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Cardiovascular diseases (CVDs) are one of the most fatal disease groups worldwide.

Electrocardiogram (ECG) is a widely used tool for automatically detecting cardiac

abnormalities, thereby helping to control and manage CVDs. To encourage more

multidisciplinary researches, PhysioNet/Computing in Cardiology Challenge 2020

(Challenge 2020) provided a public platform involving multi-center databases and

automatic evaluations for ECG classification tasks. As a result, 41 teams successfully

submitted their solutions and were qualified for rankings. Although Challenge 2020

was a success, there has been no in-depth methodological meta-analysis of these

solutions, making it difficult for researchers to benefit from the solutions and results. In

this study, we aim to systematically review the 41 solutions in terms of data processing,

feature engineering, model architecture, and training strategy. For each perspective,

we visualize and statistically analyze the effectiveness of the common techniques, and

discuss the methodological advantages and disadvantages. Finally, we summarize five

practical lessons based on the aforementioned analysis: (1) Data augmentation should

be employed and adapted to specific scenarios; (2) Combining different features can

improve performance; (3) A hybrid design of different types of deep neural networks

(DNNs) is better than using a single type; (4) The use of end-to-end architectures should

depend on the task being solved; (5) Multiple models are better than one. We expect that

our meta-analysis will help accelerate the research related to ECG classification based

on machine-learning models.

Keywords: electrocardiogram, machine learning, deep learning, classification, practical lessons, physionet

challenge, meta-analysis

1. INTRODUCTION

Cardiovascular diseases are one of the leading causes of death worldwide (Virani et al.,
2021). Electrocardiogram (ECG) is the most representative and important non-invasive tool for
diagnosing cardiac abnormalities (Kligfield, 2002). The effectiveness of using a standard 12-lead
ECG for the diagnosis of various cardiac arrhythmias and other diseases has been proven in several
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studies (Kligfield et al., 2007). Owing to the predictability of ECG
for short-term and long-term mortality risks (Raghunath et al.,
2020), accurate and timely detection of cardiac abnormalities
based on 12-lead ECG can significantly help save people’s lives
(Virani et al., 2021). However, manual interpretation of ECG
is time-consuming, and different cardiologists may disagree on
complicated cases (Hannun et al., 2019; Ribeiro et al., 2019).

In recent years, machine-learning methods have been
employed to rapidly detect cardiac abnormalities in 12-lead
ECGs (Ye et al., 2010; Jambukia et al., 2015; Minchole et al.,
2019; Al-Zaiti et al., 2020). Newly emerging deep-learning
models have further achieved comparable performance to clinical
cardiologists on many ECG analysis tasks (Hannun et al., 2019;
Hong et al., 2020b; Sinnecker, 2020; Elul et al., 2021; Somani
et al., 2021), such as cardiovascular management (Fu et al., 2021;
Siontis et al., 2021) and arrhythmia/disease detection (Attia et al.,
2019; Erdenebayar et al., 2019; He et al., 2019; Hong et al.,
2019a,b, 2020a; Zhou et al., 2019; Raghunath et al., 2020; Ribeiro
et al., 2020). However, as high-quality real-world ECG data is
difficult to acquire, most deep-learning models are designed to
detect only a small fraction of cardiac arrhythmias, owing to the
limitations of the datasets.

PhysioNet/Computing in Cardiology Challenge 2020
(Challenge 2020) provided high-quality 12-lead ECG data
obtained from multiple centers with a large set of cardiac
abnormalities (Goldberger et al., 2000; Alday et al., 2020; PHY,
2020; Raghunath et al., 2020). The aim of Challenge 2020 was
to identify clinical diagnoses from 12-lead ECG recordings,
providing an opportunity to employ various advanced methods
to address clinically important questions that are either unsolved
or not well-solved (Alday et al., 2020). The datasets for Challenge
2020 were sourced from multiple medical centers worldwide.
As shown in Table 1, all the datasets contain recordings,
diagnostic codes, and demographic data. There are 66,361 ECG
recordings, and the number of diagnostic classes is 111. As
shown in Figure 1, 27 diagnoses are included to evaluate the
methods by using an evaluation metric designed by Challenge
2020. This evaluation metric assigns different weights to
different classes based on the harmfulness of misdiagnosis in
the clinic. The unnormalized challenge score is the summation
of the element-wise dots of the confusion matrix and a given
reward matrix.

Many well-designed methods were proposed in Challenge
2020. To obtain a comprehensive understanding of how
these methods benefit automated ECG interpretation, a more
systematic analysis is needed to compare the differences and
similarities among them. Thus, in this study, we conduct
a meta-analysis of the 41 methods that qualified to be in
the final rankings. We analyze the methods in terms of five
aspects: data processing, feature engineering, machine-learning
models, training strategy, and applications to the real world (see
Figure 2). Through our meta-analysis, we gather the details of

Abbreviations: Challenge 2020, PhysioNet/Computing in Cardiology Challenge

2020; CinC, Computing in Cardiology; CNN, Convolutional Neural Network;

DNN, Deep Neural Network; ECG, Electrocardiogram; RNN, Recurrent

Neural Network.

the five aforementioned aspects and conduct the Mann-Whitney
U-test to verify the effectiveness of the methods. Finally, we
discuss the reasons for the effectiveness or ineffectiveness of the
methods and summarize five practical lessons that can be applied
in real-world scenarios or scholarly research.

Our main practical lessons are the following:

1. Data augmentation should be employed and adapted to
specific scenarios.

2. Combining different features can improve performance.
3. A hybrid design of different types of deep neural networks

(DNNs) is better than using a single type.
4. The use of end-to-end architectures should depend on the task

being solved.
5. Multiple models are better than one.

2. METHOD

2.1. Search Strategy and Inclusion Criteria
In Challenge 2020, 70 teams successfully implemented their
methods on the platform’s test data. We conduct our analysis
for the 41 teams that qualified to be on the final rankings of
the Computing in Cardiology (CinC) conference1. The reasons
for the disqualification of the other 29 teams are the following:
the method did not work on the hidden set, the team failed to
submit a preprint or a final article on time, or the teamwas absent
in CinC.

2.2. Data Extraction
To investigate the techniques applied by each team, we
considered five aspects of the methods that formed a solution
pipeline (see Figure 2): data preprocessing, feature engineering,
machine-learning models, training strategy, and applications to the
real world. Table 2 presents these five aspects.

We confirmed whether a team used a specific technique in
their solution by using a three-step reading and checking strategy.
First, each reviewer carefully read the full text of 41 papers and
extracted data for a single aspect. The data includes whether
or how the teams employ techniques involved in the aspect.
If a technology is not mentioned in a paper, we assumed that
the corresponding team did not use that technology. All the
results were gathered together and summarized in a spreadsheet
file. Second, each reviewer checked the whole spreadsheet and
added comments on what they disagreed with. Finally, all the
reviewers discussed the disagreements and corrected themistakes
in the spreadsheet. Thus, we reached the final spreadsheet, and
this spreadsheet can be found at https://github.com/hsd1503/
cinc2020_meta.

2.3. Analytic Approach
Our analytic approach consists of three main steps. First, for
each technique mentioned in Table 2, we calculated the usage
percentage of the method of the 41 teams. Then, we collected
official scores on the test set of each team, and grouped teams
based on whether they employed a specific technique. Finally,
we statistically analyzed whether these techniques are useful for

1https://www.cinc.org/archives/2020/
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TABLE 1 | Overview of databases used in Challenge 2020.

Database
Total Recordings in Recordings in Recordings in Total

Patients Training set Validation set Test set Recordings

CPSC (Liu et al., 2018) 9,458 10,330 1,463 1,463 13,256

INCART (Tihonenko et al., 2008) 32 74 0 0 74

PTB (Bousseljot et al., 1995; Wagner et al., 2020) 19,175 22,353 0 0 22,353

G12EC (G12, 2020) 15,742 10,344 5,167 5,167 20,678

Undisclosed Unknown 0 0 10,000 10,000

Total Unknown 43,101 6,630 16,630 66,361

FIGURE 1 | Number of recordings of each scored diagnosis.

ECG classification. The commonly used student t-test requests
that the data follows the normal distribution. However, the
distribution is unknown. So we adopt the Mann Whitney U-
test, a more general and also widely used statistical test method.
We conducted the Mann-Whitney U-test (Mann and Whitney,
1947) using SciPy library version 1.6.22 and Python version
3.8.8 for each technique. An alternative hypothesis is that the
treated technique can improve the performance of the model.
We combined two groups, sorted them in ascending order, and
assigned ranks for samples (the smallest sample is set as 1, the
second smallest sample as 2, and so on). We calculated the sum
of the ranks of the two groups referred to as R1 and R2. The
U-statistics are computed as

Ui = Ri −
ni(ni + 1)

2
, i = 1, 2 (1)

2https://www.scipy.org

where ni is the number of samples in the i-th group. Then, we let
U = 3U1 because our alternative hypothesis is that the values
of group 1 are statistically larger than those of group 2. The
Z-statistics are computed as

Z =
U −

n1×n2
2 − 0.5

√

n1×n2
12 × ((n1 + n2 + 1)− tie

(n1+n2)×(n1+n2−1)
)
, (2)

tie =

n1
∑

i=1

count(group1i), (3)

where count(group1i) represents the number of values in groups
1 and 2, equal to the i-th value in group 1. The p-value is

p = P(x > Z), x ∼ N(0, 1). (4)

To better visualize the results, we drew box plots for
each technique. The box figures show groups for the
median, upper quartile, lower quartile, outliers, and
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FIGURE 2 | The framework of our meta-analysis.

TABLE 2 | Details of employed techniques.

Aspect Inclusion Usage(%)
# in top-10

p-value
methods

Data preprocessing

Signal processing 95.12 10 N.A.

Data augmentation 31.70 6 0.071

Imbalance handling 53.66 7 0.252

Feature engineering
Hand features 36.59 0 0.983

Demographic features 29.27 5 0.109

Machine-learning models

Deep neural network 82.93 10 0.116

Convolutional neural network 82.93 10 0.116

Recurrent neural network/transformer 31.71 4 0.317

Attention 24.39 6 0.006

Training strategy

Model ensemble 36.59 4 0.878

End-to-End 80.49 10 0.139

Multi-binary classification 58.54 10 0.002

Applications to the real world

Post-processing 2.38 1 N.A.

Interpretability 4.76 0 N.A.

Unknown classes and unseen patients 0 0 N.A.

N.A. means that the hypothesis test is not conducted.

range of official scores on the test set. In addition,
we discussed and explained why some techniques are

beneficial and explore practical lessons from the methods in
Challenge 2020.
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3. RESULTS

3.1. Overview
The overall meta-analysis results are listed in Table 2. We
can observe that some techniques are used by the majority
of the teams. The results indicate that ECG classification is
a complex process that includes multiple techniques. Among
these techniques, signal processing, DNNs, convolutional neural
networks (CNNs), end-to-end and multi-binary classifications
are used by all of the top 10 teams. In addition, we have
several significant findings: 1) deep-learning methods were more
popular than traditional methods in Challenge 2020; 2) all
the teams that employed deep-learning methods used CNNs;
and 3) none of the top-10 teams used hand-labeled features
(except demographic features); they all adopted end-to-end
models instead.

3.2. Data Preprocessing
In this section, we focus on three components of data
preprocessing: signal processing, data augmentation, and
imbalance handling.

3.2.1. Signal Processing
Signal processing is the most common technique used for ECG
classification. We did not attempt to verify the effect of signal
processing because different teams set different sampling rates
and window sizes and applied various methods. Instead, we
summarize and discuss the most common signal processing
techniques used in Challenge 2020: resampling, resizing, filtering,
and normalization.

Resampling aims to eliminate the differences in the sampling
rates among the different input samples. This is necessary because
varied sampling-rate inputs degrade the classification models.
In the real world, ECG recordings are collected from various
medical devices with different sampling rates. Training machine-
learning models with this type of data is difficult because their
data distributions are inconsistent. This problem can be solved
by interpolating the data to a unified sampling rate. Resizing is
often realized by cutting signals into a fixed length (known as
the window size). Resizing also aims to satisfy another common
training request: that the length of the training samples should be
the same. Filtering, usually by using band-pass filters, is applied
to denoise raw signals. This prevents the model from being
disturbed by noise, and this can usually improve performance.
Normalization standardizes the signals to a normal distribution
or even distribution by transforming signal values in the range
of [0, 1] or [-1, 1]. Data distributions can be unified and
the influence of noise and outliers can be alleviated through
normalization. Other signal processing techniques such as zero-
padding (Natarajan et al., 2020), median filters (Hsu et al., 2020),
and wavelet transformation denoising (Zhu et al., 2020) can also
be used.

3.2.2. Data Augmentation
Data augmentation is an efficient tool for increasing the size and
enhancing the quality of the training data. It mainly aims to
generate more data covering unseen input spaces (Wen et al.,
2020). Data augmentation can make the model more robust by

enlarging the size and adding noise or causing transformation.
This is also an effective method to avoid overfitting. Common
data augmentation methods in Challenge 2020 included the
introduction of external data (Bos et al., 2020; Zhu et al., 2020),
addition of noise (Chen et al., 2020; Weber et al., 2020), and
random cropping (Duan et al., 2020a; Weber et al., 2020). All
these methods enlarged the size of the training data. However,
when augmentation is performed, the extent of augmentation
(such as the stride of the sliding window augmentation) must be
considered. Augmenting too much may destroy the distribution
of data and cause failure in learning common patterns in data.

In Figure 3, we can see that data augmentation is intuitively
beneficial in Challenge 2020. All descriptive statistics are larger
when data augmentation is performed. The p-value of the Mann-
Whitney U-test is 0.07, which is slightly larger than 0.05 without
data augmentation. As the sample size is small, we believe that
the alternative hypothesis holds.

3.2.3. Imbalance Handling
The training data in Challenge 2020 suffer from heavy class
imbalance (as shown in Figure 1), which results in predictions
being biased toward the majority classes. This is because the
training samples of the majority class dominate in the training
phase, and they bias the model objectives so that it is easier to
obtain higher overall accuracy. In addition, classes with minority
sample sizes are more difficult to learn. Even when a classification
model is successfully trained, it would very likely become an over-
fitted model. Therefore, solving this problem also significantly
affects model performance. As shown in Figure 3, handling class
imbalance can improve the performance of the models.

In Challenge 2020, teams attempted to overcome this problem
in two main ways: threshold optimization (Chen et al., 2020;
Fayyazifar et al., 2020; Zhao et al., 2020) and weighted loss (Bos
et al., 2020; Min et al., 2020). Threshold optimization aims to
select the appropriate thresholds corresponding to each class;
this has proven to be feasible (Kang et al., 2019). This method
is based on models preferring to output a high probability for
major classes; thus, setting a low threshold for minor classes can
help alleviate this problem. Loss weights are assigned for each
class, and the weighted loss forces each class to contribute equally
to training the model. In addition, over-sampling (Zisou et al.,
2020), down-sampling (Hsu et al., 2020), and other methods have
been employed in Challenge 2020.

3.3. Feature Engineering
In this section, we examine how the teams choose or engineer
features for model inputs in terms of two aspects: hand features
and demographic features.

3.3.1. Hand Features
In our analysis, we regard hand features as features extracted
through non-machine-learning methods, while not simply
selecting raw features such as age and sex. Hand features can be
further divided into temporal and frequent features.

1. Temporal Features: Temporal features are related to the
morphological characteristics of ECG waves. The extraction
of temporal features consists of two steps: wave detection

Frontiers in Physiology | www.frontiersin.org 5 January 2022 | Volume 12 | Article 811661

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Hong et al. Meta-Analysis of PhysioNet Challenge 2020

FIGURE 3 | Box-plots of score distributions of data preprocessing techniques.

FIGURE 4 | Box-plots of score distributions of feature engineering techniques.

and measurement computing. In Challenge 2020, teams
usually employed traditional waves detection methods, such
as P-wave, QRS-complex, and T-wave, and then explicitly
computed ECG measurements as feature vectors, such as P-
wave duration, PR interval, QRS duration, and ST slope.
The details of the temporal features can be found in Hong
et al. (2019b). These ECG-specific features have proven to be
effective for the diagnosis of cardiac diseases.

2. Frequent Features: Frequency domain is also an important
part of ECG hand features. Thus, some teams extracted
features focusing on the frequency spectrum, excluding
temporal information. The frequency domain helps to inspect
signals from a different view rather than only from the
temporal domain. For example, the frequency bands of 0.67–
5 Hz, 1–7 Hz, and 10–50 Hz are commonly considered
as the dominant components of P-wave, T-wave, and QRS-
complex, respectively.

We conducted the Mann-Whitney U-test to verify whether
adding hand features is beneficial. However, the results were
not satisfactory as per our expectations. On the contrary, the
results showed that hand features have negative effects (p =
0.983). This may be because of the model architecture. Among
the 15 teams that added hand features, 7 abandoned deep-
learning methods and adopted traditional machine-learning
methods, such as XGBoost (Wong et al., 2020). The model’s
inferiority may influence the results of the difference between
adding and not adding hand features. We also conducted a
hypothesis test on temporal features and frequent features, and
the resulting p-values were 0.984 and 0.128, respectively. The
results of the hypothesis test showed that temporal features
are not helpful in improving the performance of the models.
The addition of frequent features can yield better prediction
results than that of temporal features. Figure 4 also supports our
statistical results.
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3.3.2. Demographic Features
Demographic features, such as age and sex, have proven to be
useful in ECG classification. Some cardiac diseases occur more
frequently in specific patient subgroups. For example, ventricular
fibrillation is predominantly observed in the aged (Iwami et al.,
2003). Recent studies have shown that the difference between
the chronological age and DNN-estimated age can be used as a
predictor of mortality (Ladejobi et al., 2021; Lima et al., 2021).
Although the features extracted from raw signals may include
information related to these hand features, explicitly taking these
hand features as input of models can help the model learn more
knowledge than raw signals.

The statistical and graphic results proved our hypothesis
that demographic features can help models make more accurate
predictions. The p-value of the hypothesis test was 0.109. This
means that adding demographic features is likely to be beneficial.
As shown in Figure 4, the scores are relatively higher in the
group with demographic features. In addition, we observe
that the first and second teams and three other top-10 teams
input demographic features to their models. We can, therefore,
conclude that demographic features are helpful in the context of
Challenge 2020.

3.4. Machine-Learning Models
In this section, we focus on the model architectures employed
in Challenge 2020. We determined whether the teams used
basic machine-learning methods or DNNs. We classified
DNNs into three categories: CNNs, recurrent neural networks
(RNNs)/transformers, and attention mechanisms.

3.4.1. Basic Machine-Learning Methods
The basic machine-learning methods are all machine-learning
techniques excluding DNNs, such as rule-based models and
decision tree models. The most notable advantage of these
models is that they are relatively easy to use compared with
DNNs. Thus, these models can achieve good performance
with less data, shorter training times, and lower computation
resources. However, most of the time spent on traditional
machine-learning methods is to extract features manually,
requiring more intervention by specialists. In addition, the ECG
data provided in Challenge 2020 were sufficient to support amore
complex model (DNN architectures). Conventional methods
may fit a large amount of data. In Challenge 2020, several teams
adopted basic machine-learning methods, such as XGBoost
(Uguz et al., 2020), random forest (Ignacio et al., 2020), and rule-
based models (Smisek et al., 2020), whereas others combined
these traditional methods with DNNs (Duan et al., 2020b; Zisou
et al., 2020).

3.4.2. DNNs
With the development of deep learning, we observe that most
teams preferred to use DNN architectures. The prominent
advantage of DNNs is that explicit feature extraction by human
experts is not necessary, as features are automatically extracted
by DNNs based on powerful learning ability and flexible
design (Hong et al., 2020b). Related studies have shown that
features extracted by DNNs are more informative (having higher

FIGURE 5 | Box-plots of score distributions of machine-learning models.

importance scores than a random forest classifier) than hand
features (Hong et al., 2017). The performance of deep-learning
methods is also higher than that of traditional methods on
many tasks, such as atrial fibrillation detection from single-lead
ECG (Clifford et al., 2017) and sleep staging (Ghassemi et al.,
2018). Therefore, the use of appropriate DNN architectures is of
great significance.

As expected, the performance of DNNs was comparatively
better in Challenge 2020. The 10 highest-ranking teams used
DNNs, proving the popularity and effectiveness of DNNs. The
first box figure in Figure 5 shows the performance of the
DNN and non-DNN models, with the DNN models exhibiting
higher scores.

The analysis of CNNs, RNNs or transformers, and attention
mechanisms is presented as follows:

1. CNNs: CNN is one of the most popular DNN architecture
that has been widely used in computer vision, signal
processing, and natural language processing. The essential of
the “convolutional” operation is local connectivity between
two adjacent neural network layers, which makes it focus on
the locality features while also reducing the model parameters
(easier training). Such networks can automatically extract
hierarchical representations relying on stacked trainable small
convolutional filters (kernels). These filters can efficiently
extract local representations and can reduce the complexity
of models by sharing the same parameters in each layer. It is
demonstrated that CNNs can capture more details in 12-lead
ECG signals (Baloglu et al., 2019), so CNN is a proper choice
as a feature extractor.

It is notable that all DNNs used in Challenge 2020
include CNNs. Most of them employed a popular CNN
architecture named ResNet (Residual Networks) (He et al.,
2016a). The core component of ResNet is skip connections,
which aims to solve the optimization degradation problem in
the back-propagation process (as the network depth increases,
accuracy gets saturated and degrades) (He et al., 2016b). In
Challenge 2020, the results are in accord with the general
point of view–using CNNs can significantly improve the
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performance, as shown in the second group of box-plots
of Figure 5.

2. RNNs/transformers: In addition to CNN, RNNs and
Transformer (Vaswani et al., 2017) are also widely used
DNNs, especially for sequential data, such as time series,
event sequences and natural language (Hong et al., 2020b).
RNNs take the output from the previous step as input and
iteratively update hidden states and memory. Transformer
adds attention to sequential modeling and allows sequences
to be parallel processed. Different from CNNs, RNNs and
transformers mainly focus on temporal dependency rather
than local representation. Another advantage is that RNNs
and Transformer can handle inputs of various lengths, which
is also sometimes necessary for time series data.

Some teams combine two kinds of architectures in
Challenge 2020 (Fayyazifar et al., 2020; Hasani et al., 2020;
Natarajan et al., 2020; Oppelt et al., 2020) by applying an
RNN or Transformer on representations obtained by CNNs.
This is commonly preferred for long ECG signals, because
combining two kinds of DNNs can both extract local features
and summarize features along the time dimension to obtain
global representations. From the third box figure in Figure 5,
we can see that RNNs and Transformers can help improve the
performance of models.

3. Attention mechanism: Because of the emergence of the
Transformer, attention becomes a widely used mechanism in
DNN architectures. The attention mechanism is essentially
a kind of weighted sum, and we categorize it into two
classes: position-wise attention and channel-wise attention.
In detail, we see Transformer as position-wise attention,
because Transformer assigns different weights for features
extracted from different time points. In addition, we see
squeeze-and-excitation block (Hu et al., 2018) as channel-wise
attention, because SE block produces weights for each channel
of input features. These two kinds of attention mechanisms
both have characteristics of plug and play, which means
they can easily be combined with DNN models. By applying
attention, models can focus on key time steps of long time
series (position-wise), or more informative channels (channel-
wise attention).

The results are notable: 4 highest-ranking teams all add the
attention mechanism to their models, showing the prevalence
of attention. The result of the Mann-Whitney U-test also
proves that attention can improve the performance of models
(p-value is 0.0059, less than 0.01). The effect of using attention
is intuitively shown in the fourth box figure in Figure 5.

3.5. Training Strategy
In this section, we analyze three aspects of the model: model
ensemble, end-to-end, andmulti-binary classification.

3.5.1. End-to-End
The end-to-end model takes raw data as input and outputs
the target directly, without considering how the features are
generated or what they represent. During the process of training
end-to-end models, less supervision is required, making it more
applicable in the real world. Non-end-to-end models divide the

whole task into several sub-tasks, indicating that different sub-
tasks may not be consistent and the gap between them may
result in non-optimal performance. In addition, when the model
is divided into multiple parts, the errors of each part may
accumulate and propagate into the next stage. In contrast, end-
to-end training can provide more space for models to adjust
themselves depending on the input data, making models fit
the data better. However, the interpretability of the end-to-
end model is always a critical question, especially for medical
purposes. Without knowing how the model makes decisions, the
results may be unreasonable to be accepted by clinicians and
difficult to verify.

In Challenge 2020, the top-10 teams adopted end-to-end
models, showing the popularity of such models. As shown in
Figure 6, these models perform considerably better than non-
end-to-end models. The effect and popularity of end-to-end
models in Challenge 2020 were related to DNNs, because most
DNNs are structured in this manner.

3.5.2. Multi-Binary Classification
A multi-label classification problem can be solved as a multi-
class problem directly or a combination of multiple binary
classification problems. In detail, multi-binary classification
means training a binary classifier for each class to decide whether
the sample belongs to this class. This means that the predictive
possibility of each class is independent. This is advantageous for
training because the multi-class task can be divided into several
simple binary classification tasks. However, this neglects the
relationship between different diseases, which may have negative
effects. In contrast, the output of the multi-class problem is only
a vector representing the predictive possibilities, and the sum of
these is 1. This is a relatively difficult task compared with the
multi-binary classification.

Whether using multi-binary classification significantly
influences the performance. The p-value of the Mann-Whitney
U-test is 0.0018, indicating that using multi-binary classification
can significantly improve the performance of the classifiers.
Consequently, we believe that the relationship between diseases
is not very important. For such a difficult multi-class task,
multi-binary classification can reduce the difficulty of training
and help achieve better performance.

3.5.3. Model Ensemble
Amodel ensemble is a learning paradigm that combines multiple
learners to improve the overall performance. The commonly used
ensemble methods include bagging (average predictions or votes
for one prediction) and boosting (weighted bagging). The core
concept of bagging is to average the predictions of several models
or make predictions according to the majority vote. Boosting can
be regarded as a type of weighted bagging because the classifiers
are assigned different weights. Bagging and boosting can improve
the performance of the ensemble model by reducing the error
caused by the variance and bias, respectively. The motivations
behind the ensemble used in Challenge 2020 were mainly to
combine models designed for different features or to enhance
the ensemble model by combining several models. In addition,
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FIGURE 6 | Box-plots of score distributions of training strategy techniques.

bagging was the most commonly used ensemble method in
Challenge 2020.

We notice that the three highest-ranking teams used the
model ensemble (Natarajan et al., 2020; Zhao et al., 2020; Zhu
et al., 2020), but only 14 out of 41 teams employed this strategy.
The results are not expected, and we believe that this is because
the model ensemble can help improve the single model, whereas
it is less meaningful to compare among different teams.

3.6. Applications to the Real World
In this section, we consider some techniques that are necessary
in real-world scenario but rare in Challenge 2020, which are post-
processing, interpretability, unknown classes and unseen patients.

3.6.1. Post-processing
We exclude ensemble methods and threshold optimization in
this section because they are mentioned in the previous sections.
Except for these two types of post-processing techniques, we find
that only one team performed hard sample mining (Chen et al.,
2020) as a post-processing technique. Based on the same idea as
hard sample mining, some techniques (Orphanidou et al., 2014)
can be used to detect and remove low-quality ECG segments
(hard samples). The summarized results for high-quality ECG
segments are more believable. Finally, the interactions between
labels can be considered to post-process the predictions. For
example, the reward matrix in Challenge 2020 (see Figure 2 in
Alday et al., 2020) indicates that class labels are correlated with
each other. In this situation, predicting one label might help
predict another correlated label.

3.6.2. Interpretability
The lack of model interpretability is a critical problem for
machine-learning models, especially for deep-learning-based
models. In Challenge 2020, only two teams (Raipal et al., 2020;
Żyliński and Cybulski, 2020) showed feature importance in
interpreting themodel. The factors that lead tomodel predictions

are unknown for clinicians. Here, we discuss two potential
directions for improving the interpretability of the models.

Uncertainty represents how “certain” a model is of each
prediction it generates. Although it is difficult to obtain
statistical guarantees on performance (which requires true data
distribution), estimating the level of uncertainty of predictions
is more important than improving accuracy for clinicians
(Tonekaboni et al., 2019). A common method for estimating
the uncertainty of DNNs with dropout is Monte Carlo dropout
(Gal andGhahramani, 2016). This technique uses dropout during
inference and applies the model on the same input multiple times
to sample many outputs. In the real world, uncertainty can help
clinicians to determine the degree of model reliability, as high
uncertainty in ECG classification strongly corresponds with a low
diagnostic agreement with the interpretation of the cardiologist
(Vranken et al., 2021).

The relative importance is visualized, as clinicians view
ECG signals as figures rather than numbers, unlike what
deep-learning engineers do. Consequently, highlighting the
important component of an ECG segment is vital for the
interpretability of the models. The relative importance of
different components obtained by models should be evaluated to
examine the evidence of the results in a way that cardiologists
can understand. Thus, themodels can “explain” their predictions,
while identifying more details that may be neglected by humans
(Elul et al., 2021). The methods for achieving this goal include
spectro-temporal attention (Elul et al., 2021) and layer-wise
relevance propagation (Binder et al., 2016). These methods
emphasize the more important part of the ECG signal on
figures to help humans understand what the models care about
the most.

In summary, interpretability is necessary for ECG signals in
real-world scenarios, and it requires more attention. Researchers
can attempt to explain why the models produce their predictions,
and this can prompt the real-world application of automated
ECG interpretation.
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3.6.3. Unknown Classes and Unseen Patients
The classification model is trained on a limited range of datasets,
but it is used on an unlimited range of data in the real
world. A team in Challenge 2020 considered the differences
among databases and employed domain adversarial training
(Hasani et al., 2020). However, this team neglected individual-
level differences. In a real-world scenario, there are numerous
unknown classes and unseen patients. To solve this problem, the
models for automated ECG interpretation should have the ability
to quickly adapt to unknown classes and unseen patients.

For unknown classes, the model needs to 1) automatically
detect whether there is an unknown class and 2) rapidly adapt to
the unknown class. To achieve the first goal, we can decouple the
multi-class classification task into multiple binary classification
tasks and add new classification heads to meet the new rhythm
types. If all the existing prediction heads output “False,” it
indicates that we have met an unknown rhythm type. Other
techniques related to the open world (Bendale and Boult, 2015)
are also useful. To achieve the second goal, an effective method is
to build a separate task-specific simple machine-learning model
on top of existing engineered features, such re-training only
the final fully connected layer in DNNs, while maintaining the
other weights.

A more difficult problem is the gap in the data distributions
among different patients. This gap is caused by not only the
physiological differences but also other factors such as medical
devices and data storage formats (Elul et al., 2021). In this
situation, the model trained on existing data might not work
equally well on unseen patients. There are many noteworthy
attempts to overcome this problem, such as meta-learning to find
a set of easily generalized initial parameters (Banluesombatkul
et al., 2020) and employing regularization on the loss function
(Elul et al., 2021). These methods can benefit the performance on
unseen patients and may be helpful on existing patients.

Thus, a good model is not the best on the training set, but
the best on the unseen dataset. Thus, how to tackle the “unseen”
problems is the key for machine-learning models.

4. DISCUSSION

In this section, we summarize and discuss the fivemost influential
and interesting practical points based on previous results.

4.1. Data Augmentation Should Be
Employed and Adapted to Specific
Scenarios
It is universally accepted that increasing the amount of training
data contributes to the improvement of deep-learning-based
models. However, high-quality labeled data are limited in 12-
lead ECG classification tasks. Data augmentation by generating
synthetic patterns is a model-agnostic solution to this problem.

In addition to cropping, introducing external data, and adding
noise, methods based on random transformations, such as
flipping, window warping, and masking, are commonly used for
the augmentation of time-series data. However, we notice that
no method based on the time-frequency domain or frequency

domain alone was used for Challenge 2020. In recent years,
data augmentation from these two perspectives has drawn
considerable attention in many fields (Lee et al., 2019; Park
et al., 2019; Gao et al., 2020), including ECG classification tasks.
Moreover, handling the severe class imbalance problem in ECG
through data augmentation can be a future research direction.

Furthermore, choosing the most appropriate augmentation
method remains a challenge. Although the authors in Iwana
and Uchida (2021) discussed the advantages and disadvantages
of various methods and offered suggestions for using different
time-series data types, the effectiveness of various augmentation
methods is still based on empirical experiences and experiments.

4.2. Combining Different Features Can
Improve Performance
To fully utilize expert knowledge and metadata beyond raw
signals, traditional features (not from deep-learning models) are
commonly applied for tasks in the medical field (Supratak et al.,
2016; Hong et al., 2017, 2019b). In Challenge 2020, teams not
only used demographic features such as sex and age but also
extracted signal-specific features using traditional methods. In
terms of integration, most teams combined traditional-method-
based features and deep-learning-based features using simple
concatenation. In this way, models can learn extra information
from traditional features and retain the generalization ability of
deep features (Cheng et al., 2016; Natarajan et al., 2020).

However, most teams neglected a simple technique: hand
feature interaction. DeepFM (Guo et al., 2017) provides an
accessible solution to this problem, by adding an interaction
technique to wide and deep architectures (Cheng et al., 2016). In
addition, how to achieve “feature fusion” is a potential direction
for better combining the two types of features. The outer product
is another universally employed method (Gao et al., 2016; Yu
et al., 2017).

4.3. A Hybrid Design of Different Types of
DNNs Is Better Than Using a Single Type
First, deep-learning models prevailed in Challenge 2020. As
shown in Table 2, 82.93% of the teams select DNNs as their
models or part of their models. Some teams that use relatively
simple models, such as rule-based models (Smisek et al., 2020),
achieve good scores. We believe that DNNs exhibit a higher
performance only when the model is suitable and the data are
well-preprocessed. In addition, combining raw data and domain
knowledge is a critical problem in deep-learning-based methods.

Second, the choice of the DNN type is essential. In Challenge
2020, CNN-based models were dominant: all DNNs were CNNs
or extracted features from CNNs, indicating that CNNs may be a
better choice when latent representations are extracted from raw
ECG signals. However, RNNs or transformers can also be applied
to discover the temporal dependency of the representations
obtained by CNNs. This was a common way to combine CNNs
and RNNs in Challenge 2020 (Hasani et al., 2020; Natarajan
et al., 2020; Oppelt et al., 2020) and was adopted by three of the
top-5 teams.
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Finally, we want to emphasize the attention mechanism
because of its significant performance improvement. The top-
3 teams in Challenge 2020 used the attention mechanism,
which can be classified as channel-wise attention (squeeze-
and-excitation) and location-wise attention (transformers). The
former assigns different weights to each channel (channels can be
implicit in each layer of DNNs), and the latter assigns different
weights to the representation vectors in each time step. Overall,
both types of attention make models learn to recognize more
useful information. We can easily add the attention mechanism
to the designed models as a plugin block, and this has proven to
be beneficial, as described in Section 3.4.2.

When an appropriate model for ECG tasks is constructed,
the advantages of different base learners should be combined to
design the most powerful model.

4.4. The Use of End-to-End Architectures
Should Depend on the Task Being Solved
End-to-end models are becoming increasingly popular owing to
the development of DNNs because they do not require significant
manual interference, reducing the cost and time consumed in
automated ECG interpretation.

However, although end-to-end models are attractive, some
limitations exist. First, the performance of each part of the
entire model cannot be quantified. Thus, each component of
the whole model is designed empirically without any separable
and measurable feedback, thereby causing difficulty in the
modification of the model. Second, end-to-end models are
much slower to be trained compared with decomposition
methods because the gradients are noisier and less informative,
as demonstrated theoretically and empirically (Shalev-Shwartz
et al., 2017). Third, end-to-end models are less flexible because
we cannot process the features generated in the middle layers.

Overall, it remains unclear whether to use end-to-end models,
depending on the scenario and domain knowledge.

4.5. Multiple Models Are Better Than One
The model ensemble is a model-agnostic and efficient paradigm
for improving the performance of a single model. Amethod from
Challenge 2017 showed that the ensemble classifier outperformed
single models (Hong et al., 2017). The most common ensemble
methods included bagging (bootstrap aggregation), boosting, and
stacking.

• Bagging is an ensemble method that trains base learners from
different bootstrap samples (subsampling with replacement
for the training data). Bagging is more efficient because
the base models can be trained in parallel. We regard
most ensemble models in Challenge 2020 as being obtained
by bagging because they are trained in parallel. However,
strictly speaking, they are different from bagging because their
sampling methods include not only bootstrap but also other
methods.

• Boosting is a family of methods that train models in order,
with each base learner relying on the last one. For example, the
incorrectly classified samples from the last base learner may

be assigned a higher weight in the current training process
to emphasize its importance. This is generally employed in
decision tree models, such as AdaBoost (Freund and Schapire,
1997) and XGBoost (Chen and Guestrin, 2016).

• Stacking trains first-level learners by using training data and
then takes the output from the first-level learners together
with the training labels to train a second-level learner. In this
way, all first-level learners are combined, and the second-level
learner produces the prediction.

There is no conclusion about which ensemble method has the
best performance among the three most common ensemble
models. However, it is incorrect that more base learners lead
to a better performance (Zhou et al., 2002). In other words,
composing an ensemble with a part of the base learners instead
of the whole set is more appropriate.

5. CONCLUSION

In this study, we collected 41 methods used in Challenge 2020
and conducted a meta-analysis on them, focusing on the aspects
of data preprocessing, feature engineering, machine-learning
models, training strategy, and applications to the real world.
We statistically analyzed and visualized the effectiveness of each
technique. We then discussed the advantages and disadvantages
of the techniques in terms of the aforementioned aspects. Finally,
we summarized five practical lessons based on the analysis,
providing practical and instructive experiences in cardiac disease
classification tasks based on ECG.
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