference filter

Calculating the difference with the sample after a window size of a moving window (Canac et al.,
2019)

Enhancing upslope of the
photoplethysmogram

Curve fitting Amplitude normalization Eliminating non-stationary
dynamics

- Amplitude compensation curve (Kim et al., 2019)

Detrending

- 32nd-order polynomial fitting (Selvaraj et al., 2011)

respiration or other various causes, accurate detection becomes
difficult. Shin et al. (2009) proposed an adaptive threshold PPG
peak detection method based on a dynamic threshold that tracks
the signal amplitude and finds peaks at the maximum amplitude
outside the refractory period. Adaptive threshold is known to
overcome the shortcoming of the LCM method that is vulnerable
to baseline noise, such as baseline fluctuations due to respiration,
with better detection performance than the LCM method for
detecting the peaks of PPG signals. Scholkmann et al. (2012)
proposed a method of estimating the local maxima by obtaining
a scalogram of wavelet transformation and then rescaling it. In
this method, the local maxima scalogram was first calculated and
rescaled. Peaks were then detected by row-wise summation and
column-wise standard deviation. The proposed method has high
robustness against high-frequency and low-frequency noise, and
has a potential to be used for detection of various signal peaks.
Recently, there have been attempts to apply deep learning to
PPG peak detection. Orjuela-Cañón et al. (2013) proposed a PPG
peak detection method based on a self-organized map. Although
the PPG peak detection method using machine learning has not
yet been confirmed to have stable performance, performance
improvement is expected in the future through continuous
development. The PPG peak detection methods mentioned above

can detect peaks with high accuracy in PPG signals without
noise. However, their PPG peak detection performance may
be greatly degraded because of MAs, baseline wandering, and
low perfusion. In addition, in the case of systolic peak, there
is the possibility of erroneous detection due to interference
of the dicrotic and diastolic peaks. Therefore, noise removal
through proper signal pre-processing and restoration of distorted
signals remains important for PPG utilization. Table 3 briefly
summarizes the PPG peak detection techniques.

Photoplethysmogram Waveform Reconstruction
Photoplethysmography (PPG) waveform reconstruction is
mainly performed to restore the damage to PPG caused by noise,
such as MAs. If distortion of PPG is not severe with preservation
of the main components of the waveform, PPG can be
decomposed into wavelet components through discrete wavelet
transform, and noise can be removed for each component to
restore PPG (Tang et al., 2016). In addition to the reconstruction
method in the time–frequency domain using discrete wavelet
transform, a method of reconstructing PPG using eigen-
decomposition has also been proposed (Salehizadeh et al., 2014).
In this method, after eigen-decomposition is performed to
extract the eigen components of PPG, PPG is restored only
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TABLE 3 | Overview of studies on peak detection of PPG.

Study Subjects (age) Recording
time

(minute)

Experimental
condition
(default is
resting)

Device used Sensor
position

Peak type Results

Canac et al.,
2019

108 patients
(30–64)

n.s. Supine Multi-Dop X
(Compumedics
DWL, Singen,
Germany)

Head Onset Acc: 99.5%

Kavsaoğlu
et al., 2016

20 healthy adults
(18–41)

1 Sitting SDPPG_V2.0
(APMKorea,
Daejeon, Korea)

n.s. Systolic Acc: 100%

Ferro et al.,
2015

10 healthy adults
(19.3 ± 1.4)

5 Supine In-house device n.s. Onset, systolic Acc: 95%
(onset)
Acc: 100%
(systolic)

Vadrevu and
Manikandan,
2018

20 healthy adults
(18–35)

10–15 Sitting In-house sensor Finger Onset, systolic Acc: 99.3%
(onset)
Acc: 99.3%
(systolic)

Lu et al., 2008 10 healthy adults
(26 ± 7.5)

20 Upright, supine MP506 (Medtronic,
MN, United States)

n.s. Onset Obtaining pulse
rate variability
highly
correlated with
heart rate
variability

Shin et al.,
2009

18 healthy adults
(17–30)

5 Supine
(respiratory
control), Sitting
(spontaneous
breathing)

PPG 100C (Biopac,
CA, United States)

Finger Onset, systolic Acc: 98.9%
(onset)
Acc: 98.2%
(systolic)

Scholkmann
et al., 2012

n.s. 3.5 n.s. Functional
near-infrared
spectroscopy
MCP-II (n.s.)

Prefrontal
cortex

Systolic Acc: 100%

Orjuela-Cañón
et al., 2013

7 healthy adults
(19.3 ± 1.5)

5 Supine n.s. n.s. Onset, systolic Acc: 100%
(onset, systolic)

Acc, accuracy; n.s., not specified.

with the main components from which the noise components
are removed. When most of the waveform information is lost
because of severe distortion of PPG, detecting the damaged
part and estimating the waveform of the corresponding part
to restore it using a machine learning technique, such as
recurrent neural network, have been reported (Tarvirdizadeh
et al., 2018; Roy et al., 2019). In addition to restoring distorted
parts, reconstruction of the PPG waveform can be performed to
enhance the waveform. To equalize PPG amplitude fluctuations
when severe fluctuations in the PPG baseline or amplitude occur,
Kim et al. (2019) proposed a method of compensating the PPG
amplitude using an amplitude compensation curve generated
from the envelope of the PPG waveform. Figure 7 shows an
example of PPG waveform reconstruction.

Signal Quality Index
Feature-Based Signal Quality Assessment
Signal quality index (SQI) is generally used to evaluate signal
quality, such as signal-to-noise ratio. It is applied before signal
analysis to evaluate the usability of a signal (see Figure 8). Pulse
quality index refers to the quality of pulses constituting the signal,

FIGURE 7 | Example of PPG waveform reconstruction. Dashed line is
distorted PPG, while bold line is reconstructed PPG.

and is used to evaluate the quality of the pulse waveform as part
of the SQI. Waveform quality is the most important factor in
deriving accurate analysis results. A signal of low quality increases
the false alarm, as well as probability of occurrence of an analysis
error, which can lead to clinical misdiagnosis. For example, if part
of the waveform is lost when calculating heart rate, an error may
occur in peak detection, resulting in change in heart rate.

Such a case may also occur in a patient-monitoring device
that monitors the physiological signals of a patient in real
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FIGURE 8 | Example of signal quality assessment using signal quality index
(SQI).

time. Patient monitoring alerts medical staff when vital signs,
such as HR, deteriorate. As in the previous case, false alarms
may occur because of deterioration of waveform quality caused
by movement or sensor attachment condition, although the
condition of a patient is normal. These false alarms cause noise
stress to medical staff and can interfere with their accurate and
immediate response. In addition, because of recent increase in the
use of PPG in the field of mobile healthcare, there is an increasing
demand to improve its usability in the mobile environment.
However, PPG is very vulnerable to MAs. It may suffer from
signal quality degradation due to various factors, such as low
perfusion or ambient light. Therefore, it is very important to
distinguish between analyzable and non-analyzable sections of
the measured PPG signals. To improve the accuracy of analysis
results, SQI evaluation of PPG is becoming more important,
especially in the mobile environment.

Table 4 summarizes previous studies on signal quality
assessment. Among methods for evaluating SQI, the rule-based
method can determine the availability of a signal by sequentially
determining various parameter values, such as amplitude, beat
interval, and feature value, describing the PPG waveform based
on specific thresholds. Fischer et al. (2017) evaluated signal
quality using thresholds for amplitude, rise time, pulse-to-pulse
interval, number of diastolic peaks, and waveforms of a pulsation.
Sukor et al. (2011) similarly proposed a method for evaluating
SQI by applying a decision tree to amplitude, beat interval,
waveform width, ensemble mean of all beats, and Euclidean
distance; the quality of PPG was distinguished into three grades
and was evaluated with an accuracy of 83 ± 11% and sensitivity
of 89± 10% compared to the expert-labeled gold standard.

Orphanidou et al. (2014) evaluated the quality of PPG signal
in two grades using heart rate, PPI interval and ratio, and
template matching, resulting in sensitivity and specificity of
more than 90%. Skewness and kurtosis are also frequently
used features for signal quality evaluation. Krishnan et al.
(2008) evaluated signal quality based on skewness and kurtosis.
Selvaraj et al. (2011) evaluated signal quality in two grades
through kurtosis and Shannon entropy. Elgendi (2016) classified
PPG into three grades (excellent, acceptable, and unfit), and

compared the performance of SQI evaluation indices, such
as perfusion index, kurtosis, skewness, relative power, non-
stationarity, zero-crossing, and entropy. Kurtosis and skewness
are statistical measures for quantifying the characteristics of a
normal distribution. Morphologically, “How sharp is the shape?”
and “In which direction and by how much is the shape skewed?”
can be quantified. From this morphological point of view, the
kurtosis and skewness of the PPG pulse can comprehensively
reflect the amplitude or position of the PPG shape, such as
pulse width, systolic peak, diastolic peak, and dicrotic notch.
In addition, since the kurtosis or skewness of the PPG pulse
can be clearly distinguished from motion noise, this can be an
effective means of distinguishing the PPG waveform from noise.
On the other hand, kurtosis and skewness may be inefficient
to detect the distortion caused by amplitude or pulse width
in an abnormal range, because they are determined by relative
shape, not by absolute value. The ratio of AC component to DC
component of PPG is called perfusion index (PI), and it has
been used in several studies to evaluate signal quality (Hartmut
Gehring et al., 2002; Cannesson et al., 2008a). PI is useful in
detecting waveform degradation by low perfusion, because it is
known to reflect vasomotor tone that may affect the pulsatile
absorption component; moreover, it is a direct indicator of low
perfusion by itself.

Song et al. (2019) proposed PQR as a method for evaluating
signal quality through high-frequency noise effect (P), baseline
effect (Q), and MA effect (R). In the PQR method, a PQI score
called rSQI is calculated by adding each score of P, Q, and R,
where P is the ratio before and after applying the low pass filter,
Q is the ratio before and after applying the baseline removal
filter, and R is calculated by the computation of extreme point
dispersion. In a study that evaluates SQI based on a template,
the template for a normal-quality waveform is generated and
compared with the input waveform to evaluate the quality.
Orphanidou et al. (2014) proposed a method for evaluating
waveform quality using HR, RR interval range, ratio of the
maximum RR interval to the minimum RR interval, and result
of adaptive template matching for ensemble average waveform of
the whole pulsatile waveform. Li and Clifford (2012) normalized
the length between the template and each pulse signal by dynamic
time warping when matching the template. In their study, the
template was created by ensemble-averaging pulsation waves
within the first 30 s. Papini et al. (2018) used a template created
by applying dynamic time warping barycenter averaging to PPG
measured for an hour in template-based signal quality evaluation.
Unlike existing methods, this template generation method does
not require an alignment process for ensemble averaging. Thus,
it offers more robust performance. Karlen et al. (2012) proposed
a technique to evaluate signal quality in the range of 0–100
by calculating the cross correlation between successive beats
and inputting a normalized cross-correlation coefficient to a
nonlinear scaling function; this algorithm showed reasonable
performance, but because it is based on exponential operation, it
requires high computing power. In addition to the SQI evaluation
method based on shape characteristics or templates of PPG or
rule-based, studies on the SQI evaluation of PPG using machine
learning have been actively conducted in recent years.
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TABLE 4 | Overview of studies on PPG signal quality assessment.

Study Number of
subjects (age)

Recording
time (minute)

Experimental
condition
(default is
resting)

Device used Sensor
position

Classification
grades

Results

Fischer et al.,
2017

69 unspecified
(>18)

30 n.s. n.s. n.s. 2 PPV: 98.6%
Sen: 99.5%
Acc: 98.4%
Spe: 91.6%
F1 score: 99.1%

Sukor et al.,
2011

13 healthy adults
(28 ± 4)

1 Sitting
(movement)

n.s. Finger 3 Sen: 89 ± 10%
Acc: 83 ± 11%
Spe: 77 ± 19%

Selvaraj et al.,
2011

24 healthy adults
(n.s.)

5–20 Supine
(involuntary
movement, 10
subjects),
sitting
(voluntary finger
movement, 14
subjects)

MLT1020 (ADI
Instruments, CO,
United States), PPG
100 (Biopac, CA,
United States)

Finger, ear,
forehead

2 In involuntary
movement,
Acc: 99.0% (ear)
Acc: 94.8% (finger)
Acc: 93.3%
(forehead)
In voluntary
movement (finger),
Sen: 85.0%
Spe: 99.4%

Elgendi, 2016 40 healthy adults
(34.7 ± 6.6)

80 s Exercise
(movement)

Salus APG (Kashima
Mediabind Co., Osaka,
Japan)

Finger 3 F1 score
Excellent: 86%
Acceptable: 87.2%
Unfit: 79.1%

Orphanidou
et al., 2014

19 healthy adults
(n.s.)

5 n.s. EQ-02 Life Monitor
(Hidalgo, Swavesey,
United Kingdom), Wrist
Ox2 3150 (Nonin
Medical Inc., Plymouth,
MN, United States)

Finger 2 Sen: 91%
Spe: 95%

Li and Clifford,
2012

104 patients from
MIMIC II database
(n.s.)

n.s. n.s. n.s. n.s. 3 Acc: 88.1%
(training)
Acc: 91.8%
(testing)

Papini et al.,
2018

16 healthy adults,
16 arrhythmia
patients (n.s.)

Overnight or
24 h

Supine n.s. Finger 2 PPV: 97% (healthy)
PPV: 95%
(arrhythmia)

Karlen et al.,
2012

Unspecified
patients from
Capnobase and
Complex System
Laboratory
database (1–74)

2–8 n.s. n.s. n.s. 0–100 PPV: 99.2%
Sen: 96.2%

Liu et al.,
2020b

10 healthy adults
(23.5 ± 1.7)

3 n.s. CS2000 (medis,
Ilmenau, Germany)

Neck (carotid
artery)

3 In grade ‘high’,
Sen: 81% Spe:
90% In grade ‘low’,
Sen: 84%
Spe: 93%

Liu et al.,
2020a

14 healthy adults
(22.7 ± 2.1)

3 n.s. CS2000 (medis,
Ilmenau, Germany)

Neck (carotid
artery)

3 Acc: 89.5%
(VGG-19)
Acc: 92.5%
(ResNet-50)

Naeini et al.,
2019

n.s. (n.s.) 5 days Ordinary life E4
(Empatica, MA,
United States), PulseOn
(pulseon, Espoo,
Finland)

Wrist 2 In grade
‘unreliable’,
PPV: 76.74%
Sen: 83.54%
In grade ‘reliable’,
PPV: 88.50%
Sen: 83.33%

Pradhan et al.,
2019

26 healthy adults
(approx. 65)

24 h Ordinary life E4
(Empatica, MA,
United States)

Wrist 5 Acc: 74.5%

PPV, positive predictive value; Sen, sensitivity; Acc, accuracy; Spe, specificity; n.s., not specified.
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Machine Learning- and Deep Learning-Based Signal
Quality Assessment
Liu et al. (2020b) evaluated PPG SQI using a five-layer fuzzy
neural network. In their study, the quality of the signal
was classified into three grades from the error of stroke
volume measured with a commercial device. Stroke volume
was calculated from PPG, and SQI evaluation performance was
evaluated by inputting parameters extracted from PPG to the
developed model. As a result, sensitivity of 0.81 and specificity
0.9 were shown for high-quality PPG, while sensitivity of 0.84
and specificity of 0.93 were shown for low-quality PPG. In
another study by Liu et al. (2020a), PPG and derivative PPG
were segmented for each beat and merged into a two-dimensional
image to be used as input, and a machine learning model, a deep
convolutional neural network (DCNN), VGG-19, or a residual
DCNN (ResNet-50) was used to classify PPG segments into three
grades of high, middle, and low. As a result, the study showed
that the machine learning method using two-dimensional (2D)
residual DCNN (RestNet-50) could more accurately evaluate
signal quality than the method using general DCNN. Naeini
et al. (2019) introduced a CNN-based method to evaluate the
quality of PPG in an Internet-of-things-based health monitoring
system. Their study performed binary classification of “reliable
or unreliable” for PPG quality using an entire 60-s PPG signal
as a CNN input, not extracted features, showing a precision of
0.89, and a recall of 0.83. Pradhan et al. (2019) conducted a study
comparing the performance of five machine learning classifiers
(k-nearest neighbor, multi-class support vector machine, naive
Bayes, decision tree, and random forest) to evaluate the SQI of
PPG using a wrist-wearable device. In their study, PPG quality
was classified into five grades; it was found that the random
forest SQI evaluation algorithm had the highest classification
accuracy, with an accuracy of 74.5%. In a recent study, Guo
et al. (2021) detected wearable PPG artifacts with a DICE
score of 0.87–0.91 through a combination of active-contour-
based loss and an adapted U-Net architecture; compared to the
existing general research methods, this method shows superior
performance. However, to sufficiently verify the performance
of the deep-learning model, verification using more abundant
data is required.

DISCUSSION

As seen in previous studies, most PPG pre-processing techniques
rely on frequency domain filtering, which is effective in removing
noise in a range that does not overlap with the core frequency
of PPG. However, frequency domain filtering has limitations
in handling non-stationary noise, making it possible to predict
limitations that existing popular pre-processing technologies
face when presuming increase in the use of PPG in future
mobile environment. In the mobile environment, various types
of non-stationary noise representing MAs can be introduced.
This is expected to provide a completely different experience
from measurement in an existing well-controlled environment.
EMD or wavelet-based pre-processing technology can be a good
alternative for dealing with frequency noise that does not overlap

with the frequency component of PPG or non-stationary signals.
However, it is also difficult to cope with severe distortion of
the signal, such as saturation due to MAs and poor contact.
Therefore, an innovative countermeasure against severe signal
distortion and non-stationary dynamics is needed in the future
by pursuing PPG pre-processing.

In relation to heartbeat, since PPG has a relatively simple
waveform, the complexity of the pulsatile feature detection
algorithm is relatively low for PPG signals compared to other
physiological signals. The pulsatile feature point detection
accuracy PPG may depend on the pre-processing algorithm with
superior noise removal or waveform recovery performance rather
than a pulsatile feature point detection algorithm. On the other
hand, while the use of PPG intrapulse waveform feature continues
to increase, there is no clearly verified detection algorithm. Nor
is related research active. From this point of view, future PPG
feature detection can be performed by focusing on an intrapulse
feature detection algorithm related to differential pulse waves or
dicrotic features rather than an algorithm that detects pulsatile
features such as pulse onset and systolic peak.

Spatiotemporal features of PPG have already been analyzed in
great detail for all inflection points of the waveform (Charlton
et al., 2018; Yang et al., 2018; Mousavi et al., 2019). Therefore,
rather than finding completely new morphological features
from the PPG waveform, it may be more effective to find the
clinical significance of existing features or discover a combination
feature. However, as features become more sophisticated, more
effort is required to detect a feature that might increase
false detection rate. Therefore, when discovering and selecting
features, it is important to keep in mind that the minimum
number of features should always be used to obtain maximum
effect. From this point of view, a machine learning-based analysis
method that can estimate a specific result by inputting a raw
signal without a special feature extraction process can have the
potential for a new breakthrough for research on a PPG feature
with increasing complexity.

For the representative noise of PPG, such as MAs, baseline
wandering, and low perfusion, it has been reported that the
baseline wandering noise of PPG can be effectively reduced
with improved PPG detection performance through a relatively
simple and easy-to-implement algorithm, such as a frequency
filter or interpolation method. In addition, there have been
attempts to decrease noise caused by low perfusion through
hardware improvement, as well as software methods, such as
adaptive filtering. However, a method that can completely remove
the distortion of PPG waveform due to low perfusion remains
unknown. Therefore, further research is needed to improve PPG
distortion due to low perfusion. An approach from the viewpoint
of noise removal technology and waveform reconstruction can
be considered. MA as the most important topic of PPG signal
processing can lead to the complete loss of PPG. Due to increased
PPG measurement in a mobile environment, most in-depth
research has been conducted for MA, compared to other noise
factors. Despite various sophisticated algorithms that have been
proposed for reducing MAs, a standard method for removing
motion noise has yet to be introduced. Reviewing published
studies on the removal of MAs revealed that an ICA method
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(Kim and Yoo, 2006), an acceleration sensor-based (Gibbs and
Asada, 2005), and an adaptive filtering method using a Kalman
filter (Seyedtabaii and Seyedtabaii, 2008) could be used. In the
case of removing motion noise through simple frequency domain
filtering using a high-pass filter, motion noise cannot be removed
sensitively according to the intensity or type of motion. The ICA
method and the adaptive filtering method can relatively improve
the performance of motion noise removal. However, when the
degree of motion noise is severe, they cannot be applied; for
example, when the signal is saturated and completely lost because
of motion. In such a case, a method of dividing the measured PPG
into sections in which a signal exists, and a section in which the
signal is lost, and analyzing selectively according to the classified
section, has been proposed. In this method, the section in which
motion noise can be removed is analyzed by applying motion
noise removal technology, while the section in which motion
noise could not be removed is excluded from analysis. Recently,
research studies on SQI as an index for evaluating signal quality
to distinguish between an analyzable section and an unanalyzable
section have significantly increased. By evaluating the quality of
a signal using SQI, false alarms in a patient monitoring device
can be prevented, and the accuracy of clinical analysis can be
improved by excluding error sections when interpreting signals.
SQI is expected to be used in parallel with signal processing
technology in the pre-processing stage. As mobile healthcare or
wearable technology develops, its utilization will increase further.
Machine learning technology is being applied in all areas of PPG
signal processing, such as noise reduction, feature detection, and
result analysis.

Machine learning in physiological analysis can omit complex
and high error probability processing stages, such as feature
detection, and derive results through end-to-end learning. This
is expected to improve accuracy in analysis. For example, if
a machine learning technique is applied, heart rate may be
derived from the PPG signal itself, without other procedures,
such as frequency domain transform, and peak detection or peak
detection and feature detection can be excluded when deriving
analytical results, such as SQI. In addition, since machine
learning can be used to remove noise or generate new waveforms,
its application to PPG processing is expected to increase in
the future. Although machine learning is a promising method
for analyzing PPG signals to be used in various applications,
it is necessary to secure a highly relevant large data set and
develop specialized models for each subdivided application.
In particular, attempts to find meaningful information from
PPG using various deep learning models are continuously
increasing. Representative applications of PPG analysis using
deep learning include heart rate estimation (Biswas et al., 2019;

Reiss et al., 2019; Panwar et al., 2020; Chang et al., 2021;
Mehrgardt et al., 2021), cuff-less blood pressure estimation
(Panwar et al., 2020; El-Hajj and Kyriacou, 2021a,b; Schrumpf
et al., 2021a,b; Tazarv and Levorato, 2021), and arterial fibrillation
prediction (Poh et al., 2018; Kwon et al., 2019; Aschbacher
et al., 2020; Cheng et al., 2020; Pereira et al., 2020). In
addition, PPG-based deep learning models are being used for
respiratory rate estimation (Ravichandran et al., 2019), sleep
monitoring (Korkalainen et al., 2020), diabetes (Avram et al.,
2019), vascular aging estimation (Dall’Olio et al., 2020), and
peripheral arterial disease classification (Allen et al., 2021). In
addition, to explain the causal relationship between input data
and output results, an in-depth approach using technologies such
as explainable AI, which has been recently studied, needs to
be conducted. With respect to bio-signals, although explainable
AI has been mainly applied to ECG (Sanjana et al., 2020;
Ganeshkumar et al., 2021; Jo et al., 2021; Maweu et al., 2021;
Raza et al., 2021; Taniguchi et al., 2021), it is difficult to
find a clear application case for medical purposes in PPG.
Although it is difficult to say that the application of explainable
AI to PPG has been generalized yet, it seems clear that
explainable AI will be introduced into PPG analysis given
the tendency for the development of machine learning to be
introduced into other fields. Machine learning is currently being
continuously researched and developed. Finding and utilizing
recent techniques and new methods, including explainable AI,
will help in the analysis of PPG signals.
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