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The cabbage aphid (Brevicoryne brassicae L.) is a devastating pest of cruciferous

crops causing economic damageworldwide and notably owing to its increasing

resistance to commonly used pesticides. Such resistance prompts the

development of integrated pest management (IPM) programs that include

novel pesticides being effective against the aphids. Spirotetramat is a novel

insecticide used against sap-sucking insect pests, particularly aphids. This study

evaluated the toxicity of spirotetramat to adult apterous B. brassicae after 72 h

using the leaf dipping method. According to the toxicity bioassay results, the

LC50 value of spirotetramat to B. brassicae was 1.304 mgL−1. However, the

sublethal concentrations (LC5 and LC15) and transgenerational effects of this

novel insecticide on population growth parameters were estimated using the

age-stage, two-sex life table theorymethod. The sublethal concentrations (LC5;

0.125 mgL−1 and LC15; 0.298 mgL−1) of spirotetramat reduced the adult

longevity and fecundity of the parent generation (F0). These concentrations

prolonged the preadult developmental duration while decreasing preadult

survival, adult longevity and reproduction of the F1 generation. The adult

pre-reproductive period was also extended by spirotetramat treatment
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groups. Subsequently, the population growth parameters such as the intrinsic

rate of increase r, finite rate of increase λ and net reproductive rate R0 of the F1
generation were decreased in spirotetramat treatment groups whereas, the

mean generation time T of the F1 generation was not affected when compared

to the control. These results indicated the negative effect of sublethal

concentrations of spirotetramat on the performance of B. brassicae by

reducing its nymphal survival, extending the duration of some immature

stages and suppressing the population growth of B. brassicae. Overall, we

demonstrated that spirotetramat is a pesticide showing both sublethal activities,

and transgenerational effects on cabbage aphid; it may be useful for

implementation in IPM programs against this aphid pest.

KEYWORDS

cabbage aphid, population growth, spirotetramat, sublethal concentrations,
transgenerational effects

Introduction

The cabbage aphid, Brevicoryne brassicae Linnaeus

(Hemiptera: Aphididae), is one of the most destructive

pests of the Brassicaceae family and can be found around

the globe (Anzabi et al., 2014; Sarhozaki and Safavi, 2014;

Ahmed et al., 2020; Shonga and Getu, 2021a; Shonga and

Getu, 2021b) including Pakistan (Abbas et al., 2017). It causes

damage directly by sucking the plants almost in all growth

stages and indirectly by transmitting diseases or secreting

honeydew (Bashir and Azim, 2013). It is also known to be

the vector of various plant viruses (Dáder et al., 2017).

Although various management technologies have been

developed and implemented against B. brassicae (e.g.,

promoting biocontrol services, (Lu et al., 2012), its

management still primarily relies on the application of

pesticides (Shang et al., 2012; Roh et al., 2015).

Many new insecticides have been developed and

commercially available that are safer for the environment and

human health and control insect pests more effectively (Babcock

et al., 2011). Spirotetramat, a tetramic acid-based insecticide with

a novel mode of action, belonging to a new cyclic keto-enol

compound developed by Bayer Crop Science is being used

worldwide against aphids, mites and other piercing-sucking

pests of crops (Brück et al., 2009; Wang et al., 2016). It has

distinctive translocation properties in that after foliar application;

it is simultaneously translocated upwards by the xylem and

downwards through the phloem (Brück et al., 2009).

Spirotetramat acts as a lipid biosynthesis inhibitor that

reduces the fecundity and fertility of sucking insect pests

(Gong et al., 2016a; Salazar-López et al., 2016). The lipids are

of vibrant significance to many insects for metamorphosis,

embryogenesis and flight (Arrese et al., 2001). Due to the

absence of cross-resistance to prevailing classes of chemical

insecticides, spirotetramat may be a significant tool to achieve

insecticide resistance in many crop pests around the globe

(Ouyang et al., 2012; Döker et al., 2021). This has prompted

the development of new pest management strategies and

products, for example exploring and developing novel pesticides.

One of the main challenges in toxicology is how to

evaluate the overall effect of toxic substances on insect

populations (Lashkari et al., 2007). Traditional approaches

to determining the lethal concentration of insecticides on

insects are centered on assessing individual mortality in the

short term; however, the elucidation of acquired data at the

population level is inadequate due to the inadequacy of the

number of endpoints (Stark and Banks, 2003; Desneux et al.,

2007). After the application of insecticides in agricultural

systems, insecticides may degrade to sublethal and low

lethal doses over time in the field due to which some target

pests do not show rapid mortality to the lethal dose

(Mahmoodi et al., 2020; Ullah et al., 2020; Jie et al., 2021).

Sublethal effects have been described as effects on the

physiology and behavior of an individual that survives

exposure to an insecticide or toxin at the sublethal or lethal

dose/concentration (Desneux et al., 2007). Numerous studies

have been carried out on this problem which showed that

insect pests exposed to these lethal or sublethal doses or

concentrations of toxicants go through several physiological

and behavior impairments, hormesis, and better tolerance for

chemical materials (Desneux et al., 2006; Tan et al., 2012;

Guedes et al., 2016; Yousaf et al., 2018; Lv et al., 2021; Zhang

et al., 2021). Besides mortality, sublethal effects of insecticides

may be manifested in many ways, such as biological and

behavioral parameters including developmental time,

fecundity, longevity, sex ratio, feeding activity, predation

rate, orientation, and mobility. (Desneux et al., 2007;

Guedes et al., 2016). and may result not only from direct

contact with herbicides but also as a result of feeding on

contaminated food. Moreover, positive and negative effects

triggered by the sublethal doses of insecticides can be

transmitted from offspring to several filial generations

(Hercus and Hoffmann, 2000; Shikano, 2017; Mahmoodi

et al., 2020).
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It is necessary to assess the sublethal effects to optimize the

application of insecticides along with their toxic effects to

evaluate their effectiveness precisely (Stark and Banks, 2003).

Attaining this evidence can help in explaining the cases of insect

outbreaks and pest reappearance as a result of prior pesticide

applications. Another advantage of the complete assessment of the

sublethal effects of pesticides would be getting the capability to

develop more effective and environment-friendly procedures

(Desneux et al., 2007; Rahmani and Bandani, 2013; Sohrabi

et al., 2013). Demographic toxicology is an ecotoxicological

approach that assimilates the life history and life table in the

circumstantial of toxicology (Sarhozaki and Safavi, 2014). It helps

appraise the sublethal special effects of a pesticide on the

anticipated population development of the embattled pests

(Stark and Banks, 2003; Lashkari et al., 2007). Insect life tables

are helpful and dynamic tools for the estimation of sublethal effects

of synthetic and natural insecticides on insect pests (Cutler et al.,

2009; Saska et al., 2016; Liang et al., 2019). This is because their

limitations openly imitate the wide-ranging effect of biological

features (i.e., survival, reproduction, development, and sex ratio)

on population fitness. Sublethal effects of many classes of

insecticides, i.e., pymetrozine, imidacloprid, thiamethoxam,

thiamethoxam-lambda cyhalothrin, buprofezin, and acetamiprid

(Lashkari et al., 2007; Sarhozaki and Safavi, 2014) and (Mahmoodi

et al., 2020) has been studied on cabbage aphid.

To date, no reports have been found regarding sublethal and

transgenerational effects of spirotetramat on B. brassicae. In the

present study we investigated within- and transgenerational

(maternal) effects of sublethal insecticide stress on several

fitness-associated traits; survival, and development time to

understand the relations between the exposure doses of

spirotetramat and insect response at both the individual and

population levels.

Materials and methods

Insect rearing

The cabbage aphid was used as a study insect and was collected

from brassica crop (Brassica napus L. var. canola) grown at the

research area of Ayub Agricultural Research Institute, Faisalabad

(31.4041° N, 730,487° E). The stock culture of B. brassicae was

established on insecticide-free leaves of brassica plants under

standard circumstances (24 ± 1°C temperature, 70 ± 5% relative

humidity and 16:8 h light-dark period) at Entomological Research

Institute, Faisalabad. Insecticide-free brassica plants were replaced

every week.

Chemical and toxicity bioassays

The spirotetramat (CAS No. 203313-25-1; Movento®

240 SC; 240 g/L active ingredients) was obtained from

Bayer Crop Science Co. Ltd. (Australia). The insecticide

tested in this study is registered and being used in brassica

crops in Pakistan to manage aphids. Toxicity bioassays were

conducted with apterous adult aphids using the leaf dip

method described by (Ullah et al., 2020) to measure the

lethal and sublethal toxicity of spirotetramat. The distilled

water was utilized to make spirotetramat concentrations (6, 3,

1.5, 0.75 and 0.375 mgL−1). Distilled water dipped leaf discs

were used only for the control group. Brassica leaf discs were

cut by a sharp metal cylinder and dipped in the dilutions of

respective insecticide solution for 30 s. The treated leaf discs

were placed at room temperature for 30 min to dry residual

solution droplets on the leaves. The treated leaves were placed

in plastic Petri dishes (size: 3 × 1.5 cm, with a biaxial surface

downward) lined with moistened filter paper. Each

concentration comprised three replications of 30 apterous

adult aphids (≤24 h old) and five leaves were used for each

replication. Mortality data were estimated at 72 h of

spirotetramat exposure. Aphids were scored as dead if they

did not exhibit repetitive (i.e., non-reflex) movement when

gently probed with a soft camel hair brush (Moores et al.,

1996). The lethal concentrations LC5, LC15, and LC50 were

calculated by using PoloPlus 2.0 software (LeOra Software Inc.

Berkely, CA).

Sublethal response of spirotetramat on F0
generation

Approximately 650 adult aphids were transferred to

insecticide-free brassica leaves. All adult apterous aphids were

removed after 72 h, while the neonate nymphs were retained on

TABLE 1 Bioassay of Spirotetramat on apterous adults of Brevicoryne brassicae.

Insecticide Na Slope±S.Eb LC5
c LC15

c LC50
c χ2

(df)d
p Regression

equation

Spirotetramat 540 1.618 ± 0.162 0.125 (0.035–0.244) 0.298 (0.124–0.480) 1.304 (0.929–1.787) 3.32 (3) 0.344 y = 4.773 + 1.660x

aN = number of apterous adult aphids exposed.
bS.E. , standard error.
cExpressed in mg L−1; 95% CI, of LC, are given in bracket.
dChi square and degree of freedom.
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the leaves for 08 days to become adults. This procedure was

applied to ensure the same age group of aphids before exposure

to the insecticide. Therefore, the LC5 (0.125 mgL−1), as well as

LC15 (0.298 mgL−1) concentrations of spirotetramat, were used in

this study to evaluate their impact on the F0 generation of B.

brassicae and distilled water was used as control. Brassica leaf

discs were uniformly dipped in LC5 and LC15 of spirotetramat

and control solution for 30 s, air-dried for 30 min. Then the dry

treated leaf discs were placed in plastic Petri dishes with their

biaxial surface downward containing moistened filter paper to

maintain humidity. Adult apterous aphids were released to feed

on these treated leaves and control solution for 72 h. After that,

sixty healthy and surviving aphids were transferred to untreated

fresh leaf discs in plastic Petri dishes individually. Adults of the F0
generation were inspected daily for recording longevity and

fecundity, while the newborn nymphs were removed until the

adult died. The leaf discs were changed every 3–4 days to prevent

fungal growth until the adult aphids died.

Sublethal response of spirotetramat on
the F1 generation

New-born nymphs (age ˂24 h) obtained from F0 adults, were

gathered as F1 generation and then transferred to Petri-dishes

independently. These aphids (F1 generation) were individually

reared on insecticide-free brassica leaf discs, as described in the

previous F0 generation. This method was repeated 60 times for

the spirotetramat treatments (LC5 and LC15) and the control,

treating each aphid as a single replication. Survival, development

and reproduction were noted on daily basis. During the

reproductive period, newborn nymphs were counted-up and

then removed. Fresh leaf discs were changed every 3–4 days

until the death of the adult aphid.

Statistical analysis

The bioassay data were used to calculate the lethal (LC50) and

sublethal (LC5 and LC15) concentrations of spirotetramat by

using Probit analysis (Finney, 1971) in PoloPlus 2.0 (Software,

2005). The life-history data of cabbage aphids exposed to

sublethal concentrations of spirotetramat and the control were

subjected to the computer-based program software (TWO SEX-

MSChart) (Chi H, 2022) and analyzed by employing the age-

stage two-sex life table theory (Chi and Liu, 1985; Chi, 1988). The

life table parameters sxj, lx,mx, exj and vxj (age-stage survival rate,

age-specific survival rate, age-specific fecundity, age-stage life

expectancy and age-stage reproductive value, respectively) were

TABLE 2 Effect of exposure of parent adults (F0 generation) of
Brevicoryne brassicae to Spirotetramat at LC5 and LC15 on their
longevity and fecundity (Mean ± SE).

Parameters Control LC5 LC15

Adult longevity (d) 10.10 ± 0.35 a 9.01 ± 0.41 ab 8.03 ± 0.40 b

Fecundity (nymphs/female) 31.75 ± 1.48 a 17.31 ± 0.85 b 14.68 ± 0.85 b

Different letters within the same row represent significant differences at p ˂ 0.05 (one

way ANOVA, followed by Tukey’s HSD, test).

TABLE 3 Developmental duration, longevity and fecundity of different stages for F1 generation B. brassicae after exposure of parental adult (F0) to the
LC5 and LC15 of Spirotetramat.

Treatments

Stages (d) N Control N LC5 N LC15

Mean ± SE Mean ± SE Mean ± SE

1st Instar (N1) 60 1.44 ± 0.07a 60 1.57 ± 0.07a 60 1.57 ± 0.07a

2nd Instar (N2) 55 1.68 ± 0.08a 51 1.61 ± 0.09a 49 1.70 ± 0.1a

3rd Instar (N3) 53 2.37 ± 0.09a 49 2.43 ± 0.1a 46 2.41 ± 0.12a

4th Instar (N4) 51 2.49 ± 0.09a 47 2.54 ± 0.11a 44 2.59 ± 0.1a

Pre-adult 51 7.96 ± 0.18a 46 8.24 ± 0.18a 44 8.25 ± 0.2a

Pre-adult survival 0.85 ± 0.04a 0.76 ± 0.05a 0.73 ± 0.05a

Adult longevity 51 12.45 ± 0.24a 46 10.11 ± 0.21b 44 9.05 ± 0.22c

Total longevity 51 20.41 ± 0.31a 46 18.35 ± 0.28b 44 17.3 ± 0.22c

APRP 0.88 ± 0.1a 0.93 ± 0.1a 0.89 ± 0.11a

TPRP 8.84 ± 0.2a 9.17 ± 0.22a 9.14 ± 0.21a

Reproductive days 10.51 ± 0.19a 8.11 ± 0.17b 7.36 ± 0.15c

Fecundity (nymphs/female) 35.49 ± 0.58a 27.41 ± 0.55b 23.02 ± 0.62c

Means within the same row followed by same lowercase letters represent that treatments are not significantly different (p ˂ 0.05) from each other based on paired bootstrap test. Standard

errors (SE) were estimated by 100,000 resampling using the bootstrap technique in TWOSEX-MSChart.
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estimated (where x is the age and j is the stage of insect). The

population parameters including r, λ, R0 and T (intrinsic rate of

increase, finite rate of increase, net reproductive rate and mean

generation time, respectively) were also estimated. The life

expectancy (exj) was determined according to (Chi and Su,

2006). The reproductive value (vxj) was calculated according

to (Tuan et al., 2014a; 2014b). The standard bootstrap method

was used with 100,000 resampling to calculate the variance as

well as standard errors for biological and population growth

parameters (Efron and Tibshirani, 1993; Akköprü et al., 2015). A

paired-bootstrap-test at a 5% significance level based on the

confidence interval of differences was used to analyze differences

among treatments. The bootstrap along with the paired bootstrap

test was also included in the TWO SEX-MSChart computer

program.

Results

Toxicity of spirotetramat to apterous adult
B. brassicae

The toxicity of spirotetramat against apterous adult cabbage

aphid was determined after exposure for 72 h (Table 1). The

estimated value of LC50 with a 95% confidence interval was

1.304 mgL−1, while LC5 and LC15 values were 0.125 mgL−1 and

0.298 mgL−1, respectively. The LC5 and LC15 values of

spirotetramat obtained were selected to further estimate the

sublethal as well as transgenerational effects of spirotetramat

on demographic parameters of B. brassicae.

Sublethal response of spirotetramat on
longevity and fecundity of parent F0
generation of B. brassicae

The longevity and fecundity of test individuals (F0 generation)

were affected when exposed for 72 h to the two sublethal

concentrations of spirotetramat (LC5 and LC15) as compared

with the control (Table 2). The longevity of B. brassicae adults

was significantly reduced when treated with Spirotetramat at LC15 as

compared to the control (p < 0.00001), while that recorded on adults

treated with insecticide at LC5 did not show a significant difference.

A similar trend of the longevity of B. brassicae adults was found

between LC5 and LC15 (p< 0.00053). Furthermore, F0 adults showed

significantly reduced fecundity in both treatments (LC5 and LC15) as

compared to the control (p < 0.00001). It was 31.75 nymphs/female

in the control group, 17.31 nymph/female and 14.68 nymphs/female

in the adults treated at LC5 and LC15 concentrations of the

spirotetramat insecticide, respectively. There was a non-

significant difference in fecundity between LC5 and LC15 treated

groups.

Transgenerational sublethal effects of
spirotetramat on biological parameters of
the F1 generation of B. brassicae

Table 3 indicates the developmental duration, longevity and

fecundity of the subsequent progeny generation (F1) of B. brassicae

exposed to sublethal concentrations (LC5 and LC15) of

FIGURE 1
(A–C): Age-stage specific survival rate (sxj) of control group
(A) and B. brassicae treated with LC5 (B) and LC15(C) of
Spirotetramat in F1 generation.
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spirotetramat. However, the duration of immature developmental

stages, pre-adult duration, pre-adult survival, adult pre-reproductive

period (APRP) and total pre-reproductive period (TPRP) of the F1
generation did not show significant differences among treated

groups. The values of adult longevity, total longevity and

fecundity were recorded higher in control treatment as compared

to the populations treated with sublethal concentrations of

spirotetramat. Significantly lower values of adult longevity and

total longevity between LC5 and LC15 as compared to the control

(p < 0.00001), similarly significantly lower fecundity were observed

in populations treated with spirotetramat at LC5 and LC15 as

compared to the control (p < 0.00001).

Transgenerational sublethal effects of
spirotetramat on population growth
parameters of the F1 generation of B.
brassicae

The stage differentiation and overlapping survival curves in the

F1 generation of B. brassicae exposed to LC5 and LC15 of

spirotetramat are shown in Figure 1(A–C). Age-stage specific

survival rate sxj is the expected duration of neonate nymphs that

will survive to age x and stage j. The probability of reaching the adult

stage was 0.73, 0.75, and 0.83 for a neonate nymph from LC15, LC5

and control groups, respectively. Age-specific survival rate (lx), age-

specific fecundity (mx) and age-specific net maternity (lxmx) for LC5,

LC15 and control treatments of B. brassicae are presented in

Figure 2(A–C). The age-specific survival rate (lx) of B. brassicae

decreased with age x and the maximum survival period for LC5 and

LC15 concentrations of spirotetramat were 15 days and 14 days,

respectively. This was lower than the maximum survival period of

the control group (16 days). The age-specific fecundity (mx) curves

for LC5 (4.08 offspring and 3.00 offspring) at age of 12 and 21 days

while mx curve for LC15 (3.52 offspring) occurred at the age of

12 days, comparedwith the control (4.39 offspring) at age of 11 days.

The maximum values of age-specific maternity (lxmx) for LC5, LC15

and control were 3.73, 3.13, and 2.58 offspring, respectively.

The age-stage specific life expectancy (exj) represents the

expected lifespan of individual B. brassicae exposed to

spirotetramat treated populations (LC5 and LC15) and control

(Figures 3A–C).

The exj curves showed that individuals in the control group of

F1 generation are expected to survive longer than the

spirotetramat treated population (LC5 and LC15). The age-

stage specific reproductive value (vxj) exhibits the prediction

of future offspring for individuals of B. brassicae from age x

to stage j (Figures 4A–C). The highest reproductive value (vxj)

peak was identified in the control group (v10 = 14.64), the peak

value obtained for LC5 treated population was different from the

control group although occurred on the same day (v10 = 13.52)

while the earliest peak was observed in LC15 treated population

(v9 = 12.36).

Population growth parameters of the F1 generation of B.

brassicae treated with sublethal concentrations of the insecticide

are shown in Table 4. The mean generation time (T) did not

affect all the treatments. Moreover, the net reproductive rate (R0)

was reduced from 30.16 offspring/individual in the control group

to 16.88 offspring/individual in the population treated with LC5

and LC15 of the insecticide (p < 0.00001). The intrinsic rate of

increase (r) (p < 0.00743) and finite rate of increase (λ) (0.00727)

of F1 individuals were reduced at both sublethal concentrations

of insecticide (LC5 and LC15) in comparison to those of the

control group.

FIGURE 2
(A–C): Age specific survival rate (lx), age specific fecundity
(mx) and net maternity (lxmx) of control group (A) and B. brassicae
treated with LC5 (B) and LC15 (C) of Spirotetramat in F1 generation.
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Discussion

Resistance of B. brassicae has been reported to many

organophosphates and pyrethroids (Ahmad and Akhtar,

2013). Due to this farmers have to increase the frequency of

insecticide application which intern causes more resistance to

these insecticides and also increases environmental pollution

(Liang et al., 2019). Thus the study of this innovative

substitute, Spirotetramat, is crucial in adjourning the increase

of resistance to B. brassicae. The information regarding sublethal

responses of this novel chemical has been reported on various

insects, including Myzus persicae (Wang et al., 2016), Aphis

gossypii (Gong et al., 2016b), Tetranychus urticae (Marcic

et al., 2012), Encarsia Formosa (Drobnjaković and Marčić,

2021) and Cryptolaemus montrozuieri (Planes et al., 2013) but

the information regarding resistance to a novel mode of

FIGURE 3
(A–C): Age-Stage specific reproductive value (vxj) of control
group (A) and B. brassicae treated with LC5 (B) and LC15 (C) of
Spirotetramat in F1 generation.

FIGURE 4
(A–C): Age-stage specific life expectancy (exj) of control
group (A) and B. brassicae treated with LC5 (B) and LC15 (C) of
Spirotetramat in F1 generation.
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insecticides action is lacking (Ahmed et al., 2020). In the present

study, potential sublethal and transgenerational effects of

spirotetramat on B. brassicae were assessed for two succeeding

generations (F0 and F1). In a previous study, spirotetramat acts

gentler, however, with the main influence on undeveloped phases

and expressively disturbs the fertility and fecundity ofM. persicae

by triggering a high fraction of nonviable nymphs (Wang et al.,

2016).

In the current study, all life table parameters of the filial

generation, r, λ, and R0, as well as development, fecundity,

duration of oviposition period, longevity and survival of both

the treated and filial generations, were negatively and progressively

affected by the LC5 and LC15 concentration of the spirotetramat

insecticide. Similar adverse effects were also reported when

sublethal concentrations of flupyradifurone were exposed in the

F0 generation ofM. persicae (Tang et al., 2019) and F1 generation of

cotton aphid, A. gossypii (Liang et al., 2019). (Qu et al., 2015)

reported that the fecundity and longevity of apterous aphid A.

gossypii was expressively lowered after exposure to sublethal

concentration of imidacloprid. Furthermore, the progeny of

apterous female adults of A. gossypii was reduced when exposed

to cycloxaprid and nitenpyram (Wang et al., 2017; Yuan et al.,

2017; Cui et al., 2018). Sulfoxaflor also reduced the fecundity in the

F0 generation of Sogatella frucifera (Xiang et al., 2019) and

Nilaparvata lugens (Liao et al., 2019). Moreover, negative effects

such as fecundity of Apolygus lucorum and longevity of Bemisia

tabaciwere decreased drastically when exposed to low or sublethal

concentrations of cycloxaprid and buprofezin (Sohrabi et al., 2011;

Pan et al., 2014). All information thoroughly described the negative

impact of insecticide concentrations (low or sublethal), which

most probably occurred in the field after the degradation of

insecticide over time (Desneux et al., 2005; Desneux et al.,

2007; Hafeez et al., 2021b). This mechanism might be linked

with the vigor coordination in insects after exposure to insecticides

and additional drive has been subjugated by insects to manage the

insecticide compression, resulting in a shortage of energy for

productivity. Also, the diminution trend in fecundity and

longevity specified a dearth of hormetic effects, which develops

an imperative sublethal outcome of insecticides (Liang et al., 2019).

Hormesis can be explained as a dose-response association

categorizing over the reverse of the reaction between low and

high-stress doses (Jager et al., 2013; Guedes and Cutler, 2014). In

the previous study, hormesis has been observed in various insect

species and insecticides, likely the higher fecundity in M. persicae

exposed to imidacloprid (Ayyanath et al., 2013) and the outbursts

in Oligonchus ilicis tempted by pyrethroid (Cordeiro et al., 2013).

Sublethal and transgenerational effects of spirotetramat affected

developmental physiology, indicating the role of sublethal

concentrations in larval growth, development, and sensitivity to

spirotetramat. In previous studies, Physiological and biochemical

studies have shown that P450 enzymes are vital to in insect

hormone metabolism pathways but details of the molecular

processes remain unknown (Iga and Kataoka, 2012; Hafeez

et al., 2022). The growth and developmental physiology of B.

brassicae was hindered after being treated with sublethal

concentrations of spirotetramat, but how these sublethal

concentrations regulate this process requires further study.

In the current study, the evaluation of transgenerational effects

in the filial F1 cohort of B. brassicae, imitated that the exposure to

LC5 and LC15 of spirotetramat in the parent generation (F0) inclined

the F1 generation population growth, particularly through an

amplified preadult developmental length and total pre-

reproductive period (TPRP). Comparable outcomes originated in

A. gossypii when treated with methyl benzoate, thiamethoxam, and

flonicamid (Mostafiz et al., 2020; Ullah et al., 2020; Shi et al., 2022).

In previous studies, sublethal effects of thiamethoxam insecticides

have also been reported on the population development of Bradysia

odorriphaga (Zhang et al., 2014) and Hippodamia variegate

(Rahmani and Bandani, 2013). A similar trend of sublethal

effects of imidacloprid was described on B. tabaci (He et al.,

2013a), A. lucorum (Tan et al., 2012), M. persicae and B.

brassicae (Lashkari et al., 2007; Wang et al., 2008). Some

neonicotinoid insecticides (such as nitenpyram, clothianidin,

acetamiprid and thiacloprid) can lead to substantial adverse

effects on the biological traits of A. gossypii (Shi et al., 2011).

(Lashkari et al., 2007) stated that treatment with imidacloprid

lowered the average cohort time in B. brassicae. In B. tabaci, a

low dose of imidacloprid did not disturb the biological and

TABLE 4 Sublethal effects of Spirotetramat on population growth parameters (Mean ± SE) of F1 generation of B. brassicae.

Treatments

Population parameters Control LC5 LC15

T (d) 12.67 ± 0.21a 12.55 ± 0.21a 12.27 ± 0.63a

R0 (offspring/individual) 30.16 ± 1.70a 21.01 ± 155b 16.88 ± 1.38c

r (d−1) 0.2688 ± 0.0064a 0.2426 ± 0.0073b 0.2302 ± 0.0080b

λ (d−1) 1.3084 ± 0.0084a 1.2746 ± 0.0093b 1.2588 ± 0.0101b

Where; T = mean generation time, R0 = net reproductive rate, r = intrinsic rate of increase, λ = Finite rate of increase. Means within the same row followed by same lowercase letters

represent that treatments are not significantly different (p ˂ 0.05) from each other based on paired bootstrap test. Standard errors (SE) were estimated by 100,000 resampling using the

bootstrap technique in TWOSEX-MSChart.
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population growth factors but extended the mean generation time

(Sohrabi et al., 2011). All these conclusions predicted that the effects

of insecticide can vary intensely reliant on several aspects e.g., the

amount of insecticide used, insecticide class, the insect species, the

definite application circumstances, and the physiological state of the

targeted organism (Shi et al., 2011; Han et al., 2012; Zhang et al.,

2012; Guo et al., 2013; Xiao et al., 2015; Haddi et al., 2016).

The other parameters including sxj, lx and vxj were to clarify the

conflicting effects of insecticides on population growth and the

development of various insect pests (He et al., 2013b; Iftikhar et al.,

2020;Hafeez et al., 2021a).Because lx is an elementary form of sxj, the

lx curve of the insecticide-exposed cluster could only exemplify that

spirotetramat reserved the survival rate in the immature stages

(Liang et al., 2019). (Chen et al., 2016) reported that a higher

survival rate after age 33 days in the flupyradifurone-treated aphids

exhibited a thinkable concealed hormesis. In our study, we

demonstrated that hormesis is not a key factor in terms of effects

of spirotetramat on B. brassicae. In addition to this, the decrease in

mx and lxmx curves of insecticide-treated groups reflected that the

productiveness of the filial F1 generation is affected by insecticide

(Tang et al., 2015; Liang et al., 2019). However, considering all

biological processes at play when arthropods are exposed to

pesticides, arthropods may develop, ultimately, hormesis and/or

resistance responses to such chemicals (Kendig et al., 2010; Liang

et al., 2012). In our experiment assessing the transgenerational

effects in the F1 generation of B. brassicae, we showed that the

exposure to the LC5 and LC15 of spirotetramat in the parent

generation (F0) significantly affected the F1 generation

population growth, notably through an increased duration of the

preadult stage, of TPOP, and of themean generation time (T). These

effects translate to a lower intrinsic rate of increase (ri), finite rate of

increase (λ), net reproductive rate (R0). Such effects on population

growth have been reported when treated with lethal and sublethal

concentrations of various insecticides such as also in A. gossypii

(Chen et al., 2016), M. persicae (Tang et al., 2015) H. variegata

(Goeze) (Rahmani and Bandani, 2013) and Plutella xylostella (Guo

et al., 2013). In general, the life table parameters estimated in this

study are somewhat similar to the published data on different insect

pests including aphids (Chen et al., 2016; Ullah et al., 2019; Hafeez

et al., 2021a). The results of the current study suggest that sublethal

concentrations of spirotetramat reduced the productiveness of the

parent generation (F0) of B. brassicae and had a transgenerational

effect on the descendants by extending the preadult developmental

length, reducing the survival rate of undeveloped phases and also

overwhelming the fecundity of F1 generation.

Conclusion

Sublethal concentrations can interfere with the growth and

overwhelm the population growth of the B. brassicae offspring.

In practice, the results of the present study (under laboratory

conditions) stressed the importance of assessing sublethal effects

of the pesticide on this B. brassicae and also assessing how these

effects may translate to the population level in the field. Therefore,

further studies using various low-lethal and sublethal concentrations

may be needed to provide a more comprehensive evaluation of

putative hormesis responses to spirotetramat in B. brassicae. Our

study hinted at the need to study further possible effects of

spirotetramat on B. brassicae, in the aim to develop optimized

IPM packages including this new pesticide (Table 4).
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