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Extreme bradycardia (EB), extreme tachycardia (ET), ventricular tachycardia

(VT), and ventricular flutter (VF) are the four types of life-threatening

arrhythmias, which are symptoms of cardiovascular diseases. Therefore, in

this study, a method of life-threatening arrhythmia recognition is proposed

based on pulse rate variability (PRV). First, noise and interference are wiped

out from the arterial blood pressure (ABP), and the PRV signal is extracted.

Then, 19 features are extracted from the PRV signal, and 15 features with

highly important and significant variation were selected by random forest (RF).

Finally, the back-propagation neural network (BPNN), extreme learning

machine (ELM), and decision tree (DT) are used to build, train, and test

classifiers to detect life-threatening arrhythmias. The experimental data are

obtained from the MIMIC/Fantasia and the 2015 Physiology Net/CinC

Challenge databases. The experimental results show that the DT classifier

has the best average performance with accuracy and kappa coefficient

(kappa) of 98.76 ± 0.08% and 97.59 ± 0.15%, which are higher than those

of the BPNN (accuracy = 94.85 ± 1.33% and kappa = 89.95 ± 2.62%)

and ELM (accuracy = 95.05 ± 0.14% and kappa = 90.28 ± 0.28%)

classifiers. The proposed method shows better performance in identifying

four life-threatening arrhythmias compared to existing methods and has

potential to be used for home monitoring of patients with life-threatening

arrhythmias.
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1 Introduction

In recent years, cardiovascular diseases have the highest

mortality rate and are the “number one killer” of human

beings (Roberts and Fair 2021). Among them, acute

cardiovascular diseases such as myocardial infarction (MI)

and cerebral infarction (CI) have the high suddenness and

lethality (Du et al., 2021). If MI and CI are not effectively

treated within a few hours after the sudden onset, it will

directly lead to the patient’s death.

Life-threatening arrhythmias are a common symptom in

patients with CI and MI, and the common life-threatening

arrhythmias include EB, ET, VT, and VF (Deaconu et al.,

2021), and the definitions of those four life-threatening

arrhythmias are given in Table 1 according to the beating

rhythm of the heart rate (Alinejad et al., 2019; Paliakaitė

et al., 2019). In the initial period of suddenness of life-

threatening arrhythmias, patients sometimes experience

sudden heart pain that is slight and rapid and disappears after

a short rest such as sitting or lying down, which is called

“transient” (Chorin et al., 2021). The “transient” of life-

threatening arrhythmias is often ignored by patients, which

can lead to the sudden illness of dangerous MI, CI, and other

acute cardiovascular diseases. On the eve of acute cardiovascular

diseases such as MI and CI, significant abnormal changes in

physiological parameters such as electrocardiographic (ECG)

and blood pressure occur (Jahmunah et al., 2021; Shuvo et al.,

2021). Moreover, if these abnormalities can be monitored in

time, then patients can be warned of the risk so that they can seek

medical help, which would significantly reduce the rate of death

from acute cardiovascular disease.

At present, the main detection method is hospital ECG, while

the acquisition of ECG signal requires multiple electrodes and

cable connection and the process needs professional medical

staff’s guidance. If one electrode is wrongly attached, the whole

signal is no longer valuable. In addition, the prolonged electrode

connection can cause skin irritation (Chou et al., 2019). It is

difficult for short-time ECG monitoring to effectively recognize

life-threatening arrhythmias with transient; thus, long-term

tracking and detection of physiological signals is required to

achieve recognition of acute cardiovascular disease outbreaks.

The beat rhythm of the heart is transmitted to the pulse with

the blood, and both ECG and pulse period sequences can

effectively reflect heartbeat rhythm changes (Mitchell and

Schwarzwald, 2021). Heart rate variability (HRV) is calculated

from ECG, which reflects the rate of the heartbeat and is used to

assess the autonomic nervous system of the heart (Ishaque et al.,

2021); thus, HRV can be used for the diagnosis of cardiovascular

diseases (Saul and Valenza, 2021). The PRV is extracted from the

ABP signal, which reflects the subtle changes in the vascular pulse

cycle (Jan et al., 2019). Moreover, the PRV can be utilized to

assess cardiovascular autonomic activity (Mejía-Mejía et al.,

2021). Studies have shown that the PRV extracted from the

ABP signal and HRV obtained from the ECG signal have a strong

correlation and are interchangeable in cardiovascular disease

monitoring in the supine or resting state (Mejía-Mejía et al.,

2020; Hejjel and Béres, 2021). Compared with the ECG signal,

the ABP signal acquisition does not require the affixing of

multiple electrodes and can be easily affixed to multiple parts

of the body, which is easy to operate and can be self-measured

(Jan et al., 2019; Mejía-Mejía et al., 2022). Thus, ABP signals are

widely used in wearable devices such as bracelets and smart

watches (Zhu et al., 2021). The study of the life-threatening

arrhythmia detection method based on the PRV signal is

expected to be used for home monitoring of life-threatening

arrhythmias.

Therefore, based on the PRV signal, this study studies

techniques for the recognition of four life-threatening

arrhythmias: EB, ET, VT, and VF. First, the interference and

noise in the pulse signal are filtered out, and then, the PRV signal

is extracted from ABP. Next, the parameters of physiological and

pathological changes caused by these four life-threatening

arrhythmias are extracted from the PRV signal, and the

parameters with high importance and contribution are

obtained as feature vectors by RF to train classifiers of BPNN,

ELM, and DT to detect these four life-threatening arrhythmias.

This study is structured as follows: Section 2 gives the

experimental data we used and describes the process and

methods of the experiments; Section 3 describes the

experimental results, including signal preprocessing, PRV

extraction, feature parameter extraction and dimensionality

reduction, and classification results; the discussion of the

experimental results is given in Section 4; and the conclusions

of the study are presented in Section 5.

2 Materials and methods

2.1 Materials

The experimental data consisted of two groups, both of them

from the international physiological signal database: PhysioBank.

One group has 10 young (aged 21–31) and 10 elderly (aged

70–85) healthy subjects with equal males and females, which

comes from the sub-database “MIMIC/Fantasia” (Iyengar et al.,

1996; Goldberger et al., 2000). The other group has patients with

four life-threatening arrhythmias consisting of 17 EB, 39 ET,

TABLE 1 Types and definition of four life-threatening arrhythmias.

Types Definition

EB HRV <40 bpm for 5 consecutive beats

ET HRV >140 bpm for 17 beats

VT Five or more ventricular beats with HRV >100 bpm

VF Rapid flutter, oscillatory, or fibrillation lasting at least 4 s
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47 VT and 6 VF subjects, which comes from the sub-database

“2015 Physiology Net/CinC Challenge” (Clifford et al., 2015).

The data of healthy subjects: the data of healthy subjects are

the PRV signal extracted from the ABP signal in the MIMIC/

Fantasia database. Before the data recording, every non-smoking

subject underwent a physical examination, and only the healthy

subjects were allowed to participate. In addition, each recording

includes the continuous ECG, respiration, ABP signals with a

sampling rate of 250 Hz, and a duration of 2 h.

The data of patients with four life-threatening arrhythmias:

the data are the PRV signal extracted from the ABP signal in the

2015 Physiology Net/CinC Challenge database, which was

recorded from patients in the intensive care unit of hospitals.

During data recording, two ECGs and one ABP signal were

collected from the patients, and all signals were sampled at

250 Hz with a duration of 5 or 5.5 min.

The simulation software is MATLAB 2020b, installed on an

Intel(R) Core (TM) i5-6300HQ CPU at 2.30 GHz, Windows-10

64-bit operating system, and installed on a laptop with

8 GB RAM.

2.2 Methods

Figure 1 depicts the processing of the intelligent

recognition of those four life-threatening arrhythmias,

which includes six steps: the preprocessing of the ABP

signal, extraction of PRV, extraction of features,

dimensionality reduction of features by RF, life-

threatening arrhythmia recognition, and evaluation of

results. The details are displayed in the following

subsections.

2.2.1 The preprocessing of the arterial blood
pressure signal

Noise such as electromyographic (EMG) interference,

alternating current (AC) interference, and baseline drift

can be generated in the ABP signal acquisition, for

example, the ABP signal from an ET patient with noise is

displayed in Figure 2. The purpose of ABP signal

preprocessing is to wipe out these noises and obtain a

clean ABP signal in order to improve the accuracy of PRV

extraction. According to the range of frequencies, an integer

coefficient notch filter with a stop frequency of 0 Hz, 50 Hz,

and its integer multiples are used for de-noising the AC

interference and the baseline drift, and an integral

coefficient low-pass filter is utilized to eliminate the EMG

interference in this study (Chou et al., 2020).

The transfer function F1(Z) of the integer coefficient notch

filter is,

F1(Z) � FAP(Z) − FBP(Z) � Z−(R−P)·N2 − [ 1 − Z−R

Q(1 − Z−P)]N

. (1)

In Equation 1, FAP(Z) is the transfer function of the all-pass

filter; FBP(Z) is the transfer function of the band pass filter; N is

the order of the filter; R and P are the order of the numerator

polynomial and denominator polynomial of the transfer

function, respectively, where P = fs/f1, fs is the sampling rate

of the signal and is 250Hz and f1 is the notch frequency and is

50 Hz here; and Q is the gain of the filter (i.e., the amplification)

and should be 2N, which is proportional to the steepness of the

notch band, and Q = R/P. In this study, N = 2, P = 5, and Q =

64 by trial and error, and R = PQ = 320. Therefore, Equation 1

becomes

F1(Z) � Z−315 − [ 1 − Z−320

64 − 64Z−5]2

� −1 + 4096Z−315 − 8190Z−320 + 4096Z−325 − Z−640

4096(1 − 2Z−5 + Z−10) . (2)

FIGURE 1
Process of four life-threatening arrhythmias.

FIGURE 2
ABP signal of an ET patient with noise.
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Then, Equation 3 is the difference equation, which is

calculated to eliminate the ABP signal containing the AC

interference and the baseline drift in real time by Equation 2.

y1(n) � 2y1(n − 5) − y1(n − 10) + 1
4096

[ − x1(n)
+ 4096x1(n − 315) − 8190x1(n − 320)
+ 4096x1(n − 325) − x1(n − 640)], (3)

where x1(n) is the latest data of the ABP signal, x1 (n-r) is the r-th

sampling data before x1(n), and y1(n) is the output of the integer

coefficient notch filter.

The frequency response of the integer coefficient notch

filter is

H1 � e−
jwN(R−P)

2 − [1 − sin wR
2

Q sin wP
2

]N

� e−315jw − [1 − sin 160w
64 sin 5w

2

]N

.

(4)
The frequency response is illustrated in Figure 3. The filter

with notch frequencies of 0Hz, 50Hz, and 100 Hz can effectively

de-noise the AC interference and the baseline drift, and it has

linear phase in the passband.

The transfer function F2(Z) of integer coefficient low-pass

filter is

F2(Z) � [ 1 − Z−C

C(1 − Z−1)]N

, (5)

whereN is the order of the filter, fs is the sampling frequency, f2 is

the first-order cut-frequency, and C must be an integer and is fs/

f2. Here, fs = 250Hz, f2 = 62.5Hz, N = 2, so C = 4. Therefore,

Equation 5 becomes

F2(Z) � [ 1 − Z−4

4(1 − Z−1)]2

. (6)

Then, as displayed in Equation 7, the difference equation is

calculated to de-noise the ABP signal containing the EMG

interference in real time.

y2(n) � y2(n − 1) + 1
4
[x2(n) − x2(n − 4)], (7)

where x2(n) is the latest datum of the ABP signal, x2 (n-c) is the

c-th sampling datum before x2(n), and y2(n) is the output of the

integer coefficient low-pass filter.

The frequency response of the integer coefficient low-pass

filter is

H2 � ⎡⎢⎣1
C
e−

j(C−1)
2

sin(wC2 )
sin(w2) ⎤⎥⎦

N

� ⎡⎢⎣1
4
e−

3j
2
sin(2w)
sin(w2) ⎤⎥⎦2. (8)

The frequency response is illustrated in Figure 4. The

filter with a stop band frequency of 62.5 Hz can effectively

suppress the EMG interference, and it has linear phase in the

passband.

FIGURE 3
Frequency response of the integer coefficient notch filter.

FIGURE 4
Frequency response of the integer coefficient low-pass filter.

FIGURE 5
ABP signal.
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2.2.2 The extraction of pulse rate variability
Since the cardiac cycle corresponds to the pulsation period,

one heartbeat produces one pulse wave. An ABP signal consisting

of a series of pulse waves (the red curve) is displayed in Figure 5.

The start and end points are two pulse troughs (the solid green

dots) corresponding to a complete pulse wave, respectively,

where the end point of one pulse wave is the start point of

the next pulse wave. In general, the PRV can be calculated by

computing the first-order difference between the start points and

end points, that is, pulse-to-pulse intervals (PPIs). However, it is

not easy to detect troughs due to the small amplitude of the waves

corresponding to the pulse troughs, while the waves

corresponding to the pulse peaks (the blue hollow cycle) have

notable characteristics and are easy to detect. Therefore, in this

study, the frequency domain extraction method based on sliding

window iterative discrete Fourier transform (SWIDFT) is used to

detect the wave peaks (Chou et al., 2014), which can be corrected

using a manual calibration method if there are incorrect or

missing sampling points. Two adjacent pulse peaks are

utilized as the boundary to divide the PRV signal, which is

calculated by the time interval between two adjacent peaks,

and the equation is as follows

PRV(i) � 60
t
� 60 · fs

Peaks(i + 1) − Peaks(i), (9)

where t is the sampling time of the ABP signal, and fs is the

sampling frequency of the ABP signal.

2.2.3 Pulse rate variability feature extracted
So far, the main methods for analyzing physiological signals

include time domain analysis, frequency domain analysis, and

nonlinear domain analysis, from which some features are

extracted to describe changes in heartbeat rhythm for the

diagnosis of cardiovascular diseases (Sluyter et al., 2019;

Mandal et al., 2021). In this study, 19 features were extracted

from the PRV signal based on the description of heart rhythm

changes.

2.2.3.1 Feature extraction based on time domain analysis

The PRV signal is quantified in the time domain, and some

useful information is extracted from the PRV signal by the

statistical analysis method to analyze the temporal variation

among the PRV signal and obtain the abnormalities and

stability of the cardiovascular system. We extracted seven

indexes in the time domain, which are calculated as follows.

1) Mean: the average of the PRV signal, and the equation is

Mean � ∑n
i�1

S(i)
n

, (10)

where S(i) is the ith datum of the PRV signal, and n is the length

of the PRV signal.

2) Std: the standard deviation of the PRV signal, which can

reflect the dispersion of the Mean and the datum of the PRV

signal. The equation is

Std �
��������������������
1

n − 1
∑n
i�1
(S(i) −Mean)2.

√
(11)

3) RMSD: the root mean square of PRV signal’s difference,

which can reflect the degree of rapid change in the PRV

signal. The equation is

RMSD �

����������������������
1

n − 1
∑n−1
i�1

(S(i + 1) − S(i))2.

√√
(12)

4) nRMSD: the normalized RMSD, and the equation is

nRMSD � RMSD

Mean
. (13)

5) PNN40: the percentage of difference in time intervals between

adjacent sampling points of a PRV signal greater than 40 ms.

The higher the value, the higher the nervous system tension.

The equation is

PNN40 � NN40
TotalNN

× 100%, (14)

where NN40 is the number of time intervals between two

adjacent sampling points in a PRV signal that exceed 40 ms,

and TotalNN is the number of sampling points intervals of a PRV

signal.

6) PNN70: the percentage of difference in time intervals between

adjacent sampling points of a PRV signal greater than 70 ms.

The equation is

PNN70 � NN70
TotalNN

× 100%, (15)

where NN70 is the number of time intervals between two

adjacent sampling points in a PRV signal that exceed 70 ms.

7) Mid: the median of the PRV signal, which represents a value

in the PRV signal distribution that can divide the PRV signal

into two groups. For a sequence of PRV signal from small to

large, when n is an odd number, the equation is

Mid � S((n + 1)/2). (16)

When n is an even number, the equation is

Mid � S(n/2) + S(n/2 + 1)
2

. (17)

8) IQR: the interquartile range of the PRV signal, which

describes the dispersion of the PRV signal. The equation is
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IQR � S75
S25

, (18)

where S75 is the third quartile, and S25 is the first quartile.

9) RMSD_APM: the root mean square of amplitude’s (APM)

difference, which can reflect the degree of rapid change in

APM. The calculation method is the same as Equation 12.

2.2.3.2 Feature extraction based on frequency domain

analysis

The power spectrum is calculated using the autoregressive

(AR) model for the PRV signal, from which the features are

extracted according to the frequency range to reflect the stability

of cardiovascular activity within the human body and to obtain

information about the variability of the cardiovascular system

(Fallet et al., 2019).

1) LF_HF: the ratio of low frequency (LF) to high frequency

(HF), which can reflect a balanced state of sympathetic and

parasympathetic tone.

LF HF � LF

HF
(19)

,

where the range of LF is 0.04–0.15, and the range of HF is

0.15–0.4.

2.2.3.3 Feature extraction based on nonlinear domain

analysis

The methods of nonlinear domain analysis are Poincaré plot

(Nordin et al., 2019) and entropy (Rohila and Sharma, 2019),

where the Poincaré plot can be approximated as an ellipse with

the horizontal axis of a single time interval of the PRV signal and

the vertical axis of time interval of two adjacent PRV signals,

which can be utilized to reflect the variation of different PRV

signals. The following are some relevant features of the

calculation.

1) Sd1:Sd2: the ratio of the long half-axis (Sd1) to the short half-

axis (Sd2) of the ellipse. The equation is

Sd1 Sd1 � Sd1

Sd2
, (20)

where Sd1 is defined as

Sd1 �

����������������������
1

n − 1
∑n−1
i�1

(S(i + 1) − S(i))2
2

√√
, (21)

and Sd2 is defined as

Sd2 �

������������������������������
1

n − 1
∑n−1
i�1

(S(i + 1) + S(i) − 2Mean)2
2

√√
. (22)

2) Se: the area of the ellipse is

Se � ∏ ·Sd1 · Sd2. (23)

3) TPR_PR: the turning point ratio of the PRV signal, which can

measure the randomness of the PRV signal. The equation is

TPR PR � Num((S(i) − S(i − 1)) · (S(i) − S(i + 1))> 0)
n

,

(24)
where Num is used to count the number of turning point.

4) ShE: the Shannon entropy of the PRV signal, and the

equation is

ShE � −∑n
i�1
P(i)log2(P(i)), (25)

where P(i) is the probability of the i-th datum in the PRV signal.

5) SamE_PR: the sample of the PRV signal, and the calculation is

as follows:

SamE PR � −lnB
m+1(r)
Bm(r) , (26)

where Bm(r) is the average probability of the PRV signal when the

embedding dimension ism, and Bm+1(r) is the average probability

of the PRV signal when the embedding dimension is m+1. Here,

m is equal to 2.

6) CSampEn: the coefficients of sample entropy, and the

calculation is as follows (Eerikäinen et al., 2018)

CSampEn � SamE PP + ln(2r) − ln(mean(S)), (27)
where r is the tolerance and is equal to 0.25 here, and S is the PRV

signal in the buffer.

7) PE_PR: the permutation entropy of the PRV signal, and the

equation is

PE PR � −∑m!

i�1
P(i)log(P(i)), (28)

where P(i) is the probability of occurrence of mode i.

8) SamE_APM: the sample entropy of APM, and the calculation

method is the same as that of Equation 26.

9) TRP_APM: the turning point ratio of APM, and the

calculation method is the same as that of Equation 24.

2.2.4 Feature dimensionality reduction
In this study, a method of RF is used to measure the

importance of the feature parameters and to reduce the

feature dimensionality with less information loss (Qi, 2012),
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which will make the subsequent recognition of life-threatening

arrhythmias more efficient without overfitting due to too many

features. The method of RF in the “neural network toolbox” of

MATLAB 2020b is exploited to calculate the importance of

feature parameters for feature dimensionality reduction. The

related functions are as follows:

RF_model = classRF_train (p_train, t_train, ntree, mtree,

extra_options);

Feature_measure = RF_model.importance.

The function “classRF_train” is engaged to train the RF

model. The input parameters p_train and t_train are the

features and labels of the training set, respectively. The input

parameter ntree is the number of trees; here, it is 100. The input

parameter mtree is the number of predictors used for

segmentation at each node; here, it is a rounding down for

the number of features, that is, 4. The input parameter

extra_options is used to control the RF model.

The function “RF_model.importance” allows to calculate

feature weights using accuracy and Gini index. The accuracy

and Gini index reflect the importance of the features, and the

larger the value of accuracy and Gini index, the more important

the feature is.

2.2.5 Life-threatening arrhythmia classification
In this study, supervised learning methods, which include

BPNN, ELM, and DT, are engaged to design classifiers to identify

four life-threatening malignant arrhythmias. The BPNN and DT

classifiers are built, trained, and tested with the “neural network

toolbox” in MATLAB 2020b. In addition, the classification

performance is analyzed using Kappa coefficients, accuracy,

and time consumption.

2.2.5.1 BPNN classifier

A BPNN classifier consists of an input layer, one or more

hidden layers, and an output layer. After entering the training set

into the input layer, the training set is calculated by weights and

thresholds in the hidden layer, and the result is transported to the

output layer to calculate a prediction value. If the error between

the predicted value and the expected value is too large, the error is

passed to the input layer and calculated again until the predicted

value and the expected value meet the requirements (Hamdani

et al., 2022). The BPNN classifier is composed of the following

three functions:

Net = feedforwardnet (option);

Net_BP = train (Net, p_train, t_train);

Error_sim_BP = sim (Net_BP, p_test).

The function “feedforwardnet ( )” is utilized to build the

BPNN classifier. The option is the number of nodes in every

layer of the BPNN; here, the number of nodes in one input

layer, two hidden layers, and one output layer is 5, 15, 15,

and 1, respectively. In addition, the number of training

sessions, the minimum error of the training target, and

the learning rate are set to 3,000, 0.001, and 0.1,

respectively. The training function and the transfer

function of the second hidden layer use “BFGS Quasi-

Newton” and “sigmoid,” respectively. The parameter Net

is the design result of the classifier.

The function “train ( )” is exploited to train the BPNN

classifier. The input parameters p_train and t_train are the

features and labels of the training set, respectively. The output

parameter Net_BP is the predicted value of the BPNN after

training.

The function “sim ( )” is engaged to test the BPNN classifier.

The feature of the test set p_test is compared with the predicted

value until the training parameters are satisfied, and the

classification result Error_sim_BP is obtained.

2.2.5.2 ELM classifier

The ELM classifier has the same structure as the BPNN

classifier, and they both belong to the feed-forward neural

network, while the hidden layer of ELM classifier is one. The

weights and thresholds of the BPNN classifier are constantly

changing, while the ELM classifier generate the unchanged

weights and thresholds initially, which will save a lot of time

compared to the training of BPNN classifier (Wang et al.,

2021).

The key points in the building and training ELM classifier

are the calculation of the connection weights (IW) between the

hidden layer and the input layer, the thresholds (B) of the

hidden layer neurons and the connection weights (LW)

between the hidden layer and the output layer. Here, the

number of nodes in the input layer, hidden layer, and

output layer are 12, 300, and 5, respectively. In addition,

IW and B are randomly generated by function “rand ( )” in

MATLAB 2020b, where IW = rand (300,15) * 2–1, B = rand

(300,1), and LW is calculated with the help of the function

“pinv ( ).” The predicted value Y is computed by performing

the classification using the sinusoidal transfer function based

on parameters IW, B, and LW, and Y is equal to the inverse

matrix of the inverse matrix of the output in the hidden layer

(H) by LW; then, the maximum value of all the features of Y is

used as the label, marked as 1, the others are 0, and the new

predicted value is output.

2.2.5.3 DT classifier

The DT has a top-down structure, growing down from the

root to the nodes in a certain order to make a decision, and

getting results at the leaves (Charbuty and Abdulazeez, 2021).

The two functions of the DT classifier are as follows:

Ctree = fitctree (p_train, t_train);

T_sim_tree = predict (Ctree, p_test).
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The function “fitctee ( )” is exploited to build and test the DT

classifier, and the output parameter Ctree is the trained decision

tree. The function “predict” is utilized to test the trained decision

tree. Here, the feature space of the training and testing sets for the

input parameters p_train, t_train, and p_test is different from

that of BPNN and the ELM classifiers, which should be the

number of samples ×feature properties.

3 Results

3.1 The preprocessing results

After de-noising the ABP signal using an integer coefficient notch

filter and an integer coefficient low-pass filter, a clean ABP signal is

obtained. Figure 6 displays the ABP before and after filtering for an ET

patient. The AC interference and baseline drift are presented in

Figure 6A, and the red box of Figure 6A is enlarged to Figure 6B in

order to clearly observe these noises. It can be observed that the AC

interference and the baseline drift have been wiped out in Figure 6C, the

EMG interference has been eliminated in Figure 6Dbased on Figure 6C,

and it can be clearly observed that the burr is eliminated in Figure 6C.

3.2 Pulse rate variability extraction results

The results of Peaks in subjects extracted from the ABP signal

of different groups by the methods of SWIDFT and manual

calibration are illustrated in Figure 7. Also, it can be observed that

the method is highly accurate and robustly stable, which can be

engaged effectively for PRV calculations.

The PRV results of subjects extracted based on the Peaks

detection are illustrated in Figure 8, from which it is obvious that

the amplitudes of those PRV signals are different. The PRV signals’

average of healthy young, healthy old, EB, ET, VT, and VF are

75.902 beat per minute (bpm), 60.282 beat per minute (bpm),

44.462 bpm, 137.598 bpm, 112.760 bpm, and 84.714 bpm,

respectively. The average heartbeat of EB is the lowest, while that

of ET is the highest. The average heartbeat of VF is higher than that

of the EB subjects and lower than that of the VT subjects.

3.3 Feature extraction results

A total of 19 features (defined in Section 2.2.3) were extracted

from the PRV signal, and the statistical results of the features are

FIGURE 6
ABP signal before and after filtering for an ET patient. (A) ABP signal before filtering. (B) Enlargement of the red box (A). (C) De-nosing the ABP
signal by an integer coefficient notch filter. (D) De-nosing the ABP signal obtained (C) by an integer coefficient low-pass filter.
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presented as “mean ± standard deviation” in Table 2. In total, we

extracted the 143853 PRV signal from the ABP signal, for which

we calculated a feature vector of 19 × 139719. Among them, the

feature vectors for healthy, EB, ET, VT, and VF subjects are 19 ×

93516, 19 × 6475, 19 × 16124, 19 × 22083, and 19 × 1521,

respectively.

3.4 Feature dimensionality reduction
results

To reduce the complexity of the algorithm without affecting

the accuracy as much as possible, the features extracted from the

PRV signal need to be dimensionalized by the method of RF.

FIGURE 7
Peaks of ABP signal extracted. (A) Peak detection of a healthy young subject. (B) Peak detection of a healthy old subject. (C) Peak detection of an
EB subject. (D) Peak detection of an ET subject. (E) Peak detection of a VT subject. (F) Peak detection of a VF subject.
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The magnitude of the features calculated with RF is displayed

in Figure 9, the mean decrease of accuracy is given in Figure 9A,

and the mean decrease of Gini index is given in Figure 9B. For

each feature, the trend of the Gini index and accuracy is

essentially the same, which ensures the correctness of feature

importance on both sides. The feature values of the accuracy and

Gini index are illustrated in the third and fourth columns of

Table 3. Table 3 displays the result of feature dimensionality

reduction with RF, and the statistical results of healthy and four

life-threatening arrhythmia patients are shown in column 2.

According to Figure 8 and the feature values of accuracy and

Gini index, 15 feature parameters are selected, which contains

most of the information about the PRV signal. In addition, the

results of feature selection (h) shows in the last column of Table 3,

where h = 1 is the feature accepted and h = 0 is the feature

rejected. Therefore, in this study, 15 features can be exploited to

detect life-threatening arrhythmias, and the feature vector

becomes 15 × 139719.

3.5 Classification results

In this study, kappa coefficients (Islam et al., 2018) and accuracy

(Sabut et al., 2021) were exploited to calculate the average

FIGURE 8
PRV extracted. (A) PRV of a healthy young subject. (B) PRV of a healthy old subject. (C) PRV of an EB subject. (D) PRV of an ET subject. (E) PRV of a
VT subject. (F) PRV of a VF subject.
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performance of supervised learning to recognize the life-threatening

arrhythmia results. The accuracy is calculated as follows

accuracy � TN + TP

TN + FP + TP + FN
× 100%, (29)

where the parameters “TN,” “FP,” “TP,” and “FN” are true

negative, false positive, true positive, and false negative of the

classification result, respectively.

The kappa coefficient (kappa) is calculated as follows

kappa � p1 − p2

1 − p2
, (30)

p1 � ∑r
t�1Qtt

M
, (31)

p2 � ∑r
t�1(Qt+ × Q+t)

M2
. (32)

Moreover, the kappa(i) is utilized to evaluate the average

performance of the classification results for the healthy and the

TABLE 2 Results of feature extraction.

Feature Healthy EB ET VT VF

Mean (bpm) 64.416 ± 9.927 68.415 ± 17.993 127.740 ± 25.192 97.849 ± 16.322 106.964 ± 40.108

Std (bpm) 4.225 ± 4.135 5.468 ± 5.469 19.756 ± 10.522 11.709 ± 8.557 25.690 ± 10.921

RMSD (bpm) 4.398 ± 5.280 6.022 ± 5.937 25.304 ± 12.951 15.603 ± 10.819 34.148 ± 14.017

NRMSD 0.070 ± 0.089 0.101 ± 0.106 0.201 ± 0.112 0.155 ± 0.101 0.327 ± 0.104

PNN40 0.282 ± 0.232 0.272 ± 0.284 0.509 ± 0.262 0.387 ± 0.274 0.809 ± 0.133

PNN70 0.116 ± 0.177 0.156 ± 0.222 0.364 ± 0.218 0.272 ± 0.230 0.712 ± 0.169

Mid (bpm) 63.982 ± 10.061 69.291 ± 17.707 128.012 ± 24.466 96.873 ± 16.795 106.532 ± 42.183

IQR 1.075 ± 0.082 1.105 ± 0.167 1.214 ± 0.181 1.116 ± 0.135 1.468 ± 0.351

LF_HF 0.690 ± 0.620 0.322 ± 0.396 0.326 ± 0.391 0.327 ± 0.391 0.358 ± 0.466

Sd1_Sd2 0.600 ± 0.285 1.008 ± 0.461 1.080 ± 0.502 1.075 ± 0.383 1.136 ± 0.524

Se 17,957.633 ± 48,104.424 84,636.350 ± 207,135.375 28,566.523 ± 33,315.262 48,468.728 ± 653,737.846 127,469.782 ± 153,701.838

TPR_PR 0.387 ± 0.102 0.298 ± 0.113 0.294 ± 0.107 0.277 ± 0.117 0.283 ± 0.099

ShE_PR 0.770 ± 0.263 0.733 ± 0.282 0.798 ± 0.232 0.677 ± 0.267 0.833 ± 0.219

SamE_PR 1.401 ± 0.541 0.924 ± 0.659 1.097 ± 0.777 0.888 ± 0.697 1.151 ± 0.752

C_ SamE_PR −3.445 ± 0.565 −3.952 ± 0.721 −4.426 ± 0.777 −4.374 ± 0.727 −4.151 ± 0.754

PE_PR 5.145 ± 0.223 4.013 ± 0.399 4.158 ± 0.158 4.108 ± 0.207 4.174 ± 0.140

RMSD_APM 0.088 ± 0.062 0.245 ± 0.183 0.837 ± 0.397 0.610 ± 0.419 0.584 ± 0.224

SamE_APM 1.380 ± 0.498 1.106 ± 0.675 1.124 ± 0.816 1.071 ± 0.661 1.336 ± 0.697

TPR_APM 0.461 ± 0.090 0.381 ± 0.108 0.283 ± 0.096 0.272 ± 0.115 0.286 ± 0.126

FIGURE 9
Magnitude of feature. (A) Mean decrease in accuracy. (B) Mean decrease in the Gini index.
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four life-threatening arrhythmia subjects, and the i is the label of

five types of subjects.

kappa(i) � Ptt − Pt+P+t
P+t − Pt+P+t

, (33)

Ptt � Qtt

M
, (34)

Pt+ � Qt+
M

, (35)

P+t � Q+t
M

. (36)

where “p1” is the rate of correct classification, “p2” is the rate of

incorrect classification, “Qtt” is the sum of elements on the

diagonal of the column matrix, “r” is the number of features,

“M” is the number of classes, and “Qt+” and “Q+t” are the sum of

elements on tth row and column, respectively. Here, “r” and “M”

are equal to 15 and 5, respectively. The kappa∈[-1,1], and the

closer the value to 1, the better the classification result.

In Table 3, 15 features were selected by RF to form the feature

vector. Therefore, the size of the feature vector becomes 15 ×

139,719. We randomly selected 80 and 20 percent of the features

as the training set and the test set, respectively. The features of the

training and test sets were randomly changed 100 times to

minimize the influence of input data differences, and the

procedure was run 100 times in order to verify the

classification accuracy of BPNN, ELM, and DT. The results of

classification performance are displayed as “mean ± standard

deviation” in Table 3, and 1, 2, 3, 4, and 5 are the labels for

healthy, EB, ET, VT, and VF subjects, respectively.

As demonstrated in Table 4, the average performance of the

classifier was verified with accuracy and kappa coefficient, whose

result of BPNN is 94.85 ± 1.33% and 89.95 ± 2.62%, that of ELM

is 95.05 ± 0.14% and 90.28 ± 0.28%, and that of DT is 98.76 ±

0.08% and 97.59 ± 0.15%. Therefore, the DT classifier has the best

average performance in identifying those four life-threatening

arrhythmias. In addition, the time consumption of BPNN is

100.58 ± 26.49 s, that of ELM is 8.63 ± 0.22 s, and that of DT is

1.12 ± 0.09 s. In brief, the performance of the DT classifier is

optimal in the detection of the four arrhythmias. For identifying

these life-threatening arrhythmias with the DT classifier, healthy

subjects have the highest average performance with kappa (1) of

99.94 ± 0.05%, and VF patients have the lowest average

performance with kappa (5) of 77.87 ± 2.39%. In addition, the

average performance to detect EB, ET, and VF are all over

95.00%. With regard to time consumption, the DT and ELM

classifiers take significantly less time than the BPNN classifier,

which is because the BPNN classifier needs to constantly adjust

the weights and thresholds.

4 Discussion

In this study, we propose a method to recognize four life-

threatening arrhythmias based on the PRV signal calculated from

the ABP signal of 2015 “PhysioNet/CinC” and “Fantasia”

databases. A total of 19 features were extracted, and 15 of

them were selected after feature dimensionality reduction to

train and test the classifier. It can be illustrated that the DT

classifier has the best average performance with accuracy and

kappa of 97.59 ± 0.15% and 99.94 ± 0.05% in Table 4,

respectively.

Figure 10 presents the ABP and PRV signals in different types

of patients, where the green line is the standard of whether the

disease is present or not, and the EB (1), EB (2), ET (1), VT (1),

and VF (1) are the signals of those four life-threatening burst

periods. In general, the sudden segment signals EB (1), EB (2), ET

TABLE 3 Results of feature dimensionality reduction with RF.

Feature Arrhythmia Magnitude

Accuracy Gini index h

Mean (bpm) 77.656 ± 26.427 0.14803 9190.703 1

Std (bpm) 7.491 ± 8.342 0.04319 2875.464 1

RMSD (bpm) 8.981 ± 10.923 0.04695 2509.154 1

NRMSD 0.103 ± 0.109 0.03050 1566.921 1

PNN40 0.330 ± 0.261 0.01856 658.777 1

PNN70 0.178 ± 0.220 0.02003 650.410 1

Mid_PR 77.279 ± 26.823 0.12823 9310.805 1

IQR 1.103 ± 0.131 0.03286 1326.019 1

LF_HF 0.570 ± 0.581 0.00151 296.167 0

Sd1_Sd2 0.755 ± 0.411 0.03250 1834.461 1

Se 28286.557 ± 268061.587 0.03482 1744.127 1

TPR_PR 0.353 ± 0.116 0.01240 557.654 0

ShE_PR 0.758 ± 0.263 0.01369 623.074 1

SamE_PR 1.260 ± 0.642 0.01170 350.191 0

CSampEn −3.736 ± 0.760 0.02585 2423.171 1

PE_PR 4.804 ± 0.535 0.29766 10999.265 1

RMSD_APM 0.269 ± 0.360 0.10571 6848.117 1

SamE_APM 1.288 ± 0.596 0.01161 676.207 0

TPR_APM 0.405 ± 0.127 0.04555 2737.818 1

TABLE 4 Classification results.

Classifier BPNN ELM DT

Accuracy (%) 94.85 ± 1.33 95.05 ± 0.14 98.76 ± 0.08

Kappa (%) 89.95 ± 2.62 90.28 ± 0.28 97.59 ± 0.15

Kappa (1) (%) 99.60 ± 0.22 98.43 ± 0.22 99.94 ± 0.05

Kappa (2) (%) 93.02 ± 2.70 88.39 ± 1.18 98.70 ± 0.37

Kappa (3) (%) 80.43 ± 7.42 92.70 ± 0.69 96.87 ± 0.49

Kappa (4) (%) 82.22 ± 3.26 78.07 ± 0.81 95.46 ± 0.40

Kappa (5) (%) 72.51 ± 4.21 75.08 ± 2.45 77.87 ± 2.39

Time(s) 100.58 ± 26.49 8.63 ± 0.22 1.12 ± 0.09
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FIGURE 10
ABP and PRV signals of patients. (A) ABP and PRV signals of a patient with EB. (B) ABP and PRV signals of a patient with ET. (C) ABP and PRV signals
of a patient with VT. (D) ABP and PRV signals of a patient with VF.
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(1), VT (1), and VF (1) in patients are used for the recognition of

life-threatening arrhythmias. However, since the “transient” of

life-threatening arrhythmias can paralyze the patient and the

signal can change rapidly and return to normal values, it is more

important to confirm for the patient before the burst, which can

alert the patients and send them to the hospital in time. The

method we used detects not only the burst segment signal but

also the normal segment signal before and after the burst, that is,

the complete PRV signal in Figure 10, which is effective in

identifying episodes of life-threatening arrhythmias.

So far, some researchers have studied the recognition of life-

threatening arrhythmias. For example, Lee, K. et al. utilized

feature parameters RMSD and ShE to identify AF (Lee et al.,

2017), Eerikäinen, L.M. et al. used feature parameters PNN40,

PNN70, ShE, RMSD, nRMSD, SampEn, and CSampEn to detect

AF (Eerikäinen et al., 2018). Although these methods detect other

cardiovascular diseases rather than those four life-threatening

arrhythmias described in this study, they can provide ideas for

our study. Therefore, the recognition of life-threatening

arrhythmias is performed by the method used in this work for

the extracted features of these researchers.

The average performance results of training and testing the

DT classifier with the features extracted by Lee, K. et al. and

Eerikäinen, L.M. et al. are displayed in Table 5. For the features

extracted by Lee, K. et al., the performance of the DT classifier

gives an accuracy of 83.32 ± 0.22% and kappa of 65.88 ± 0.42%,

and the best average performance is ET with the kappa of 68.81 ±

0.92%. For the features extracted by Eerikäinen, L.M. et al., the

performance of the DT classifier gives an accuracy of 95.27 ±

0.16% and kappa of 90.72 ± 0.32%, and the best average

performance is healthy with the kappa of 95.90 ± 0.37%. In

addition, the average performance of identifying those four life-

threatening arrhythmias using the features utilized in Eerikäinen,

L.M. et al. is better than that of Lee, K. et al., and the difference

between them for accuracy and kappa is 11.95% and 24.84%,

respectively, which is due to the fact that more features are

engaged by Eerikäinen, L.M. et al. However, the accuracy and

kappa values of Eerikäinen et al. are 3.49% and 6.87% lower than

those of the method we used, which proves that the more features

there are, the more comprehensive the information contained,

and the higher the classification performance. However, it is not

better to use more features if these features are correlated; it will

cause a dimensional disaster which will affect the training of the

model, reduce the average performance of the classification, and

be more time consuming.

5 Conclusion

In this study, a method is presented to identify four types of

life-threatening arrhythmia identification based on the PRV

signal. First, the noise of ABP signals is eliminated during

preprocessing to de-noise the EMG interference, AC

interference, and baseline drift. Then, PRV signals are

extracted, and 15 features are obtained and downscaled from

the PRV signal to form a feature vector. Finally, the BPNN, ELM,

and DT classifiers are trained and tested based on the feature

vector. The results show that DT has the best average

performance with an accuracy of over 98.50% and a kappa of

over 97.50%, which is better than some previous studies.

Therefore, the method we used can effectively detect EB, ET,

VT, and VF and has a potential for monitoring at home. In

subsequent studies, the detection of motion artifacts will be

added to the preprocessing part to improve the signal

availability, and some algorithms such as feature extraction

will be optimized. In the future, the DT model based on PRV

signals is expected to be used for the recognition of other life-

threatening arrhythmias.
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Accuracy (%) 83.32 ± 0.22 95.27 ± 0.16
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Kappa (3) (%) 68.81 ± 0.92 89.33 ± 0.63
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