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While it is impossible to deny the performance gains achieved through the incorporation 
of deep learning (DL) and other artificial intelligence (AI)-based techniques in pathology, 
minimal work has been done to answer the crucial question of why these algorithms 
predict what they predict. Tracing back classification decisions to specific input features 
allows for the quick identification of model bias as well as providing additional information 
toward understanding underlying biological mechanisms. In digital pathology, increasing 
the explainability of AI models would have the largest and most immediate impact for the 
image classification task. In this review, we detail some considerations that should be made 
in order to develop models with a focus on explainability.
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INTRODUCTION

In recent years, the use of artificial intelligence (AI) to classify, segment, and otherwise gain 
new understanding of medical data has experienced rapid growth. The incorporation of AI 
in histopathology has great potential, providing pathologists with the ability to quickly render 
diagnoses for patients in a reproducible, objective, and time-efficient manner. Recent technological 
advances including the growing popularity of histology slide digitization and accessibility of 
high-powered computational resources have given rise to a field now referred to as digital 
pathology (Al-Janabi et  al., 2012; Bera et  al., 2019; Niazi et  al., 2019). While the field of 
digital pathology has benefited from the advances made in more general domains of AI, it 
is important to remember the unique considerations that must be  made when attempting to 
understand biological mechanisms. Leveraging domain knowledge held by the medical community 
is crucial in the development of AI-powered frameworks with a far-reaching impact on 
patient outcomes.

One of the best areas to study the impact of explainability is for the task of histopathological 
image classification (Holzinger et al., 2017; Pocevičiūtė et al., 2020). In current practice, pathologists 
looking at biopsy images synthesize available information based on their decades of education 
and experience in order to make diagnostic decisions. If a pathologist is asked to explain what 
specifically influenced their decision, they are able to indicate specific areas of the slide that 
contain lesions, cellular characteristics, or staining intensity variations that they know are associated 
with a particular disease. This interpretation by pathologists is the “gold standard” of an explainable 
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histology system. However, this kind of patient-pathologist 
consultation is a rare occurrence in current practice despite 
demonstrated patient interest, particularly in cases of life-changing 
diagnosis (Gutmann, 2003; Manek, 2012; Lapedis et  al., 2019). 
By incorporating AI-driven pipelines into their workflow, 
pathologists can greatly increase both the efficiency of diagnoses 
and their quantitative support. Complex computational models 
designed to tackle uncertainty through continuous exposure to 
diverse sets of data and intensive pathologist involvement 
represent a growing area of personalized medicine. Integrating 
prior medical knowledge with modern data science is the 
fundamental goal of Explainable AI, a major focus of this review.

Explainable AI is far from a novel concept in the machine 
learning (ML) community (Goebel et  al., 2018; Tosun et  al., 
2020a,b). While the presentation of new approaches for post-
hoc explainers of deep convolutional neural networks (CNNs) 
is outside of the scope of this review, there are a few simple 
steps that can increase the interpretability and explainability 
of an AI-driven study (Figure  1). These steps include as: 
selection of representative units at appropriate scales, extracting 
quantitative features to discriminate informative units, and 
aggregating information on the whole slide image (WSI) level 
in order to generate patient-level conclusions.

The rest of this review will be organized following the above 
steps, with a focus on presenting the benefits and drawbacks 
of specific approaches in the current literature.

DEFINING REPRESENTATIVE UNITS

The inherent structure of data for medical ML tasks is hierarchical, 
consisting of multiple levels of resolution and detail (Figure 1). 

At the highest level, of course, is the patient. Within each 
patient, we  have the results of tests, biopsies, and scans that 
give pathologists a look into the state of the patient’s health. 
In some cases, the results of genetic tests are also available 
which provide even finer scale information at the level of the 
DNA. Integrating information from lower-levels in order to 
make conclusions on the patient-level can be  readily handled 
within a multi-instance learning (MIL) framework (Dietterich 
et  al., 1997). The original example case of MIL given by 
Dietterich et  al. describes a locked door for which there are 
several key rings available which might contain the correct 
key (Dietterich et al., 1997). Assuming the forgetful key master 
only knows which key rings contain keys that fit that door, 
we can use MIL to learn characteristics of keys on the positively 
labeled key rings from which predictions can be  drawn for 
subsequent key rings. In the context of histology slides, WSIs 
from each patient are treated as the key rings (“bags” in MIL 
terminology) where the keys (“instances” in MIL terminology) 
are either individual pixels, patches with much smaller spatial 
dimensions than the full image, or annotated sub-structures 
within the image (Campanella et  al., 2019; Hao et  al., 2019; 
Diao et  al., 2021; Lu et  al., 2021). In digital pathology, how 
these instances are defined can markedly impact how the 
decisions made by a network can be  interpreted in a 
biological context.

Unlike traditional image classification datasets like ImageNet 
or MS COCO, histology datasets contain images that are 
substantially larger in pixel dimensions (Deng et  al., 2009; Lin 
et  al., 2014). It is not unusual for WSIs to reach into the 
gigapixel dimensions, often with only a small fraction of input 
pixels containing tissue. Gilbertson et  al. found that prior to 
employing JPG2000 compression, a WSI system could output 

A B

FIGURE 1 | Defining representative units. (A) Internal hierarchy of medical data. Each tier represents an increasing complexity or resolution of underlying biological 
units.  At the base of this pyramid is shown the two different methods for defining representative units in a particular study. (B) Consequences of using a 
patch-based instance definition include the partitioning of functional sub-units across multiple patches.
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as much as 2.7 GB of imaging data per square centimeter 
(Foran et  al., 1997; Gilbertson et  al., 2006). In order to enable 
DL-based analyses using data from WSIs, it is necessary to 
load each training image into the computer’s memory. Hardware 
memory constraints prevent the use of entire WSIs from being 
used as individual training examples. A common approach 
used by digital pathology researchers to circumvent memory 
limitations when using WSIs in conjunction with DL algorithms 
is to break up the image into patches of equal spatial dimensions. 
These patches typically contain sections of tissue between 40 
and 250 kilopixels (0.01–0.625 mm2 with 0.5 μm/pixel resolution). 
While several existing works have achieved impressive 
performance treating these image patches as instances, 
we contend that the highest amount of explainability is obtained 
by instead using biologically relevant sub-compartments. Breaking 
the image into functional sub-units as opposed to arbitrarily 
assigned blocks has a better chance of conveying the biological 
relevance of each input object than when it is mixed in with 
other structures (Figure  1). Returning to the analogy of the 
key rings and the locked door, if our key ring contained 
thousands of keys, we  can imagine that more is learned about 
what key will unlock the door when we  focus on extracting 
features from each of these keys individually instead of the 
different parts of multiple keys grouped together.

Previous studies have been carried out with this principle 
in mind. Diao et al. trained a pair of CNNs to segment specific 
cell types and tissue regions from which they calculated 
quantitative features (Diao et  al., 2021). This process allowed 
them to trace back their model predictions to specific cell or 
tissue types which allowed for simple localization of informative 
regions (Diao et  al., 2021). Similarly, another study by Wang 
et  al. developed a CNN to segment tumor regions from lung 
adenocarcinoma slides from which a set of 22 morphological 
features were used in order to predict survival probability 
(Wang et  al., 2018). In both examples, CNNs were trained 
using pathologist annotations to efficiently generate datasets 
of specific cell and tissue types. By smartly selecting representative 
sub-compartments within large WSIs, model explainability is 
substantially increased in this study.

QUANTITATIVE FEATURE EXTRACTION

After selecting representative sub-units within a WSI, the next 
step in the pipeline should be  to derive a way to compare 
these sub-units in order to assess the influence of treatment 
or disease in each of the provided groups. The decision of 
what type of features to extract from image data can have a 
substantial impact on the interpretability of the final results.

Standard DL approaches utilize latent features, defined as 
the pooled output of many convolutional filters, in order to 
classify images (Figure  2). The benefits of using this approach 
are that researchers are able to generate an arbitrarily large 
number of fine-grained features which have been shown to 
be  highly discriminative. However, the way in which a 
computational model looks at image data and how a pathologist 
looks at image data differ immensely. Pathologists are trained 

to seek out particular lesions or cellular abnormalities that are 
known to be  prognostic markers. When going through a WSI, 
pathologists record whether or not specific lesions were observed 
and at what frequency. Limitations with this kind of information 
include the requirement of an expert observer in order to properly 
catalog which results in a much larger amount of time needed 
per slide compared to fully computational methods. Furthermore, 
the semi-quantitative or qualitative nature of this kind of 
information can have a negative impact on inter-rater agreement.

The middle ground between the above two categories of 
features is referred to as hand-engineered features, which include 
sets of quantitative measures to describe the size, shape, texture, 
color, and proximity for given objects in images (Figure  2). 
These features can either directly relate to known morphological 
changes that are associated with disease, e.g., glomerular area 
in diabetic nephropathy, or indirectly examining qualitative 
attributes, such as the loss of mesangial matrix (mesangiolysis) 
through the calculation of several texture and color features. 
The specificity of hand-engineered features can also be modified 
to focus on sub-regions within each image through the use of 
additional segmentation methods. Color deconvolution, first 
proposed by Ruifrok et  al. for the separation of 
immunohistochemically stained compartments, allows for the 
efficient segmentation of areas according to their biological 
properties (Ruifrok and Johnston, 2001). Studies, such as those 
by Yu et  al. and Zhan et  al., make use of an open-source 
software known as CellProfiler to quickly generate a large 
number of these hand-engineered features (Kamentsky et  al., 
2011; Yu et  al., 2016; Zhang et  al., 2019). CellProfiler provides 
the user with a wide variety of segmentation tools in a user-
friendly interface for repeatable application to large image datasets 
(Kamentsky et al., 2011). More problem-specific feature extraction 
pipelines can incorporate existing domain knowledge as they 
condense the total amount of features to those that are known 
to be  informative for that particular task (Ginley et  al., 2019).

EXPANDING PREDICTIONS TO THE 
PATIENT LEVEL

After creating a quantitative understanding of features captured 
in each representative unit from a WSI, it now becomes necessary 
to understand the influence of each one of those units in the 
broader context of the patient. Modeling the contributions of 
each sub-unit on the final classification is a popular problem 
in the field of MIL and it is important that the manner in 
which instances are combined be  interpretable to pathologists. 
Classical MIL techniques, such as Expectation Maximization-
Diverse Density (EM-DD) and Axis-Parallel Rectangles, have 
demonstrated significant performance in defining bag-level 
distributions of data given feature values for weakly supervised 
tasks (Dietterich et al., 1997; Zhang and Goldman, 2001; Foulds 
and Frank, 2010; Carbonneau et al., 2018). Modern MIL approaches 
in digital pathology are designed to aggregate high dimensional 
features that are used by DL algorithms (Cosatto et  al., 2013; 
Campanella et  al., 2019; Sudharshan et  al., 2019; Yao et  al., 
2020). Due to the stereological nature of renal biopsies, where 
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it is not feasible to sample the entire kidney tissue, it is often 
the case where a small area of pixels contributes highly to the 
final WSI diagnosis. To best mimic this natural decision making 
procedure, some researchers have been incorporating recurrent 
neural networks (RNNs) and attention-based methods to iteratively 
learn to select informative regions from which patient-level 
conclusions are drawn. Campanella et  al. employed an RNN 
that combined the influences of the most “suspicious” patches 
in order to render a diagnosis (Campanella et  al., 2019). The 
most “suspicious” patches consisted of those with the highest 
ranked tumor probability by a prior CNN classifier. By using 
this method, authors were able to trace back their model’s 
diagnostic predictions to a subset of image regions containing 
patches with the highest probability of belonging to the tumor 
class. Ginley et  al. also demonstrated the efficacy of an RNN 
to aggregate handcrafted feature values for renal glomeruli 
presented as a sequence within each renal biopsy (Ginley et  al., 
2019). For their work, they were more interested in determining 
the most influential hand-engineered features as opposed to 
most influential glomeruli, which they determined using a 
sequential dropout procedure for each feature to measure predictive 
value. Attention modules were incorporated into a CNN 
architecture by Ilse et  al. in order to differentially weight input 
patch influences on image class prediction (Ilse et  al., 2018). 
Integrating how patient-level conclusions are deduced from large 
input images ensures that the result is both accurate 
and interpretable.

INCORPORATING BIOLOGICAL 
INTERPRETABILITY

Strict criteria for network interpretability ensure that the model 
correctly assesses a candidate WSI based on etiologic features 
that can be  interpreted by pathologists. To accomplish this, 
computational scientists must ensure that the networks they design 
are not only able to accurately diagnose biopsies, but also allow 
for the isolation and characterization of informative regions. This 
characterization process should account for the inherently 
hierarchical nature of medical data to allow for quick determination 
of important areas in the slide at multiple levels of magnification. 

By incorporating these considerations, computational networks 
can better mimic the “gold standard” of diagnostic explainability.

Methods that seek to determine the focus of Neural Network 
(NN) models after training are referred to as “post-hoc” attention. 
This includes popular methods, such as saliency maps, 
deconvolutional networks, Grad-CAM, and DeepLIFT (Zeiler 
et  al., 2010; Simonyan et  al., 2013; Selvaraju et  al., 2017; 
Shrikumar et al., 2017; Figure 3). While the internal operations 
vary, the output of each of these methods is a pixel-wise 
importance value for a specific classification output that is 
typically displayed as a heatmap overlaid on a tissue region. 
In addition to being a valuable tool for explaining the decisions 
made by a CNN, the authors of Grad-CAM also demonstrated 
how output heatmaps can be  used as weak localization cues 
in a weakly supervised segmentation task (Selvaraju et  al., 
2017). When paired together with instance definition of functional 
sub-units, post-hoc techniques like Grad-CAM can be powerful 
tools in translating network predictions to approachable 
visual displays.

DISCUSSION

Throughout this review, we  have assessed different works for 
their ability to provide users with sufficient levels of 
interpretability. In the field of digital pathology, interpretability 
is a critical feature of model design to ensure consistency and 
quality of patient treatment. Previous work by a mixture of 
institutions (academic, commercial, and regulatory) has 
highlighted concerns where AI algorithms have either introduced 
or mirrored systemic biases in their calculations (Minssen et al., 
2020; Mehrabi et  al., 2021). Without providing guidance to 
computational models that is based on prior knowledge, the 
model is forced to establish its own set of criteria that is not 
interpretable to a human observer. Through the incorporation 
of careful instance definition and hand-engineered features, 
the quality of algorithms using histopathological data can 
be  elevated to the point that they are trusted for a greater 
range of applications. Model trust, reliability, and robustness 
require careful domain-specific considerations to be  made so 
that data are appropriately processed to generate explainable 
results (Table  1).

FIGURE 2 | Extracting quantitative features. Different types of quantitative features extracted from images in order to make classifications using ML algorithms.
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TABLE 1 | Glossary of terms.

Acronym used Full expansion Definition

DL Deep Learning A sub-field of Machine Learning and Artificial Intelligence where the final predicted value given an input is the result of the 
aggregation of information from many intermediary layers.

AI Artificial Intelligence A simulation of human intelligence by computers in order to solve complex problems.

ML Machine Learning Often used interchangeably with Artificial Intelligence, Machine Learning describes a set of algorithms wherein a 
computer learns to solve problems by analyzing input samples and their corresponding labels.

CNN Convolutional Neural 
Network

A type of Machine Learning algorithm commonly used to classify images. Many image filters are compounded to extract 
information from images using convolution.

WSI Whole Slide Image A digitized image of a histology slide captured at full-resolution.

MIL Multi-Instance 
Learning

A branch of Machine Learning dealing with data that is organized into groups.

EM-DD Expectation 
Maximization-Diverse 
Density

A Multi-Instance Learning algorithm developed to extract characteristics of groups that best separate individual units into 
their respective groups.

RNN Recurrent Neural 
Network

A type of Machine Learning algorithm commonly used to analyze sequences of data.

NN Neural Network A type of Machine Learning algorithm mimicking the flow of information between neurons in the brain.

A
B

C

FIGURE 3 | Incorporating biological interpretability. (A) Input glomerulus image to a CNN trained to predict severity of progression of diabetic nephropathy 
according to Tervaert criteria. (B) Grad-CAM output indicating relative influence of pixels in each region within the original image. (C) Colormap for Grad-CAM 
heatmap illustrating degree of influence of a particular region on the decision of a network.
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