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Despite substantial research on neuronal circuits in nudipleuran gastropods, few peptides have been implicated in nudipleuran behavior. In this study, we expanded the understanding of peptides in this clade, using three species with well-studied nervous systems, Hermissenda crassicornis, Melibe leonina, and Pleurobranchaea californica. For each species, we performed sequence homology analysis of de novo transcriptome predictions to identify homologs to 34 of 36 prohormones previously characterized in the gastropods Aplysia californica and Lymnaea stagnalis. We then used single-cell mass spectrometry to characterize peptide profiles in homologous feeding interneurons: the multifunctional ventral white cell (VWC) in P. californica and the small cardioactive peptide B large buccal (SLB) cells in H. crassicornis and M. leonina. The neurons produced overlapping, but not identical, peptide profiles. The H. crassicornis SLB cells expressed peptides from homologs to the FMRFamide (FMRFa), small cardioactive peptide (SCP), LFRFamide (LFRFa), and feeding circuit activating peptides prohormones. The M. leonina SLB cells expressed peptides from homologs to the FMRFa, SCP, LFRFa, and MIP-related peptides prohormones. The VWC, previously shown to express peptides from the FMRFa and QNFLa (a homolog of A. californica pedal peptide 4) prohormones, was shown to also contain SCP peptides. Thus, each neuron expressed peptides from the FMRFa and SCP families, the H. crassicornis and M. leonina SLB cells expressed peptides from the LFRFa family, and each neuron contained peptides from a prohormone not found in the others. These data suggest each neuron performs complex co-transmission, which potentially facilitates a multifunctional role in feeding. Additionally, the unique feeding characteristics of each species may relate, in part, to differences in the peptide profiles of these neurons. These data add chemical insight to enhance our understanding of the neuronal basis of behavior in nudipleurans and other gastropods.
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INTRODUCTION

Due to their relatively simple nervous systems and individually identifiable neurons, nudipleuran gastropods have yielded considerable insight into the neuronal basis of behavior (Katz and Quinlan, 2019). The neuronal circuits governing certain behaviors are well described (Elliott and Susswein, 2002; Crow, 2004; Gillette and Brown, 2015; Sakurai and Katz, 2015), yet there is relatively little information on the peptides and hormones regulating these circuits. Only one nudipleuran, Tritonia diomedea, has been the subject of a broad scale peptidomic study (Senatore et al., 2015) and physiological studies have largely focused on only three peptides: pedal peptide (Beck et al., 2000; Baltzley et al., 2011), FMRFamide (FMRFa; Lillvis et al., 2012; Webber et al., 2017), and one of the small cardioactive peptides (SCP; Watson and Willows, 1992; Lillvis et al., 2012; Watson et al., 2020). Because 100s of peptides and hormones are present in many species (Ma et al., 2009; Cafe-Mendes et al., 2014; Gan et al., 2015; Christie and Pascual, 2016; Van Camp et al., 2017), and peptidergic signaling is diverse and essential to animal behavior (Liu et al., 2008), the limited peptidomic insight constitutes a considerable gap in our understanding of nudipleuran physiology. Research on other gastropods further highlights this gap. Numerous peptides and peptide prohormones have been identified in the gastropods Aplysia californica and Lymnaea stagnalis (Hummon et al., 2003b; Di Cosmo and Di Cristo, 2006; Feng et al., 2009; Cropper et al., 2018; Wood et al., 2021), and recent large-scale transcriptomic studies have examined peptides in the snails Theba pisana (Adamson et al., 2015), Deroceras reticulatum (Ahn et al., 2017), and Charonia tritonis (Bose et al., 2017). Identifying more peptides in nudipleurans will help to rectify this deficit.

Nudipleurans also permit analysis of individual, homologous neurons, that is, neurons with conserved neuroanatomy and function (Bulloch and Ridgway, 1995; Sakurai and Katz, 2019). By comparing homologous neurons one can examine the evolution of behavior at the level of a single neuron (Croll, 1987), and moreover, enables examination of traits at the level of a clade rather than a single species, revealing trends in specific traits (Jourjine and Hoekstra, 2021). In most species, it is difficult to reproducibly identify individual neurons, but nudipleurans, with their large neuronal cell bodies, simple behaviors, and relatively few neurons (less than 10,0000; Boyle et al., 1983), allow for such identification (Katz and Quinlan, 2019). Additionally, the large neuronal sizes are well suited for single-cell peptidomic analysis, performed using matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) mass spectrometry (MS; Garden et al., 1996; Li et al., 2000a). Several homologous neurons have been characterized across nudipleurans (Baltzley et al., 2011; Lillvis et al., 2012; Newcomb et al., 2012), and detailed analyses have uncovered the subtle differences in their circuit-level roles (Katz, 2016; Sakurai and Katz, 2019). Characterizing the peptide profiles of homologous neurons is a logical next step to this research.

This study characterized peptides in both homologous neurons and central nervous system (CNS) transcriptomes for three nudipleuran sea slugs, Hermissenda crassicornis, Melibe leonina, and Pleurobranchaea californica. Each species has been the subject of extensive neurophysiological research (Crow and Tian, 2006; Sakurai et al., 2014; Gillette and Brown, 2015), has a publicly deposited CNS transcriptome, and an easily identified, homologous feeding interneuron in its buccal ganglion. In each species, this neuron drives fictive feeding rhythms and extends axons to extensively innervate the esophagus. In P. californica, this cell, the ventral white cell (VWC), has been shown to be multifunctional (Gillette et al., 1980; Gillette and Gillette, 1983), playing both a command and a motor role in feeding behavior. In H. crassicornis and M. leonina, these are the SCPB large buccal (SLB) cells, which stain for SCPB (Watson and Willows, 1992). Furthermore, each species has unique feeding characteristics that can be correlated with peptide identities. M. leonina lacks a buccal mass or radula for food breakdown, is a filter feeder, engages in hours-long feeding bouts, and has only approximately 40 neurons in its buccal ganglion (Watson and Trimarchi, 1992; Lee and Watson, 2016). H. crassicornis feeds primarily on polyps and jellyfish (Hoover et al., 2012), and P. californica is an active, generalist predator that indulges in cannibalism (Noboa and Gillette, 2013). These species thus allow for a meaningful comparison of homologous interneurons, using existing resources for rapid annotation of their transcriptomes.

For prohormone annotation, we obtained the CNS de novo transcriptome assemblies because no genomic assemblies for H. crassicornis, M. leonina, and P. californica are available. Using 36 known A. californica and L. stagnalis prohormones, we identified homologous prohormones within each species, and from these compiled a library of putative encoded peptides for each species. We then performed single-cell MS on individual VWCs and SLB cells and used the peptide library to perform peptide mass fingerprinting (Thiede et al., 2005) on the resulting spectra. In H. crassicornis we detected peptides from homologs to the FMRFa, SCP, LFRFamide (LFRFa), and feeding circuit activating peptides (FCAP) prohormones, and in M. leonina, peptides from homologs to the FMRFa, SCP, LFRFa, and myoinhibitory peptide (MIP)-related prohormones. The P. californica VWC has previously been shown to have peptides from the FMRFa and QNFLa [a homolog of the A. californica pedal peptide 4; (Green et al., 2018)] prohormones, and we found that it also contains peptides from the SCP prohormone. Thus, each species’ neuron expressed peptides from both the FMRFa and SCP prohormones, and both H. crassicornis and M. leonina expressed peptides from the LFRFa prohormone; however, each neuron also expressed peptides not seen in the others. This work provides an untargeted peptidomic characterization of single homologous neurons and a large-scale prohormone annotation of multiple nudipleuran sea slugs.



MATERIALS AND METHODS


Animal Care

P. californica and H. crassicornis were trapped by the Monterey Abalone Company (Monterey Bay, CA) and shipped overnight to the University of Illinois Urbana-Champaign. There they were housed individually in artificial seawater at 12°C. M. leonina were collected at the San Juan Islands, either off the docks of Friday Harbor Labs (San Juan, WA), or via snorkel/scuba diving at Park’s Bay (Shaw Island, WA), and maintained at Friday Harbor Labs in sea tables with flow-through sea water.



In silico Prohormone Annotation and Peptide Library Establishment

For each species, prohormone annotations were performed on publicly available de novo RNA transcriptome assemblies from the NCBI Sequence Read Archive (Kodama et al., 2012; Christie, 2017; Southey et al., 2020). Species-specific information is as follows: H. crassicornis – SRR1719366 (Goodheart et al., 2017), M. leonina – SRR1950947 and SRR3738852 (Goodheart et al., 2017), and P. californica – SRR026692, SRR026693, SRR026694, SRR026695, SRR1505130, and SRR3928990 (Zapata et al., 2014). For each experimental data set, de novo assemblies were created without any preprocessing of reads using MEGAHIT (Li et al., 2015), SOAPdenovo (Luo et al., 2012), and Trinity (Grabherr et al., 2011; Haas et al., 2013) with default settings. De novo assemblies from the same species were combined into a single BLAST (Altschul et al., 1997) database.

For each species, A TBLASTN search was performed on a database of de novo assemblies for 34 A. californica and two L. stagnalis neuropeptide prohormones obtained from the UniProt database (Apweiler et al., 2004), yielding both RNA and protein matches. RNA matches were translated using the ExPaSy “Translate” tool (Gasteiger et al., 2003), and the longest predicted protein sequence from the matched region was selected for further analysis. SignalP 5.0 (Armenteros et al., 2019) and Phobius (Kall et al., 2007) were then used to analyze both translated proteins and direct protein sequences for the presence of a signal sequence, which is required for targeting into the secretory pathway (Rusch and Kendall, 1995). Finally, potential neuropeptides from each matching protein, whether complete (i.e., possessing a signal sequence) or not, were predicted using NeuroPred (Southey et al., 2006a,b, 2008) with the Mollusc model (Hummon et al., 2003a) and common PTMs selected. The resulting predicted peptides were compiled to form a putative peptide library for each species.



Single-Cell Isolation and MALDI-TOF MS Analysis

We followed prior approaches (Li et al., 2000a) for single-cell isolation and MALDI MS characterization. Subjects were pinned out in dissecting trays, and buccal ganglia were surgically removed. Ganglia were then incubated for 6 min in 1% type 14 protease prepared in saline (460 mm NaCl, 10 mm KCl, 10 mm CaCl2, 25 mm MgCl2, 25 mm MgSO4−, 10 mm HEPES, pH = 7.6), which loosened the surrounding connective sheath. Moria scissors were then used to cut through the connective sheath (one layer in M. leonina and H. crassicornis, two layers in P. californica) to expose the neurons. Neurons were identified visually by their distinct morphology, color, and landmark location within the ganglion (Gillette et al., 1980; Watson and Willows, 1992), and then carefully teased away from the rest of the ganglion using either pulled glass capillaries or tungsten needles. Isolated neurons were then aspirated into a custom-made transfer pipette and spotted onto a ground steel MALDI sample plate (Bruker Corp., Billerica, MA), and 0.5 μl of matrix solution (dihydroxybenzoic acid, 20 mg/ml in deionized water) was applied to each neuron. Following drying and matrix crystallization, samples were analyzed by MALDI-TOF MS using an ultrafleXtreme mass spectrometer (Bruker Corp.) in positive reflectron mode, with a surveyed mass range of 530–5,000 m/z and external calibration. Once the spectra had been collected, detected masses were matched to those in the peptide libraries by peptide mass fingerprinting (Thiede et al., 2005) with an allowed mass match error of 200 ppm.




RESULTS


In silico Transcriptomic Annotation of Putative Neuropeptide Prohormones

De novo transcriptomes of the three nudipleurans were queried against 34 A. californica and two L. stagnalis neuropeptide prohormones to identify 35 transcripts in H. crassicornis and M. leonina, and 34 P. californica (Table 1; Supplementary Tables S1–S3). This included two SCP prohormones in H. crassicornis and M. leonina, and two M. leonina temptin proteins. Two proteins, A. californica attractin and egg-laying hormone, were searched but did not yield matches in any of the three species. The majority (27 in H. crassicornis, 27 in M. leonina, and 26 in P. californica) contained a predicted signal sequence. However, only 19, 17, and 12 transcripts of H. crassicornis, M. leonina, and P. californica, respectively, had sequence lengths of at least 95% of A. californica and L. stagnalis neuropeptide prohormone sequence lengths. Each prohormone encoded peptides homologous to those found in the A. californica/L. stagnalis versions of the prohormone.



TABLE 1. Prohormone annotations of each species’ CNS transcriptome.
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Identification of Novel Small Cardioactive Peptide C

Further analysis of the transcriptomes found two protein isoforms for the SCP prohormone in H. crassicornis and four in M. leonina (Figure 1). The M. leonina isoforms all expressed identical signal sequences and both SCPA and SCPB neuropeptides, and three of the four shared the same 94 C-terminal amino acids. Two of the isoforms also expressed a novel peptide, SCPC, which differed from the other SCPs in that it has a serine at the C-terminus, lacked amidation, and is 10 amino acids long rather than nine. However, it retains the YXXFPRM motif seen in all other SCPs, including those found in A. californica (P09892), L. stagnalis (O97374), the snail T. pisana (A0A0S1RSH0), and the snail D. reticulatum (A0A1X9WEF6; Figure 1). Although SCPC has not been observed in any of the above species, it was identified in one of two SCP protein isoforms in T. diomedea.

[image: Figure 1]

FIGURE 1. Multiple sequence alignment of SCP prohormones across species and predicted protein isoforms. Melibe leonina yielded four SCP prohormone isoforms, and Hermissenda crassicornis and Tritonia diomedea each yielded two. Each prohormone encoded SCPB (orange highlight) and SCPA (green highlight), and one T. diomedea and two M. leonina isoforms encoded SCPC (blue highlight). Conserved cysteine (red font) and predicted or known cleavage sites (purple font) are also indicated.




Unique Neuropeptide Profiles of SLB Cells and VWC Among Nudipleuran Species

Mass spectrometric analysis of individual SLB cells found that the peptides SCPA and SCPB, encoded by species-specific homologues of the A. californica SCP prohormone (UniProt accession number: P09892), were present (Figures 2, 3). The M. leonina SLB cells contained two other peptides encoded by the SCP prohormone (GGCA01092244.1), including SCPC. In addition, peptides encoded by several other neuropeptide genes co-localized in the SLB cells, although combinations differed by species (Table 2). The H. crassicornis SLB cells contained FMRFa and peptides from homologs to the L. stagnalis LFRFa prohormone (Q5U900) (Supplementary Figure S1) and A. californica FCAP prohormone (Q8ISH7) (Supplementary Figure S2). The H. crassicornis LFRFa prohormone encodes five different peptides with a conserved LFRFa motif and amidated C-terminus (Supplementary Figure S1), and each was present within the H. crassicornis SLB cells. Finally, the H. crassicornis FCAP prohormone encoded three structurally similar peptides, and each was confirmed by MS in the neuron.

[image: Figure 2]

FIGURE 2. Representative spectrum from a H. crassicornis SLB cell. Six neurons were analyzed, and peptides from the FMRFa (black), SCPB (blue), LFRFa (purple), and FCAP (red) prohormones were present. The LFRF prohormone is predicted to produce five peptides with a C-terminal LFRFa motif, the FCAP prohormone, three versions of the FCAP peptide, and the SCP prohormone, both SCPA and SCPB; all of these were present in the cell. The FMRFa prohormone is predicted to produce multiple tetrapeptides, but only FMRFa was present in the cell.


[image: Figure 3]

FIGURE 3. Representative MALDI-TOF MS spectrum from a M. leonina SLB cell. Four neurons were analyzed. This cell expressed 11 peptides from the MIP-related prohormone (green), six peptides from the FMRFa prohormone (black), and four peptides from the SCP (blue) and LFRFa (purple) prohormones. Peptides from the MIP-related prohormone included eight, with either a PRFVa or PTFVa C-terminal motif. The peptides from the SCP prohormone included SCPA, SCPB, and SCPC. Four of the six peptides from the FMRFa were tetrapeptides, including FMRFa itself. Lastly, the peptides from the LFRFa prohormone included both an acetylated and unacetylated version of SSLFRFa.




TABLE 2. MALDI-TOF MS identification of neuropeptides in SLB cells/VWCs of nudipleurans.
[image: Table2]

In addition to peptides from the SCP prohormone, the M. leonina SLB cells contained peptides matching three other prohormones (Figure 3): a homolog to the A. californica MIP-related prohormone (Q9NDE8) (Supplementary Figure S3), a homolog to the A. californica FMRFa prohormone (P08021) (Supplementary Figure S4), and a homolog to the L. stagnalis LFRFa prohormone (Supplementary Figure S1). Eleven peptides derived from the MIP-related prohormone, including eight with a C-terminal amidation and a PRFV or PTFV motif, similar to the PRFX motif found in the A. californica MIP-related prohormone. Six peptides came from the FMRFa prohormone, including FMRFa and three other -RFa tetrapeptides, and four peptides from the LFRFa prohormone (Table 2). Two of these four had the same amino acid sequence (GGTLFRF), differing only in the post-translational addition of an acetyl group, and a third peptide also shared the LFRFa motif. Interestingly, two other peptides with an LFRFa motif were putatively encoded on the M. leonina LFRFa prohormone, yet were not detected in the SLB cells by MS. Finally, the P. californica VWC also contained both SCPA and SCPB (Figure 4; Table 2).

[image: Figure 4]

FIGURE 4. Representative MALDI-TOF MS spectrum from a Pleurobranchaea californica VWC. Five neurons were analyzed. In addition to the previously described peptides from the FMRFa and QNFLa prohormones (Green et al., 2018), the VWC expressed both SCPA and SCPB.





DISCUSSION


De novo Assembly of CNS Transcriptomes

Peptides in nudipleurans remain understudied and yet have been extensively studied in the gastropods A. californica and L. stagnalis. Exploring peptides in nudipleurans can enhance the existing understanding of their neuronal circuits while also allowing for comparison with other species, an essential task for the study of brain evolution (Webber et al., 2017; Moroz, 2018). Using de novo transcriptome assemblies, we predicted putative peptide prohormones for H. crassicornis, M. leonina, and P. californica, and identified several homologs to prohormones previously characterized in A. californica and L. stagnalis. Additionally, in M. leonina we identified alternatively spliced SCP transcripts that encoded a novel peptide. Although we recovered homologs to almost every searched transcript, in some instances we could not recover the full protein sequence, and thus it is possible that we missed certain peptides. It is also possible that the transcripts not found here are indeed present in these species, but simply not expressed in the tissues used to generate the transcriptome assemblies.



Peptide Profile Diversity of the VWC and SLB Cells in Nudibranchs, and Functional Implications

We found that the neuropeptide complements of the VWC and SLB cells overlapped but were not identical (Figure 5), which may reflect adaptation to the species’ different feeding habits. SCP peptides were present in every cell, consistent with earlier immunological work (Watson and Willows, 1992) and suggesting a conserved role for these peptides in feeding. In P. californica, VWC firing drives esophageal dilation (Gillette and Gillette, 1983), and in M. leonina, SCPB application causes esophageal contractions (Watson et al., 2020), so the data suggest that these neurons use SCPB to regulate esophageal movement.

[image: Figure 5]

FIGURE 5. Summary of the prohormone families present in each species’ neuron. Each species has peptides from the FMRFa and SCP prohormone families, both nudibranchs have peptides from the LFRFa prohormone family, and each species has a prohormone family not detected in the other species’ neurons.


Meanwhile, SCPs are extensively involved in the control of feeding motor programs in A. californica (Lloyd, 1986; Lloyd et al., 1987) and L. stagnalis (Santama et al., 1994; Perry et al., 1999). The A. californica B1 and B2 and the L. stagnalis B2 neurons contain SCPA and SCPB and project axons to the esophageal nerve (Lloyd et al., 1988; Santama et al., 1994; Perry et al., 1998, 1999), and additional A. californica SCP-immunoreactive neurons innervate buccal musculature (Lloyd, 1988; Church et al., 1991). In both species, the SCPs co-localize with each other (Perry et al., 1998; Perry et al., 1999; Li et al., 2000b), and act as co-transmitters with both classical neurotransmitters (Weiss et al., 1992; Perry et al., 1999) and other neuropeptides (Santama et al., 1994). SCP also drives rhythmic bursting in the buccal ganglion of the snail Helisoma trivolvis (Murphy et al., 1985) and has even been implicated in feeding in Octopus vulgaris, as it drives contraction of the radula protractor muscle, and is transcribed in the buccal ganglion (Kanda and Minakata, 2006). The studies discussed here are insufficient to determine if A. californica and L. stagnalis have homologs to the VWC/SLB cells, but a clear conserved role for SCP can be seen in feeding-related movements.

FMRFa was previously found in the VWCs (Green et al., 2018) and was also found here within the SLB cells, which was surprising given that it inhibits feeding in other gastropods. In A. californica, the FMRFa peptide partially shifts feeding rhythms from ingestive to egestive and is released from sensory neurons to reduce accessory radula closer (ARC) muscle contractions (Vilim et al., 2010). Meanwhile, in L. stagnalis (Kyriakides and McCrohan, 1989) and H. trivolvis (Murphy et al., 1985), FMRFa perfusion inhibits the feeding rhythm, although in L. stagnalis it appears to be released from a pleural interneuron involved in defensive responses (Alania et al., 2004), rather than from an element of the feeding neural network. The L. stagnalis buccal mass is immunopositive for FMRFa and the buccal ganglion contains a single, bilateral neuron pair with immunoreactivity to the related peptide SEQPDVDDYLRDWLQSEEPLY (Santama et al., 1994), but FMRFa itself has not been detected in the L. stagnalis buccal ganglion by MS. Meanwhile, numerous sensory and motor neurons express FMRFa in the A. californica buccal ganglion (Vilim et al., 2010). Does the FMRFa released from the VWC/SLB cells in some way attenuate feeding, or does the presence of FMRFa in these cells reflect divergence from its role in A. californica and L. stagnalis? Our finding opens the door for future functional studies to address this question.

LFRFa peptides were observed in the H. crassicornis and M. leonina SLB cells but not the P. californica VWC, a pattern that perhaps reflects the three species’ phylogeny. The nudipleuran clade separates into nudibranchia and pleurobranchomorpha; H. crassicornis and M. leonina are nudibranchs whereas P. californica is a pleurobranch. In A. californica, LFRFa peptides have a similar effect as FMRFa, modulating contraction of the ARC muscle and weakening ingestive feeding rhythms (Cropper et al., 1994; Vilim et al., 2010). In L. stagnalis, MS analysis of the buccal ganglion found the presence of the six peptides encoded by the LFRFa prohormone, which inhibit neurons that regulate metabolism (Hoek et al., 2005). However, immunostaining and single-cell analysis have not been carried out thus far, nor is it known if these peptides have a role in L. stagnalis feeding circuitry. Thus, it will be of interest to determine the roles of LFRFa peptides in feeding in other species. Similarly, it will be of interest will be to determine if other cells within the P. californica buccal ganglion express LFRFa.

Finally, each species’ neuron expressed peptides from a prohormone not detected by MS in the others. First, the H. crassicornis SLB cells contained three peptides from the homolog to the A. californica FCAP prohormone and may contain more, as our annotation of the H. crassicornis FCAP prohormone returned an incomplete protein. FCAP drives feeding rhythms in A. californica, and interestingly is co-expressed with SCPB in a mechanosensory neuron (Sweedler et al., 2002), but its effects on feeding appear to come via the cerebral ganglion neuron CBI-2 (Friedman et al., 2015). FCAP has not been implicated in feeding in any other species. The M. leonina SLB cells express peptides from the MIP-related prohormone, which is found in one bilaterally paired set of buccal neurons in A. californica (Fujisawa et al., 1999), and many small buccal neurons in L. stagnalis and Helix pomatia (Elekes et al., 2000). In each species, application of MIP-related peptides drives contractions of the gut. Finally, the P. californica VWC contains peptides from the QNFLa prohormone that is a homolog to the A. californica pedal peptide 4 prohormone (Green et al., 2018). Pedal peptide 4 has not been investigated physiologically, but in Biomphalaria glabrata was observed to be less abundant 12 days post-infection with the parasite Schistosoma (Wang et al., 2017).

What are the implications of peptide co-localization in these neurons? Co-localization suggests co-transmission, which can increase the flexibility of post-synaptic control. Co-transmitters, particularly those released from different prohormones, can confer numerous possible abilities onto a single neuron, notably, the modulation of a different neurotransmitter’s effects (Kiss, 2011), more refined control of a single target (Brezina et al., 1995; Vilim et al., 2010), or the differential control of multiple targets (Svensson et al., 2019). This final mechanism seems especially possible in the VWC/SLB cells, which affect both feeding circuitry and the gut. Interestingly, SCP and FMRF co-localize in a cerebral interneuron in five different nudipleurans, including H. crassicornis, M. leonina, and P. californica (Lillvis et al., 2012). We cannot say definitively what each peptide does in these three cells, but it seems possible that SCP is released to drive esophageal contractions, and the other peptides to regulate feeding circuits.

Additionally, what are the functional consequences of the unique aspects of each neurons’ peptide profiles? Differences in in the intrinsic properties and synaptic wiring of homologous neurons can lead to subtle differences in behavior (Newcomb et al., 2012; Ding et al., 2019), and it may be that these chemical differences are another mechanism of this change. M. leonina differs markedly from the other species in this study in the lack of a buccal mass, and differs further in its prey capture apparatus, feeding mechanics, feeding bout duration, and prey. P. californica and H. crassicornis differ from each other in prey choice and the relative size of their feeding apparatuses. Additionally, the M. leonina buccal ganglion is considerably smaller than that of the others, consisting of only 30 to 40 neurons (Trimarchi and Watson, 1992). The differences in peptide profiles may relate in part to these anatomical and behavioral differences.

Finally, in prior studies, neuron homology has been inferred based on synaptic wiring, neuroanatomical position, function, and overlap in immunohistochemical staining (Faulkes, 2008; Lillvis et al., 2012; Sakurai and Katz, 2019). The data in this study do not address the first three characteristics, but do suggest that limits should be placed on interpretations made based on immunohistochemical staining. Our data suggest that at least some of the peptides expressed in homologous neurons will not overlap, and thus if staining is performed for a peptide found in only some of the neurons, it may lead to incorrect conclusions regarding homology.




CONCLUSION

Characterization of the neuropeptides present in a variety of animals is essential to our understanding of neurotransmission. Combining de novo transcriptomics and peptidomics allows us to examine the functional consequences of different peptide profiles without requiring a genomic assembly. The usage of different species in this work helped reveal what is “typical” of neuropeptide signaling, which is essential to the translatability of comparative research. Examining neuropeptides in nudipleuran sea slugs furthers this goal, and moreover, does so in a clade that has provided great insight into neuronal circuits.
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L5467

Abdominal PO1364 A 108 219 518E06 28 114 219 BO06EG6 23 114 284 57 2 ”

gangion calforica

neuropepide

R3-14

Achatin QsMARG A 158 313 s14E05 24 131 52 8.74E06 % 254 187 22 134
calforica

Adipokinetic  16YDNS A 80 207 BATE0Y 31 o1 %02 12808 23 8 09 2407 22 81

hormone californica

(AKH)

Atrial gland PO1360 A 173 213 00821 £ 88 o001 29 306 144 122 153

and calin calforica

peptides

Buccalin P20481 A 505 354 363E60 24 328 348 2352 2 302 486 475696 368
calfomica

Cercbral Q10998 A 209 541 15352 19 194 479 BOOEMS 30 194 62 545E09 30 142

Pepiide calforica

Cerebrin asT12 A 8 303 9%EN 28 89 484 S00E08 28 % 207 0000116 25 2
calforica

Enterin Qgsp23 A 837 447 102643 215 464 15 25 414 48 9soEST 323
calformica

Entioin Q@817 A ) 383 548 S 316 887 57
calforica

Feeding circuit Q8ISH7 A 504 315 6.23E-92 22 743 748 5.00E-06 17 216 488 4.70E-86 26 404

activating californica

peptides

(FCAP)

FMRF-amide  POB021 A 507 277 246623 23 386 26  50E20 25 285 151 534819 23 885

neuropepide caliorica

FMRFa- P42565 L stagnals 360 404 9a5E21 154 219 7TEES 25 430 w02 33ET0 24 3%

related

neuropeptides

Gonadotropin-  ABWAT? A 147 %63 L1EN 28 124 20 3.00E-09 162 279 1s6E05 %4 104

releasing caliomica

hormone

(GNRH)

Insulin QONDE7 A 156 383 260E21 29 168 s22 230821 38 149 w1 232 9 141
calforica

LFRF QSUS00 L. stagnalis 194 £ 162615 22 208 s75  100E16 22 176 a2 211E19 22 215

MP-related  QONDES A 735 353 605626 272 319 400E-12 665 o7 BITE2 444

pepides caliomica

Myomoduin 1 P15513 A 370 324 430E42 20 426 581 08 16 217 375 20641 21 344
calforica

Myomoduin2  Q2VF17 A 240 288  101E14 25 187 a4 G004 22 215 B2 306620 25 244
calforica

NdWFamide AOA161RIR0 A 90 459 6.77E-11 25 83 458 9.75E-11 25 83 405 6.22E-10 25 84
calforica

Neurcactve ~ P12265 A 156 212 101608 28 151 385 095 % 170 35 150605 84

Polyprotein calfomica

R15

Neuro- QsToY7 A 141 14 0.00217 23 129 95 2412 23 126 18 259 24 128

peptides CP2 calfomica

NPY Q27441 A 92 47 suE2 20 0 527 900E-18 21 ot 36 G86E3 21 %
calforica

Pedal Peptide  Q5PS2 A 365 88 2776113 18 418 o sasE1s 18 281 517 449647 20 174

1 californica

Pedal Peptide  ATXP49 A 628 524 247E47 21 203 552 0 645 277 oraE4s 476

2 calforica

Pedal Peptide  ATXP50 A 307 341 159E56 21 328 37 361E45 23 249 88 amE® 20 256

3 calioica

Pedal Peptide AIXPS51 A 535 275 5.84E-22 444 423 8.00E-13 478 252 1.08E-75 34 782

4 calfomica

Pleurin QspsJs A 188 31 141824 19 205 37 200826 19 196 449 20680 18 176
calforica

PROFV QsemAT A 862 326 226666 763 288  40E22 23 519 539 350E95 495
calfomica

Smal Poggo2 A 136 89 1MESS 24 132 496 200827 24 141 57 gsEs 25 13

cardioactive calfomica

peptides 1

Small P09892 A 136 58.3 1.19E-34 24 132 62 3.23E-35 24 122

cardioactive calfomica

pepide 2

Sensorin A P29233 A 113 385 240616 3 17 344 BOE16 30 160 304 70416 29 115
calforica

Temptin 1 Q72013 A 125 273 476E20 25 128 46 Q00ES 40 157 205  16%Es 22 190
calfomica

Tomptin 2 arzots A 125 523 GOOEST 16 100
calforica

Whitnin Qspsss A 116 547 196E36 28 117 547 90E40 23 117 05 GAEI® 28 116
calforica

A. calfornica or L. stagnalis versions of each prohormone were searched against de novo transcriptome assemblies for each species’ CNS. Acen ~ accession number. nR ~ number of amino acid resicues in protein. % lo - degree to
which the two prohormones have the same resicue at the same poit in the alignment. Evalue  likelinood of achieving a comparable match by chance. Signal length ~ length of signel pepide. nR ~ number of amino acid residues in
returned prohormone.
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Prohormone

Species family Peptide sequence Peptide name MeanMsH  Theoretical  Mass error

homology MiH L
H. crassicoris  FCAP GLDSLGGFNVHGGW FCAP, 1415684 1415668 13
FCAP GLDSLGGFQVHGGW FCAP, 1429.71 1429684 182
FCAP GLDSLGGFHVHGGGW FCAP, 1495.7 1495706 -4
FMRFa FMRFamide FMAFa 509.279 509.312 -85.1
LFRFa TLFRFamide TLFRFa 682.393 682.403 =147
LFRFa GSIFRFamide GSIFRFa 725.404 725.409 -89
LFRFa ASLFRFamide ASLFRFa 730.423 739.425 27
LFRFa GGSLFRFamide GGSLFRFa 782.464 782.431 422
LFRFa ARGSLFRFamide ARGSLFRFa 952.504 952.647 493
sop SGYLAFPRManmide SCP,Q 1041588 1041535 509
scP VNYLAFPRMamide SCPy 1109638 1109.502 a5
M.leonina  FMRFa FVRFamide FVRFa 567.313 567.34 476
FMRFa FLRFamide FLRFa 581.338 581.356 31
FMAFa YLRFamide YLRFa 507.335 57.35 -25.1
FMAFa FMRFaide FMRFa 599.303 509.312 15
FMRFa RSVDDDDMSTRSGOVID FMRFapeptides-2  1882.800  1882.806 16
FMRFa ‘SQQPNVDDIYNKALLOLEEPYS FMRFapeptides-1 ~ 2564.237  2504.249 a1
LFRFa SSLFRFamide SSLFLRa 755.442 756.42 20.1
LFRFa GGTLFRFamide GGTLFRFa 796.477 796.446 389
LFRFa acSSLFRFamide SSLFRFa 797.432 797.43 25
(acetylated)
LFRFa acSGPQSNEGM LFRF peplides-2 94851 948371 1466
MP-related  GPPRFVarmide GPPRFVa 671.414 671.308 238
MP-related  pQAPRFVamide QAPRFVa 69.411 699303 257
(pyroglutamated)
MP-related  QAPRFVamide QAPRFVa 716.442 716.42 307
MP-rolated  YVPRFVamide YVPRFVa 779.493 779.456 a5
MP-rolated  YIPRFVarmide YIPRFVa 793511 793.472 492
MP-related  AIQPRFVamide AQPRFVa 829546 829.504 506
MP-related  YDPPRFVamide YDPPRFVa 892514 892.4673 52.3
MP-related  ARSPPRFVamide ARSPPRFVa 928.504 928.54726 503
MP-rolated  acGPSLOASEE MP-related 959519 950.43 928
peptides 1
MIP-related 'YGRPIIPGQlamide 'YGRPIPGQla 1112.707 1112.6572 448
MP-related  DYDTIFDLLHNSA MP-related 1523721 1623699 144
peptides 2
scP acSEFSVSEDamide SCP peplides-1 9405413 940389 162
scP SGYAGFPRMS ScP. 1072.541 1072.486 518
scp SNYLAFPRMamide ScPs 1007605 1007.556 446
SCP MNYLAFPRMamide SCPs. 1141616 1141.564 4586
P, californica SCP SGYLAFPRMamide SCPx 1041.6403 1041.535 101.1
scP MNYLAFPRMamide SCPs 11417383 1141564 1527
FMRFa ASAGGQRSEESLLREALMOAEEPLY AEEPLY
FMAFa SEESLLREALMQAEEPLY AEEPLY'
FMRFa FLAFamide FLAFa
MR, EMELemde i Previously characterized
FMRFa DVGGGSAAGDAEEEDISRQILGLGGGQVGESGDVIDGF  FMRFa peptide 3
FMRFa PSNAALEGLEGE FMRFa peptide 5
QNFLa (p)OLDSIGAGMVSGLHONFL(Aide) QNFLa-peptide 5
QNFLa FDSISSGRLNGFNANFL(AMide) QNFLa-peptide 6

Six SLB cells analyzed from H. crassicornis, four SLB cells from M. leonina, and five VWGs from P. calfornica. PPM ~ parts per millon. Both mean and theoretical M+H values are
the average molecular weight.
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