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Introduction: Functional tests and training regimens intensity-controlled by an

individual are used in sport practice, clinical rehabilitation, and space medicine.

The model of voluntary wheel running in rats can be used to explore molecular

mechanisms of such training regimens in humans. Respiratory and locomotor

muscles demonstrate diverse adaptations to treadmill exercise, but the effects

of voluntary exercise training on these muscle types have not been compared

yet. Therefore, this work aimed at the effects of voluntary ET on rat triceps

brachii and diaphragm muscles with special attention to reactive oxygen

species, which regulate muscle plasticity during exercise.

Methods: Male Wistar rats were distributed into exercise trained (ET) and

sedentary (Sed) groups. ET group had free access to running wheels,

running activity was continuously recorded and analyzed using the original

hardware/software complex. After 8 weeks, muscle protein contents were

studied using Western blotting.

Results: ET rats had increased heart ventricular weights but decreased visceral/

epididymal fat weights and blood triglyceride level compared to Sed. The

training did not change corticosterone, testosterone, and thyroid hormone

levels, but decreased TBARS content in the blood. ET rats demonstrated higher

contents of OXPHOS complexes in the triceps brachii muscle, but not in the

diaphragm. The content of SOD2 increased, and the contents of NOX2 and

SOD3 decreased in the triceps brachii muscle of ET rats, while there were no

such changes in the diaphragm.

Conclusion: Voluntary wheel running in rats is intensive enough to govern

specific adaptations of muscle fibers in locomotor, but not respiratory muscle.
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Introduction

Regular endurance exercise such as daily walking or

moderate-speed running is beneficial for health, quality of

life, and longevity (Leung et al., 2008; Ruegsegger and Booth,

2018; Burtscher and Burtscher, 2020). To achieve the best

training result, exercise regimen should be adequate to the

capabilities of the human body. Therefore, self-controlled

functional tests and training regimens (such as 6-min walk

distance test or tests/training sessions on non-motorized

devices) are increasingly popular in sport practice, clinical

rehabilitation, and space medicine (Janaudis-Ferreira et al.,

2010; Yarmanova et al., 2015; Petersen et al., 2016; Wang et al.,

2017; Penn et al., 2019).

Animal models provide mechanistic understanding of

exercise physiological, biochemical, and molecular training

effects in humans (Poole et al., 2020). Voluntary wheel

training is an attractive model to study the impact of

exercise on physiology and health outcomes in rodents

(Poole et al., 2020). A great advantage of such training

regimen is that it allows the animal to demonstrate its

intrinsic motivation to exercise and, therefore, does not

require aversive stimuli to motivate it to run. Notably,

voluntary training in rats is not associated with an increase

in blood corticosterone levels, in contrast to treadmill training

(Ke et al., 2011; Sato et al., 2020). A voluntary exercise regimen

seems to be aerobic since lactate accumulation in muscle

interstitium should make the animal uncomfortable and

force it to stop running. Such suggestion is supported by

increases in the maximum oxygen consumption, citrate

synthase activity and oxidative phosphorylation protein

complexes in locomotor muscle observed after voluntary

wheel training (Halseth et al., 1995; Toedebusch et al.,

2016; Gaynullina et al., 2018). Importantly, a number of

studies have reported beneficial effects of voluntary exercise

training on rat nervous, muscular and cardiovascular systems

as well as on the metabolic state (Przyklenk and Groom, 1985;

Hägg et al., 2005; Hydock et al., 2007; Durrant et al., 2009;

Gaynullina et al., 2018).

Endurance exercise increases the oxygen demand of

working muscles and the whole body, which is met by the

work of the respiratory muscles. Therefore, two functional

types of skeletal muscle, locomotor, and respiratory ones,

should increase their contractile activity during endurance

exercise. The diaphragm, a principal mammalian inspiratory

muscle, is rhythmically active throughout an organism’s life.

The diaphragm has very high oxidative capacity and

demonstrates a unique strategy of adaptation to endurance

exercise training compared to locomotor muscles (Powers

et al., 1997; Borzykh et al., 2020b). Following treadmill

training, an increase of type I muscle fiber proportion and

the decrease of muscle fiber cross-section area were observed

in the diaphragm, which should facilitate the delivery and

utilization of oxygen by diaphragm mitochondria (Green

et al., 1989; Borzykh et al., 2012; Borzykh et al., 2017a).

However, the oxidative capacity of the diaphragm is less

susceptible to treadmill endurance training, in contrast to

the locomotory muscle (Metzger and Fitts, 1986; Fregosi et al.,

1987; Green et al., 1989; Powers et al., 1992; Uribe et al., 1992;

Borzykh et al., 2012; Borzykh et al., 2017a). A vital function of

the diaphragm necessitates the further search for new ways to

support its aerobic performance. Therefore, the question

arises about the comparison of voluntary exercise training

effects on the oxidative capacity of respiratory and locomotory

muscles in the rat. To our knowledge, this question had been

poorly addressed in previous studies.

Reactive oxygen species (ROS) play an important role in the

control of muscle tissue plasticity during exercise (Powers et al.,

2011; Bouviere et al., 2021). Skeletal muscle contractile activity

increases ROS production in muscle fibers (Powers et al., 2011;

He et al., 2016; Powers, 2017; Thirupathi et al., 2021a). ROS are

generated by the mitochondrial electron transport chain

(predominantly by complexes I and III) or as products of

enzymatic systems, among which NADPH oxidases (NOX)

contribute significantly (Sakellariou et al., 2014; Knock, 2019;

Tejero et al., 2019). NOX2 and NOX4 are dominant NOX

isoforms in skeletal muscle, they produce superoxide anion

(O2•−) and hydrogen peroxide (H2O2), respectively (Takac

et al., 2011; Tejero et al., 2019). The balance of potentially

more toxic O2•− and less toxic H2O2 is controlled by three

classes of superoxide dismutase (SOD), which have distinct

subcellular localization (Wang et al., 2018).

Notably, aerobic exercise can differently affect ROS-

producing and antioxidant systems in an intensity and

duration manner (Thirupathi et al., 2021b). Respiratory and

locomotor muscles differ in regimens of contractile activity,

which may create different conditions for ROS generation and

inactivation. During an exhaustive treadmill running test, rat

diaphragm was suggested to have higher antioxidant protection

than locomotor muscles (Caillaud et al., 1999). However, no such

comparison has been performed for voluntary wheel trained rats,

to our knowledge. Furthermore, the effects of voluntary training

on the expression of NOX and SOD isoforms in locomotor

muscles and diaphragm have not been explored yet.

Therefore, this work aimed at the effects of voluntary exercise

training on rat locomotor and respiratory muscles with special

attention to the expression of NOX and SOD isoforms in muscle

tissue. Training-induced alterations were compared in the

diaphragm and triceps brachii muscle. This locomotor muscle

is similar to the diaphragm in fiber type composition (Delp and

Duan, 1999) and is substantially recruited during running in the

wheel (Cohen and Gans, 1975). To confirm an increase of

oxidative capacity of triceps brachii muscle following

voluntary wheel training (Sexton, 1995; Toedebusch et al.,

2016), we determined the contents of OXPHOS complexes in

this muscle.
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Materials and methods

All experimental procedures used in this work were approved

by the Biomedical Ethics Committee of the State Research Center

of Russian Federation - Institute of Biomedical Problems,

Russian Academy of Sciences (protocol N 574, approval date

12.04.2021), and conformed to the Guide for the Care and Use of

Laboratory Animals published by the US National Institutes of

Health (Eighth edition, 2011).

Animals

Male Wistar rats were obtained from the vivarium of the

State Research Center of Russian Federation—Institute of

Biomedical Problems, Russian Academy of Sciences at the age

of 2 months (body weight 250 ± 55 g, n = 24) and then housed in

the animal unit of the Faculty of Basic Medicine, M.V.

Lomonosov Moscow State University. The animals were

maintained at the temperature 21–23°S on 12/12-h light/dark

cycle (lighting on at 8:00 a.m., lighting off at 8:00 p.m.) and fed

with normal rodent chow (Laboratorkorm, Russia) ad libitum.

Voluntary wheel running

Exercise training of rats was carried out by voluntary wheel

running. Rats (n = 24) were randomly assigned in pairs in

12 experimental setups. Rats were taken into the experiment

by two per day, so that one experimental setup was inhabited

each day.

The experimental setup was a cage (580 mm × 375 mm ×

200 mm) with a running wheel (diameter 320 mm, the width

of the running surface 100 mm) mounted on one side of the

cage cover. Each wheel was equipped with two diametrically

located magnets and a hall-effect sensor that was wired to an

electronic counter (see our YouTube video https://youtu.be/

OO7PnywRuvI). Each half-revolution of the wheel was

recorded at the moment when the magnet passed the

detector. Using the original software, the number of wheel

half-revolutions was continuously recorded in intervals of 5 s

and then the average running distance was calculated for each

day of the training cycle (Borzykh et al., 2017b; 2020a). The

source codes, mechanical drawings, and electronic circuits for

our installation for animal spontaneous activity monitoring

have been deposited in a public Github repository: https://

github.com/comcon1/ASPAM. The codes for processing of

spontaneous physical activity data generated by ASPAM can

be downloaded from https://github.com/comcon1/ASPAM_

processing.

After a week of rat adaptation to the experimental setup,

the cage was separated by a mesh septum; as a result, the

running wheel was constantly accessible only for one of the

rats (from the exercise trained (ET) group) and constantly

inaccessible for the second rat (sedentary (Sed) group).

Throughout the experiment, the rats were able to interact

through the holes in the septum, which eliminated the social

isolation that could adversely affect the cardiovascular system

(Sharp et al., 2002; Maslova et al., 2003). The exercise training

period lasted for 8 weeks. During the experiment, the animals

were weighed weekly. In post-training experiments, 23 rats

(12 Sed and 11 ET) were used. One rat from the ET group was

excluded due to a toe defect on the forelimb, it was paired in a

setup with 12th rat from the sedentary group (in cage

compartment without the wheel).

Blood and tissue sampling

The running wheels were removed from the setups 20 h

before the collection of blood and tissue samples. Each

experimental day, two rats from the same setup were

anesthetized with CO2 and killed by decapitation; for all

animals euthanasia was performed at the same time of day

(between 9:00 and 9:30 a.m.). Trunk blood samples were

collected during decapitation. Blood samples were kept for

20 min at room temperature followed by 40 min at + 4°C, after

which they were centrifuged (4,300 g for 15 min), serum was

collected and stored at −20°C.

The long head of the triceps brachii muscle, right and left

(together with the septum) heart ventricles, adrenal glands,

epididymal and visceral fat were dissected and weighed. The

muscle tissue samples were taken from the inner (red) part of

the long head of the triceps brachii muscle and the costal part

of the diaphragm. Muscle samples were quickly frozen in

liquid nitrogen and stored at −70°C pending further Western

Blotting experiments.

Hormonal and biochemical analyses of
blood serum

The hormone concentrations were determined using

commercially available ELISA kits: testosterone, total

thyroxine, and free triiodothyronine kits from Immunotek

(Moscow, Russia) and rodent corticosterone kit from IDS

(United Kingdom). Biochemical parameters were measured

in an automatic analyzer (A-25 Biosystems, Spain). The

concentrations of total cholesterol and triglycerides were

determined using reagents from Hospitex Diagnostics

(Russia). The concentrations of high-density lipoprotein

(HDL) cholesterol and low-density lipoprotein (LDL)

cholesterol were determined using reagents from Beijing

Leadman Biochemistry (China). Thiobarbituric acid

reactive substances (TBARS) levels were analyzed using the

assay kit from Agat-Med (Russia).
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Western blotting

Seven rats were randomly selected from each (Sed and ET)

group. Muscle tissue samples were homogenized in ice-cold

RIPA buffer containing inhibitors of proteases and

phosphatases (aprotinin 50 mg/ml, leupeptin 50 mg/ml,

pepstatin 50 mg/ml, NaF 2.1 mg/ml, Na3VO4 0.18 mg/ml).

Homogenates were centrifuged at 14,000 g at 4°C for 5 min.

Protein concentrations in supernatants were analyzed by

bicinchoninic acid assays. Samples were mixed with 2x SDS

sample buffer containing Tris 0.025 M (pH 6.8), SDS 2%,

glycerol 20%, dithiothreitol 5.4%. An equal amount of total

protein per lane (10 µg) was loaded to the 15-lane

polyacrylamide gels, so that two compared groups of

samples always ran in parallel (Supplementary Figures

S1–S7). Proteins were separated by SDS-PAGE and

transferred to nitrocellulose membrane (BioRad,

United States) using Trans-Blot Turbo transfer system

(BioRad, United States). The transfer was visualized with

Ponceau S staining (Supplementary Figures S1–S7).

For further visualization of NOX2, NOX4, SOD1, SOD2,

SOD3 parts of membranes were cut out at the appropriate level,

in order to reduce the expenditure of antibodies (for detailed

information see Supplementary Figures S4–S7). The membranes

for further visualization of OXPHOS were processed uncut. All

membranes were blocked with 5% nonfat milk (Applichem,

Germany) in TBSt (20 mm Tris-HCl, pH 7.6; 150 mm NaCl,

0.1% Tween 20) and incubated overnight at +4°S with selected

primary antibodies: a mixture of antibodies against oxidative

phosphorylation complexes (CI-NDUFB8, CII-SDHB, CIII-

UQCRC2, CIV-MTCO1, CV-ATP5A; OXPHOS, Abcam, 1:

2000), NOX2 (Bioss Antibodies, 1:400), NOX4 (Abcam, 1:1,000),

SOD1 (Sigma-Aldrich, 1:4,000), SOD2 (Enzo Life Science, 1:1,000)

or SOD3 (Enzo Life Sciences, 1:1,000) in 5%milk in TBSt. The next

morning the membranes were incubated with corresponding

secondary antibodies (anti-mouse (Cell Signaling, 1:5,000 in 5%

milk in TBSt) or anti-rabbit (Cell Signaling, 1:10,000 in 5% milk in

TBSt)) for 1 h at room temperature and visualized with Super Signal

West Dura Substrate (Thermo Scientific) using ChemiDoc (BioRad,

United States).

Experiments were analyzed using ImageLab Software

(BioRad, United States). To compare the protein content in

two muscles of the sedentary group, the values were expressed

as a percentage of the mean value for the triceps brachii muscle.

When assessing the change in protein content after wheel

training, the mean value for the muscle of the sedentary

group was taken as 100%.

Statistical data analysis

Statistical data analysis was performed using the GraphPad

Prism 8.0 software. The normality of the data distribution was

assessed using the Shapiro-Wilk test. For parameters with a

normal distribution, data are presented as mean and S.D, the

differences between groups were analyzed using the unpaired

Student’s t-test (comparison of two groups), repeated measures

one-way ANOVA (analysis of running activity indicators) or

repeated measures two-way ANOVA (analysis of body weight

dynamics in two groups); ANOVA tests were corrected for

multiple comparisons. For samples with a distribution

different from normal, the data are presented as the median

and interquartile range; the differences between two groups were

assessed using the Mann-Whitney test. Statistical significance

was reached at p < 0.05, n is the sample size (number of animals).

Results

Characteristics of rat running activity

The total run distance for 8 weeks was 340 ± 23 km. Rats

exhibited their wheel-running activity predominantly during

the dark period. On average, during most of the training cycle,

the day running distance was about 1.5% of the night distance.

Therefore, we performed detailed analysis of running activity

during 12-h dark period. Daily run distance increased during

the first 2 weeks of the exercise training, then plateaued and

decreased slightly at the end of the training cycle (Figure 1A).

Daily running time demonstrated similar dynamics

(Figure 1B).

The activity was not evenly distributed in time but was

observed on local time intervals lasting about an hour, which,

in turn, were composed of shorter running bouts (Figure 1C).

To characterize rat running activity in more detail, we

calculated the values of the duration and speed of running

in individual bouts. The bouts were defined as running

intervals separated by at least 15-s intervals of rest (zero

counts of wheel rotation in three consecutive 5-s intervals).

Obtained values were averaged first for each 12-h dark

period, and then weekly. The number of running bouts

increased clearly from the first to the second week of

training cycle and then gradually decreased (Figure 1D).

Notably, a decrease in the number of bouts was

accompanied by an increase in their duration and running

speed (Figures 1E,F). Mean bout duration (Figure 1E) and

mean running speed (Figure 1F) increased at the beginning

of the training cycle, and then reached a plateau. From the

third to the seventh week of the training cycle, bout duration

was 117 ± 37 s, and the running speed was 27.2 ± 3.0 m/min.

Notably, the coefficient of variation was least for running

speed (5.3 ± 1.9%) compared to other indicators of running

activity, such as distance (14.2 ± 7.9%), running time (12.1 ±

7.3%) and bout duration (12.1 ± 5.7%) (p < 0.05 for all

comparisons, one-way ANOVA with Sidak’s multiple

comparisons test).
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The effects of voluntary wheel running on
organ weights and blood parameters

The body weight at the beginning of the training cycle did not

differ between the two groups of rats (Figure 2). Starting from the

third week of the training protocol till its end, the body weight of

rats from ET group was about 10% less compared to the

sedentary group (Figure 2). Voluntary wheel running did not

change the weight of the triceps brachii muscle, but the weights of

the right and left heart ventricles were 15% and 10% higher in ET

rats compared to Sed group (Table 1). Notably, this type of

exercise training seems to be not stressful for animals, since the

FIGURE 1
Characteristics of rat running activity during the 12-h dark period (n = 11). (A,B) daily running distance (A) and running time (B). (C) Pattern of
running activity of one rat at the seventh week of the training cycle. The initial value on the horizontal axis corresponds to the lighting off (at 8:
00 p.m.); vertical axis shows the number of wheel half-revolutions in 5-s time intervals. (D–F) indicators calculated for individual bouts: numbers of
bouts (D), mean bout duration (E) andmean running speed in bouts (F) during the 8-week training cycle. *p < 0.05 compared to the first training
week (Repeated measures one-way ANOVA with Dunnett’s multiple comparisons test).
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weight of the adrenal glands, as well as the blood concentration of

corticosterone, did not differ between the two groups of rats

(Table 1). The blood levels of testosterone, thyroid hormones,

cholesterol, HDL-cholesterol and LDL-cholesterol did not differ

between ET and Sed groups (Table 1). At the same time, blood

content of triglycerides was reduced by 22% in trained rats

compared to sedentary ones, which correlated with a decrease

in the relative weight of visceral and epididymal fat by 38% and

61%, respectively (Table 1). The content of TBARS in the blood

serum of trained rats was reduced compared to sedentary ones

(Table 1).

The effects of voluntary wheel running on
the contents of oxidative phosphorylation
complexes in diaphragm and triceps
brachii muscles

In sedentary rats, the content of the oxidative

phosphorylation complex CII in the diaphragm was 86%

higher than in the triceps brachii muscle (Figures 3B,F), the

contents of complexes CI, CIII, and CIV did not differ between

two muscles (Figures 3A,C,D,F). The content of the CV complex

was somewhat (by 28%) lower in the diaphragm compared to the

triceps brachii muscle (Figures 3E,F).

In the triceps brachii muscle, ET increased the contents

of CI and CIV oxidative phosphorylation complexes by 66%

and 85% respectively (Figures 4A,D,K), while the contents of

other oxidative phosphorylation complexes were not

affected by ET (Figures 4B,C,E,K). In the diaphragm, the

contents of oxidative phosphorylation complexes did not

differ between sedentary and ET rats (Figures 4F–J,L).

Thus, voluntary wheel running led to an increase in the

FIGURE 2
Body weight dynamics of rats during the experiment. Values
at week “0” were obtained at the first day of the training cycle.
Sed–sedentary group of rats; ET–exercise-trained group of rats;
number in parentheses indicates the number of animals. *p <
0.05 compared to the sedentary group (two-way ANOVA with
Sidak’s multiple comparisons test).

TABLE 1 Body weight (BW), relative organ weights and blood serum levels of hormones, substrates and thiobarbituric acid reactive substances
(TBARS) in sedentary (Sed) and voluntary exercise-trained (ET) rats.

Parameters Sed (n = 12) ET (n = 11)

Body weight (g) 425 (389–448) 389 (367–404)a

Triceps brachii muscle long head (mg/100 g BW) 335 (316–353) 349 (332–375)

Right ventricle (mg/100 g BW) 52 (49–58) 61 (55–69)a

Left ventricle with septum (mg/100 g BW) 194 (188–216) 217 (208–222)a

Adrenal glands (both) (mg/100 g BW) 16.3 (14.4–17.3) 16.6 (15.7–18.5)

Visceral fat (g/100 g BW) 1.2 (1.0–1.4) 0.4 (0.3–0.4)a

Epididymal fat (g/100 g BW) 1.2 (1.0–1.5) 0.7 (0.7–0.8)a

Corticosterone (ng/ml) 21.5 (15.9–29.9) 20.0 (14.2–26.3)

Total thyroxine (nmol/L) 41.7 (31.7–47.1) 37.0 (30.8–45.2)

Free triiodothyronine (pmol/L) 4.3 (3.3–5.6) 4.7 (4.1–5.7)

Testosterone (nmol/L) 12.6 (5.3–21.8) 10.3 (4.2–16.4)

Cholesterol (mmol/L) 1.38 (1.22–1.77) 1.26 (1.22–1.37)

Triglycerides (mmol/L) 0.91 (0.78–1.24) 0.76 (0.70–0.90)a

HDL-Cholesterol (mmol/L) 1.0 (0.92–1.23) 0.88 (0.84–1.01)

LDL-Cholesterol (mmol/L) 0.19 (0.17–0.23) 0.19 (0.17–0.20)

TBARS (μmol/L) 43.8 (36.7–56.4) 33.8 (31.5–38.6)a

ap < 0.05 compared to sedentary group (Mann-Whitney test). Number in parentheses indicates number of animals.
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oxidative potential of the forelimb muscle, but not the

diaphragm.

The effects of voluntary wheel running on
the contents of prooxidant and
antioxidant enzymes in diaphragm and
triceps brachii muscles

Sedentary rats had 81% higher levels of NOX2 in the

diaphragm compared to triceps brachii muscle (Figures 5A,F)

and, conversely, 47% lower levels of NOX4 (Figures 5B,F).

Cytosolic (SOD1) and extracellular (SOD3) superoxide

dismutase isoform contents were lower in the diaphragm

compared to the triceps brachii muscle by 19% and 40%

respectively (Figures 5C,E,F), while the mitochondrial

SOD2 isoform (Figures 5D,F) did not differ between studied

muscles.

Voluntary ET did not alter the content of NOX2 in the triceps

brachii muscle (Figures 6A,K), but reduced by 21% the content of

NOX4 (Figures 6B,K). The effects of ET on SOD expression were

also isoform-specific: SOD1 expression did not change (Figures

6C,K), SOD2 increased by 51% (Figures 6D,K), and

SOD3 decreased by 28% (Figures 6E,K) as a result of

voluntary wheel running. Along with that, ET did not change

the contents of NOX and SOD isoforms in the diaphragm

(Figures 6F–J,L).

Discussion

Here we report a novel finding that voluntary wheel training

exerts non-uniform effects on triceps brachii and diaphragm

muscles in the rat. Triceps brachii muscle demonstrated an

increase of oxidative capacity and substantial alterations in

contents of ROS synthesis/degradation enzymes, while no

such changes were apparent in the diaphragm.

Characteristics of rat voluntary wheel
running activity

Starting from the third week of the training cycle, our rats

demonstrated a daily run distance in the range from 5 to 9 km.

Based on the previously reported classification of rats by their

voluntary running distance (Rodnick et al., 1989; Sexton, 1995;

Poole et al., 2020) we can infer the medium level of voluntary

running activity of our rats. Daily running distance, running time

and the bout duration slightly decreased to the end of the training

cycle, when the rats became about 18-week-old. Similar decrease

FIGURE 3
Rat triceps brachii muscle and diaphragmmuscle differ in the contents of oxidative phosphorylation complexes. (A–E) The relative contents of
CI (A), CII (B), CIII (C), CIV (D) and CV (E) oxidative phosphorylation complexes in triceps brachii muscle long head (Tbl) and diaphragmmuscle (Dia) of
sedentary rats (n = 7). (F) Representative Western Blot images of triceps brachii and diaphragm muscles oxidative phosphorylation complexes in
sedentary rats. Images of CI-CV complexes were taken at different exposure times. *p < 0.05 compared to Tbl (unpaired Student’s t-test).
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of voluntary running activity in young male rats with increasing

their age to 18 weeks was reported by Mondon and others

(Mondon et al., 1985).

Wheel running activity occurred during the dark period and

consisted of short bouts, similar to the results of previous studies

(Mondon et al., 1985; Rodnick et al., 1989; Borzykh et al., 2017b;

FIGURE 4
Voluntary exercise training increased the contents of oxidative phosphorylation complexes in long head of the triceps brachii muscle (Tbl) but
not in diaphragmmuscle (Dia). The relative contents of CI (A,F), CII (B,G), CIII (C,H), CIV (D,I) and CV (E,J) oxidative phosphorylation complexes in Tbl
(A–E) and Dia (F–J) of sedentary rats (Sed, n = 7) and voluntary exercise-trained (ET, n = 7) rats. Representative Western Blot images of oxidative
phosphorylation complexes in Tbl (K) and Dia (L) in sedentary and voluntary exercise-trained rats. Images of CI-CV complexes were taken at
different exposure times. *p < 0.05 compared to sedentary group (unpaired Student’s t-test).
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Poole et al., 2020). At the beginning of the training cycle, the

increase in the total running distance was associated with an

increase in the number of bouts. Afterwards, the number of bouts

decreased, but their duration and speed of running increased.

Probably, these changes reflect the acquisition of running skills

by rats. Bout duration and running speed first increased and

plateaued from the third training week. Mean running speed

demonstrated by our young male rats (~27 m/min) was close to

the values that can be calculated from the data on wheel

revolutions per minute and wheel diameter reported in

previous studies (Mondon et al., 1985; Eikelboom and Mills,

1988).

Notably, running speed was the least variable and, probably, most

informative characteristic of rat’s running activity in comparison to

run distance, run time and bout duration. According to our previous

data, rats are able to develop the individual tactics of wheel running

(Borzykh et al., 2017b). During the training cycle, the distribution of

instantaneous speed values gradually narrows and acquires a

maximum, which corresponds to the running speed most

characteristic of this rat. Apparently, each rat demonstrates an

individual “comfortable” running speed. Probably, the speed of

voluntary wheel running may be an indicator of the functional

state of the organism. For example, wheel running speed in heart

failure rats is one and a half times lower than in healthy rats (Schultz

et al., 2013).

Voluntary wheel running induces gross
adaptations typical for endurance exercise
training

The body weight of voluntary trained rats was lower compared to

that in sedentary control, in part due to the decrease of fat weight,

which is typical for endurance training (Lehnig and Stanford, 2018).

Such shortage of adipose tissue correlated with the reduction of blood

content of triglycerides pointing to their elevated utilization in

physically active rats. Therefore, voluntary wheel training can be

beneficial for lipidmetabolism, preventing the development of insulin

resistance and obesity (Reaven and Reaven, 1981; Matiello et al.,

2010). Moreover, moderate heart hypertrophy was observed in

voluntary trained rats, similar to observed earlier in rats with high

voluntary running activity (Rodnick et al., 1989; Sexton, 1995). Heart

hypertrophy is also a typical effect of endurance exercise training.

Importantly, no signs of chronic stress were observed in ET rats,

as seen fromunchanged adrenal weight and blood corticosterone level

compared to those in sedentary rats. The hypothalamic-pituitary-

FIGURE 5
Rat triceps brachii muscle and diaphragmmuscle differ in the contents of NOX and SOD isoforms. The relative contents of NOX2 (A), NOX4 (B),
SOD1 (C), SOD2 (D), SOD3 (E) in triceps brachii muscle long head (Tbl, n = 7) and diaphragm muscle (Dia, n = 7) of sedentary rats (A–E).
Representative Western Blot images of NOXs and SODs isoform content in triceps brachii muscle and diaphragm muscle in sedentary rats (F). *p <
0.05 compared to Tbl (unpaired Student’s t-test).
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FIGURE 6
Voluntary exercise training changed the contents of NOX and SOD isoforms in long head of the triceps brachii muscle (Tbl) but not in diaphragm
muscle (Dia). The relative contents of NOX2 (A,F), NOX4 (B,G), SOD1 (C,H), SOD2 (D,I) and SOD3 (E,J) in Tbl (A–E) and Dia (F–J) of sedentary rats
(Sed, n = 7) and voluntary exercise-trained (ET, n = 7) rats. Representative Western Blot images of NOX and SOD isoforms in Tbl (K) and Dia (L) of
sedentary and voluntary exercise-trained rats. *p < 0.05 compared to sedentary group (unpaired Student’s t-test).
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thyroid axis was also not altered in voluntary trained rats, similar to

earlier reported data (Gaynullina et al., 2018). Therefore, voluntary

wheel running ensures the adaptation of the rat organism to chronic

aerobic exercise in non-stressing conditions.

Voluntary wheel training increases
oxidative potential in locomotor, but not
respiratory muscle

The oxidative capacity of the diaphragm is higher than that of

most locomotor muscles (Delp and Duan, 1996; Borzykh et al.,

2020b). Accordingly, we observed higher content of oxidative

phosphorylation complex II in the diaphragm compared to the

triceps brachii muscle. Notably, in a previous study we observed

higher content of succinate dehydrogenase, a key component of

complex II, in rat diaphragm compared to locomotor

gastrocnemius muscle (Borzykh et al., 2017a). The content of ATP

synthase subunitα, amarker of oxidative phosphorylation complexV,

in the diaphragm was somewhat lower than in the triceps brachii

muscle. It should be noted, however, that ATP synthase activity does

not limit mitochondrial respiration in rat diaphragm (Callahan et al.,

2001).

Movement analysis and electromyography in rats

demonstrated the substantial activation of triceps brachii

muscle during walking and running in the wheel (Cohen and

Gans, 1975). Therefore, the oxidative capacity of this muscle

increases following voluntary wheel training, as seen from

the elevations of citrate synthase activity (Sexton, 1995;

Toedebusch et al., 2016) and the contents of oxidative

phosphorylation complexes (Toedebusch et al., 2016). In

our study, the contents of oxidative phosphorylation

complexes I and IV were higher in triceps brachii muscle

of voluntary trained rats compared to sedentary control.

However, no such differences were seen in the diaphragm

muscle. Our results are supported by an earlier published

study that showed less pronounced metabolic changes in the

diaphragm compared to hindlimb muscles of voluntary

exercise-trained rats (Halseth et al., 1995). Therefore,

oxidative capacity of permanently active diaphragm

muscle hardly demonstrates an additional rise during

voluntary exercise training.

Qualitatively similar results had been observed in rats trained on

amotor-driven treadmill (Metzger and Fitts, 1986; Green et al., 1989;

Okumoto et al., 1996; Borzykh et al., 2012, 2017a). Due to the

different biomechanical characteristics of locomotion, wheel

running, and treadmill running are hardly comparable in terms

of load intensity and volume. However, it can be assumed that

treadmill running is not less energy-demanding than wheel running,

since treadmill speed usually exceeds 30 m/min, and besides, the

incline of treadmill lane further increases the load. Therefore,

diaphragm muscle is less susceptible to changes in its oxidative

capacity during different regimens of endurance training, due to its

intrinsically high oxidative capacity associated with permanent

contractile activity.

Voluntary wheel training induces specific
changes of ROSmetabolism in locomotor,
but not respiratory muscle

Adaptive alterations of muscle fibers during acute and chronic

exercise are driven in part by self-generated ROS (Powers et al., 2011;

Bouviere et al., 2021). Since ROS production differs in fast and slow

muscle fibers (Loureiro et al., 2016), we compared the contents of key

prooxidant and antioxidant enzymes in the diaphragm and triceps

brachii muscle that are similar in fiber composition (Delp and Duan,

1996). Basal levels of NOX isoforms demonstrated non-uniform

differences between the two studied muscles: the level of O2•−
producing NOX2 was higher in the diaphragm, while the level of

H2O2 producing NOX4 was higher in triceps brachii muscle. These

data suggest a higher basal rate of O2•− production in the diaphragm.

Surprisingly, the levels of expression of two of the three SOD isoforms

were lower in the diaphragm compared to triceps brachii muscle,

which is in contradiction with the data on higher antioxidant enzyme

capacity of the diaphragm (Ragusa et al., 1996; Talarmin et al., 2017).

It should be noted, however, that earlier reported data were obtained

by comparing the diaphragm with hindlimb muscles that have

different muscle fiber composition. In addition, antioxidant

protection of the diaphragm may not be associated with SOD, but

with other antioxidant enzymes.

Chronic endurance exercise can cause shifts in expression/activity

of both prooxidant and antioxidant systems in skeletal muscle

(Bouviere et al., 2021). In principle, endurance exercise is capable

to increase SOD expression/activity in rat diaphragm but all the data

we know relate to treadmill training (Lawler et al., 1994; Powers and

Criswell, 1996; Oh-ishi et al., 1997). Of note, endurance exercise was

shown to improve oxidative stress in the diaphragm in mouse model

of Duchennemuscular dystrophy (Nocetti et al., 2021) and in patients

with chronic obstructive pulmonary disease (Zhang et al., 2021).

Comparative studies of the diaphragm and locomotor muscles in this

aspect are limited to the effects of acute treadmill exhaustive running

test, during which changes in antioxidant enzyme activities were less

pronounced in the diaphragm compared to that in hindlimb muscles

(Caillaud et al., 1999). For the first time, we showed that chronic

voluntary exercise did not affect the contents of NOX and SOD

isoforms in the rat diaphragm although obvious changes of these

indicators were observed in the triceps brachii muscle. Presumably,

voluntary training reduced the differences in NOX4 and

SOD3 contents between two studied muscles, since inherently high

contents of these proteins in triceps brachii muscle were reduced by

training. Our data show that voluntary exercise training ensured the

protection of locomotor muscle from oxidative stress, as seen by the

decrease of NOX4 expression and, importantly, by the increase of

SOD2 expression, a key beneficial effect of endurance exercise

(Powers et al., 2011).
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Notably, voluntary exercise training was accompanied by the

decrease of TBARS content in rat blood. Although acute endurance

exercise may increase blood TBARS content in volume-dependent

manner (Vezzoli et al., 2016), the effect of chronic exercise training is

rather the opposite, as physically active people have lower TBARS in

the resting state (Djordjevic et al., 2012). Importantly, in our study

the rats were deprived of exercising almost a day before blood

sampling. Our results are consistent with lower basal TBARS levels

in blood of rats after other training methods: moderate swimming

protocol (Stanojevic et al., 2016) or treadmill running (Delwing-de

Lima et al., 2018). Therefore, the systemic antioxidant protection of

tissues can be a general beneficial effect of the voluntary exercise

training.

Our present study has several limitations/unexplored topics

that should be addressed in future studies, including the

determination of NOX and SOD specific activities in muscle

tissue as well as the levels of expression/activity of other

antioxidant enzymes: glutathione peroxidase, catalase etc.

Conclusion

For the first time, we performed a comprehensive

analysis of voluntary wheel training effects on locomotor

and respiratory muscles in rats. We report the novel findings

that chronic voluntary wheel exercise causes less marked

changes in oxidative capacity and prooxidant/antioxidant

enzyme expression in the diaphragm compared to the triceps

brachii muscle, which is matched to the diaphragm in muscle

fiber type composition. Considering the characteristics of

these two muscles and the training principle of physiological

overload it can be concluded that voluntary running is

demanding for the brachial muscle but not for the

diaphragm. Therefore, in healthy young rats the

diaphragm does not develop specific adaptations in

response to spontaneous and intermittent exercise bouts

that do not cause its physiological overload.

Importantly, the principle of rat voluntary training

relates to human self-controlled intensity exercise

protocols that are used in astronauts (Yarmanova et al.,

2015; Petersen et al., 2016), stroke patients (Wang et al.,

2017) or Parkinson’s disease patients (Penn et al., 2019), to

assess and develop their aerobic performance. Therefore, the

results of the present study may be considered in exploring

the systemic effects of such training protocols and the

development of training programs aimed at increasing

aerobic performance of skeletal muscles.
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