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Neuromodulation has emerged as a promising technique for the treatment of

epilepsy. The target for neuromodulation is critical for the effectiveness of

seizure control. About 30% of patients with drug-resistant epilepsy (DRE) fail to

achieve seizure freedom after surgical intervention. It is difficult to find effective

brain targets for neuromodulation in these patients because brain regions are

damaged during surgery. In this study, we propose a novel approach for

localizing neuromodulatory targets, which uses intracranial EEG and multi-

unit computational models to simulate the dynamic behavior of epileptic

networks through external stimulation. First, we validate our method on a

multivariate autoregressive model and compare nine different methods of

constructing brain networks. Our results show that the directed transfer

function with surrogate analysis achieves the best performance. Intracranial

EEGs of 11 DRE patients are further analyzed. These patients all underwent

surgery. In three seizure-free patients, the localized targets are concordant with

the resected regions. For the eight patients without seizure-free outcome, the

localized targets in three of them are outside the resected regions. Finally, we

provide candidate targets for neuromodulation in these patients without

seizure-free outcome based on virtual resected epileptic network. We

demonstrate the ability of our approach to locate optimal targets for

neuromodulation. We hope that our approach can provide a new tool for

localizing patient-specific targets for neuromodulation therapy in DRE.
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1 Introduction

Epilepsy is a neurological disease caused by disorder of the brain network (Terry et al.,

2012; Lam et al., 2016). It has the characteristics of recurrent seizures, which often bring

irreversible brain damage and affect the normal life of patients with epilepsy (Trinka et al.,

2015). About 70% of patients can be cured by taking antiepileptic drugs, and 30% of them
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will develop drug-resistant epilepsy (DRE) (Kwan and Brodie,

2000; Stephen et al., 2006; Brodie et al., 2012). Patients with DRE

can be treated with surgery (Choi et al., 2008) or

neuromodulation (Schulze-Bonhage, 2017; Davis and Gaitanis,

2020; Sisterson and Kokkinos, 2020), such as transcranial

magnetic stimulation (TMS) (Davis and Gaitanis, 2020),

transcranial focused ultrasound (tFUS) (Lin et al., 2020; Zou

et al., 2020). In neuromodulation therapy, different brain regions

or nerves can be chosen as target, such as the vagus nerve (Stern

et al., 2021), thalamus (Ryvlin and Jehi, 2021), hippocampus

(Abouelleil et al., 2022), or localized epileptogenic zone

(Tsuboyama et al., 2020; Rincon et al., 2021). Neurologists use

intracranial EEG (iEEG), MRI and other methods combined with

clinical experience to define the brain regions responsible for

seizure generation and resect these regions to prevent seizure.

About 30% of patients with DRE failed to achieve seizure

freedom after surgical intervention (Janszky et al., 2005; de

Tisi et al., 2011). Most of them are not suitable for further

surgery because the suspected brain regions have been

damaged. Neuromodulation is a promising technique for these

non-seizure-free patients. However, to our best knowledge, the

reports of localizing neuromodulatory targets for patients who

failed to achieve seizure freedom are few.

EEG is widely used in the diagnosis of epilepsy. Comparing

with scalp EEG, iEEG electrodes need to be embedded in the

patient’s skull. The intracranial electrodes are closer to the

epileptogenic zone (Kovac et al., 2017), which facilitates

subsequent resection of the epileptogenic area. IEEG recording

techniques include subdural grids, strips, and depth electrodes.

For different epilepsy patients, different iEEG techniques need to

be selected (Kovac et al., 2017).

IEEG recordings reflect the characteristics of epileptic

networks and have the function of localizing epileptogenic

tissues in epilepsy patients (van Diessen et al., 2013; Taylor

et al., 2015; Sinha et al., 2017). Network methods can be used

to extract the epileptic network, such as Pearson correlation,

Granger causality (Coben and Mohammad-Rezazadeh, 2015;

Sinha et al., 2017). The coefficients of Pearson correlation

represent the correlation between variables. Sinha et al. (2017)

calculated the coefficients between different EEG channels

and used them as undirected connectivity of the epileptic

model. Granger causality explores direct or indirect

relationships between variables. Directed transfer function

(DTF) computes interactions between input signals in

frequency domain (Franaszczuk et al., 1985). A variety of

network characteristics can be quantified on the extracted

network matrix. One single network feature cannot fully

explain all the properties of the network (van Diessen

et al., 2013). Different features of network were used in

epilepsy studies (Sinha et al., 2017, 2021; Paldino et al.,

2019). Seizure is a dynamic process. It is difficult to explore

dynamical behaviors of the original signals based on the

extracted network matrix. The quantified features of

epileptic networks cannot comprehensively describe the

dynamics of seizure onset and termination.

Neural computational model can be used to better simulate

the dynamical process of seizure (Proix et al., 2018; Saggio et al.,

2020; Sip et al., 2022). Richardson proposed a method of

combining dynamics and connectomics to explain the

abnormal dynamics of epileptic networks (Richardson, 2012).

Lopes da Silva et al. (2003) modeled transition states between

normal and epileptic states for predicting epileptic pathways.

Creaser et al. (2002) modeled the node dynamics and the

coupling relationship between nodes, and obtained the

transient dynamics during epileptic seizures. Numerous

models have been used to explain the physiology of epilepsy

or epileptic activity (Wendling et al., 2016). In computational

models, the state of the system is commonly changed by adjusting

either excitatory or inhibitory parameters, such as Z6 model

(Benjamin et al., 2012) and Epileptor model (Proix et al., 2018).

In the Z6 model, the values of different excitatory parameters

determine whether the system is in normal or epileptic state.

In this paper, we propose a novel approach for localizing

targets for neuromodulation in patients with DRE, especially for

patients without achieving seizure freedom after surgery. The

patient-specific epileptic network is reconstructed using multi-

unit computational model. The most effective node for

neuromodulation in preventing seizure is localized by

introducing external stimulation. The effectiveness of our

proposed approach is validated on a multi-variate

autoregressive (MVAR) model. Then we validate the approach

on a group of DRE patients with iEEG recordings. Finally, the

candidate targets for neuromodulation are provided using the

proposed approach and virtual resected network of those DRE

patients.

2 Methods

2.1 Data and subject description

IEEG recordings from 11 patients were analyzed in this

study. The datasets were obtained from the IEEG public

website (http://www.ieeg.org), and all patients with DRE had

received surgical treatment. Three patients are in seizure-free

group with good outcome, who were scored as international

league against epilepsy (ILAE) 1 (completely seizure-free) or 2

(no seizures, only auras) (Wieser et al., 2001). The other eight

patients are in non-seizure-free group with poor outcome, who

were scored as ILAE 3–6 (non-seizure-free). Interictal iEEG

recordings of 10 min duration are chosen several hours away

from any seizure. The iEEG data are divided into segments of 1 s

duration. Each segment overlaps the previous one by 0.5 s. The

sampling rate of recordings is 500 Hz. We evaluate the

overlapping between the localized target nodes and the

resected regions.
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2.2 Directed transfer function with
surrogate analysis

The directed transfer function (DTF) is a multi-channel

directional measurement method based on Granger causality

and autoregressive models (Franaszczuk et al., 1985). This

method calculates the causal connection matrix between

multi-channel EEG signals and measures the causal

relationship between channels. The multichannel EEG process

in the framework of autoregressive model (AR) can be described

by the following equation (Franaszczuk et al., 1985; Kaminski

and Blinowska, 1991):

∑
p

j�0
Ajx t − j( ) � w t( ), (1)

where x(t) = [x1(t), x2(t), . . ., xN(t)] is the vector of EEG N-channel

process, p is the order of themodel.A0 is identity matrix,A1,A2, . . . ,

Ap are theN ×Nmatrices of model coefficients, w(t) = [w1(t), w2(t),

. . .,wN(t)] is the vector ofmultivariate zeromean uncorrelated white

noise process. We use the order selection criteria of Akaike’s Final

Prediction Error (FPE) criterion implemented in ARFIT toolbox

(Akaike, 1971; Schneider and Neumaier, 2001).

The coefficients Aj can be obtained from (1) by multiplying

its both sides by xT
t−s, where x

T is transposed vector of x. We get

following equation (Kaminski and Blinowska, 1991):

R −s( ) + A1R 1 − s( ) +/ + ApR p − s( ) � 0, (2)

where R(s) � E(x(t), xT
t−s) is the covariance matrix with lag s for

the vector x, E means expectation value. Applying the

z-transform to the both sides of Eq. 1 (Franaszczuk et al.,

1985), we have

X z( ) � H z( )W z( ). (3)

whereH(z) is the transfer function. Set z−1 = e−i2πfΔt, where f is the

frequency, Δt is the sampling interval. Then we get H(f), where

Hij(f) is the directed causal relationship from the node j to the

node i.

The directional characteristic of the information flow from

node j to node i is defined as following:

r2ij f( ) � Hij f( )∣∣∣∣ ∣∣∣∣2
∑n

r�1 Hir f( )∣∣∣∣ ∣∣∣∣2. (4)

Note that the value of r2ij(f) is between 0 and 1.

Surrogate data is a statistical method of analyzing nonlinear

signals that facilitates the analysis of EEG signals (Dolan and

Spano, 2001). We generate surrogate signals by assigning the

phase of the EEG signal randomly in 200 times. The strongest 5%

of the total possible causal connection are kept for further

analysis. The network characteristics in high frequency

gamma band are most closely correlated with improved

postsurgical outcome (Wilke et al., 2011). Our preliminary

study on seizure-free group also showed similar results. In

this study, the network analysis focuses on gamma rhythm

(31–80 Hz).

2.3 Other methods to build brain network

Besides DTF, there are other ways to build brain networks. The

Pearson correlation coefficient (PCC) reflects the linear correlation

between iEEG channels. We divide the iEEG into 1 s data segments.

The PCC calculates the degree of linear correlation between two

variables. It is the ratio of the covariance and standard deviation

between two signals, as shown in the following:

Pa,b � cov a, b( )
σaσb

, (5)

where Pa,b represents the degree of linear correlation between n

dimensional signal a and b.

Partial directed coherence (PDC) analyzes the connectivity

between multi-channel signals, which is also based on Granger

causality. The calculation method of p and Aj is the same as that

of DTF. The transfer function �Hij(f) of PDC is calculated by the

following equation (Baccala and Sameshima, 2001):

�Hij f( ) � I −∑p

j�1Aje
−i2πfΔt, (6)

where I is the identity matrix.

Isolated effective coherence (iCoh) is similar to PDC. This

method computes the interrelationships of directly related nodes,

but zeros out all other indirect causal relationships (Pascual-

Marqui et al., 2014). When we compute the causal relationship

from node j to node i, other nodes except node j and node i are

called irrelevant nodes. Node j is the relevant nodes of node i.

The weighted phase lag index (wPLI) measures the phase

correlation between signals by weighting the cross-spectrum of

the phases of the two signals. First, we need to calculate the phase

lag index (PLI) between the signals (Li et al., 2021):

PLI � |sgn sin Δθ t( )( )( )|, (7)
where sgn represents the sign function, |·| is absolute value, Δθ(t)
represents the instantaneous phase difference between the input

signal s1 and the output signal s2. Then, wPLI is calculated to

quantify the phase agreement between the signals (Li et al., 2021),

wPLI � |A1A2 sin Δθ t( )( )|
A1A2 sin Δθ t( )( )| |, (8)

where A1 and A2 are the corresponding amplitudes of the s1 and

s2, respectively.

Relative entropy is an asymmetric measure (Kullback and

Leibler, 1951), also known as Kullback-Leibler divergence

(KLDIV), quantifies the difference between two signals. x(t) is

divided by 1 s and overlapped by 50%, and then subjected to

short-time Fourier transform to obtain X (n, f). The normalized

spectrogram is shown in Eq. 9.
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Wx n, f( ) � |X n, f( )|2
∑n,f|X n, f( )|2, (9)

Suppose Wy(n, f) is the normalized spectrum of the signal

y(t), the KLDIV from Wx (n, f) to Wy(n, f) is as follows:

DKL Wx,Wy( ) � ∑
n,f

Wx n, f( )logWx n, f( )
Wy n, f( ). (10)

KLDIV is asymmetric. When its value is higher, the

difference between the signals is larger.

2.4 MVAR model

The electrophysiological activity in short duration can be viewed

as aMVAR process. In this study, theMVARmodel is written in the

following differential form (Baccala and Sameshima, 2001),

X1 n( ) � 0.95
	
2

√
X1 n − 1( ) − 0.9025X1 n − 2( ) + w1 n( ),

X2 n( ) � 0.5X1 n − 2( ) + w2 n( ),
X3 n( ) � −0.4X1 n − 3( ) + w3 n( ),
X4 n( ) � −0.5X1 n − 2( ) + 0.25

	
2

√
X4 n − 1( ) + 0.25

	
2

√
X5 n − 1( ) + w4 n( ),

X5 n( ) � −0.25 	
2

√
X4 n − 1( ) + 0.25

	
2

√
X5 n − 1( ) + w5 n( ),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(11)

where Xi, i = 1, 2, . . . , 5, represents the ith node of the network,

and wi, i = 1, 2, . . . , 5, is the white noise. The coefficients between

nodes represent the causual relationships of different nodes.

In order to find the method with best performance for

constructing epileptic network and validate the effectiveness of

our proposed approach, we use a five-node MVAR model to

simulate the causal relationship between nodes. The time course

of activity assigned on each node is generated by model (11).

Simplified MVAR model could be used to simulate epileptic

sources (Hosseini et al., 2018). There are both unidirectional and

bidirectional connections in model (11). Node X1 is simulated as

epileptic node where seizure starts. Node X2, X3 and X4 are

neighbor nodes., and node X4 has bidirectional connection with

node X5, which represents remote normal tissue.

There are different types of measures to construct the

brain network. We choose several commonly used network

measures based on causality, coherence, or information

theory. We also construct the causal network combining

with surrogate analysis to determine which method

matches the original network best. We compare nine

methods for constructing causal network, including PCC,

DTF, DTF with surrogate analysis (DTF-SA), PDC, PDC

with surrogate analysis (PDC-SA), iCoh, iCoh with

surrogate analysis (iCoh-SA), wPLI and KLDIV. We

compute the correlation coefficients between the extracted

connectivity matrix and the ground truth of the model (11),

which are then normalized by the maximum value. According

to the value of the correlation coefficient, we choose the

method with the best performance to construct brain network.

2.5 Multi-unit computational model

The Z6 model can simulate the dynamic process of the

interaction between nodes due to information transmission

during epileptic seizures, and intuitively describe the state

transition of nodes. This model contains a fixed point and a

limit-cycle. The noise system controls one of two factors in order

to control the trajectory of the system. In the noisy system, the

deterministic part at the drift coefficient can be expressed by the

following single complex equation (Benjamin et al., 2012):

dz
dt

� f z( ) ≡ a|z|4 + b|z|2 + λ − 1 + iω( )z, (12)

where z is a complex parameter, z = x + iy. a and b are real numbers

(a= −1, b = 2),ω controls the oscillation frequency of the system, λ is

the possible attractors of the system. The parameter λ determines the

state of the system, and we choose 0 < λ < 1.We can consider λ to be

the excitability parameter of the system. When λ approaches 1, the

system is more excitable (Benjamin et al., 2012).

The nodes of the brain network have the characteristic of

bidirectional functional connectivity, forming a network of

interconnected nodes. We extend the equation to a network

model with N nodes:

dzi t( )
dt

� f zi( ) + β∑
N

j≠i
KGij zj − zi( ) + αwi t( ), (13)

where Gij is the normalized information connectivity matrix

between nodes, w(t) represents white noise with a mean of

0.0003 and a standard deviation of 0.05 (Sinha et al., 2017), α

is the coefficient of noise. β equals 0.02 here. In order to achieve

the same order of magnitude as the undirected symmetric

information-connected matrix (Benjamin et al., 2012), the

normalized matrix G is then multiplied by K = 1,000. The

connectivity matrix G describes the topology of the epileptic

network, and determines the interaction between each node of

the system.When iEEG dataset is analyzed, the patient’s epileptic

networks are constructed by network measures, which is then

used as the matrix G of the computational model. In this case, the

dynamic behavior of the model is determined by patient’s specific

brain network. The model was solved numerically using a fixed

step Euler-Maruyama solver with a step size of 0.05.

During the numeric simulation, the network is driven by

random noise. The time for a node to change from a stationary

state to an oscillating state is called the escape time (Tes) (Sinha

et al., 2017). Tes is used as an indicator for predicting seizure

(Benjamin et al., 2012). We use the Z6 model to simulate the

epileptic brain as a bi-stability state network (Goodfellow and

Glendinning, 2013; Sinha et al., 2017). The probability of a node

entering epileptic state is inversely proportional to Tes (Petkov

et al., 2014; Sinha et al., 2017). It is also proportional to the

stability of the system, and the value of Tes decreases as the

parameter λ increases (Benjamin et al., 2012). The parameters λ
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of all nodes are set to λ0 or λ1 on non-target or target nodes,

respectively. The optimal λ0 and λ1 are chosen by grid search of

λ0 − λ1 pairs. λ0 is chosen between 0 and 0.5 in step of 0.05, and λ1
is chosen between 0.5 and 1 in step of 0.05. TheΔT is calculated at

each λ0 − λ1 pair. The optimal λ0 and λ1 are found when there is

the largest standard deviation of ΔT for all pairs. First, we set the

λ of all nodes to λ0, and record the Tes as T0. Then, we change the

λ of each target node to λ1, and record the Tes as T1. The

difference between T0 and T1 is the change in escape time

(ΔT), ΔT � |T0 − T1|, represents the effectiveness of the

neuromodulation applied on a given node.

2.6 Localizing targets for
neuromodulation

The procedure of localizing targets for neuromodulation is

shown in Figure 1. First, the segmented iEEG recordings are

FIGURE 1
Procedure of localizing target for neuromodulation in drug-resistant epilepsy. (A) The segmented iEEG recordings. (B) Patient-specific epileptic
network based on iEEG data. (C) Multi-unit neural computational model based on the epileptic network and the Z6 model. (D) Parameter
optimization for λ. (E) Calculating the change of escape time (ΔT) of each node. (F) Localizing optimal target with the largest ΔT value.
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used, as shown in Figure 1A. The data are processed to

construct patient-specific epileptic network (Figure 1B).

The epileptic network is in the form of causal connectivity

matrix. The multi-unit neural computational model is

constructed based on the epileptic network and the

Z6 model (Figure 1C). The number of nodes of the multi-

unit model is same as the number of channels in iEEG the

recordings. The optimal values of λ are determined

(Figure 1D). Using the selected parameters, the ΔT of each

node is then calculated (Figure 1E). The distribution of ΔT is

plotted on patient’s head model, and the node with the largest

value of ΔT is selected as optimal target. The optimal target is

compared with the resected regions of epilepsy patient, as

shown in Figure 1F.

2.7 Validation of neuromodulation

We calculated Tes of epileptic brain networks in all patients

with inhibitory modulation on the localized target nodes and

non-target nodes. The Wilcoxon rank sum test was used

(Wilcoxon, 1945), and p < 0.01 was chosen as significance

threshold. The proposed approach was then performed to

localize candidate targets for neuromodulation in patients

without seizure-free outcome.

3 Result

3.1 Localizing the critical node of MVAR
model

The model (11) is shown in Figure 2A. The node X1 is the

main driven force for the model to enter oscillatory state,

which is simulated as the epileptogenic node. The normalized

correlation coefficients of nine different methods are plotted

in Figure 2B. Based on the extracted causal connectivity by

DTF-SA method, we localize the target for neuromodulation

using our proposed approach. The optimal values of λ1 and λ0
is 0.85 and 0.50, respectively. The result of ΔT is shown in

Figure 2C, and the node X1 is with the highest value. The

effectiveness of external modulation on the node X1 is shown

in Figure 2D. The Tes of the network decreases significantly

while the external excitatory stimuli is applied on node X1.

FIGURE 2
Validating the proposed approach on the five-node model. (A) Five-node causal network. (B) Normalized correlation coefficient between the
constructed network and the ground truth. (C) ΔT for each node. (D) The Tes value of the network with and without external modulation.
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TABLE 1 Patient information, surgical results, optimal parameters, and target location.

Patient Dataset
ID

Surgical
outcome

Target before
resection

Parameter
λ0

Distance
to
resection (mm)

Target after
resection

Distance
to
resection (mm)

P1 Study 038 Seizure free ITS2 0.25 0.0 - -

P2 Study 021 Seizure free RTG15 0.30 0.0 - -

P3 Study 026 Seizure free LFG48 0.30 0.0 - -

P4 Study 028 Not seizure free LPG7 0.30 28.0 LPG7 28.0

P5 Study 004–2 Not seizure free RAT4 0.15 0.0 RG20 14.1

P6 Study 016 Not seizure free RTG24 0.20 0.0 RFG19 45.0

P7 Study 029 Not seizure free AIT4 0.20 0.0 LT12 30.0

P8 Study 020 Not seizure free RAG20 0.15 0.0 RAG6 10.0

P9 Study 019 Not seizure free LT9 0.25 0.0 LF10 48.7

P10 Study 022 Not seizure free TSG7 0.20 20.0 TSG7 20.0

P11 Study 033 Not seizure free LTG7 0.35 19.3 LTG7 19.3

FIGURE 3
The localized targets for neuromodulation of patient P3 and P4. (A) The distribution ofΔT for patient P3. Thewhite circles represent the contacts
of the electrodes. Red and blue indicate themagnitude of the value ofΔT. The red color indicates that the value of ΔT is large. The blue color indicates
that the value of ΔT is small. (B) The optimal value of λ for patient P3. λ0 = 0.30 and λ1 = 1.00. The red color indicates that the value of standard
deviation (S. D.) of ΔT is large. (C) The distribution of ΔT for patient P4. (D) The optimal value of λ for patient P4. λ0 = 0.30 and λ1 = 1.00.
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3.2 Localizing targets for
neuromodulation using patient data

The localized targets for neuromodulation of 11 patients are

listed in Table 1. For patient P1-P3 with seizure-free outcome, the

targets are inside the resected regions. In non-seizure-free group,

localized targets for patients P4, P10, and P11 are outside the

resected regions, and localized targets for patients P5-P9 are

inside the surgical resected regions. The mean error distance is

8.4 mm in non-seizure-free group. The values of parameter λ0 for

11 patients is 0.22 ± 0.08, λ1 is 0.99 ± 0.01 (mean ± SD).

The localized targets for neuromodulation of patient P3 and

P4 are plotted in Figures 3A,C, respectively. Red region indicates

the stimulation is effective to suppress seizure in Figures 3A,C.

Patient P3 belongs to the seizure-free group. The resected region

of this patient was mainly in left lateral frontal cortex. The

electrode LFG48 with the highest ΔT is selected as the target,

and reside in the resected region (red rectangle), as shown in

Figure 3A. Patient P4 belongs to the non-seizure-free group. The

resected region was mainly in left parietal cortex. The electrode

LPG7 with the highest ΔT is selected as the target, which is

28.0 mm away from the resected region (red rectangle), as shown

in Figure 3C. The distribution of ΔT for choosing optimal λ0−λ1
pair is plotted in Figures 3B,D. The λ0 = 0.30 and λ1 = 1.00 for

both patients.

The ΔT distributions for the other 9 patients are plotted in

Figure 4. Among them, patients P1 and P2 belonged to the

seizure-free group. The surgical field in both patients was in the

FIGURE 4
The distribution of ΔT for the other nine patients except P3 and P4. Red region indicates that the effect of modulation is strong.

FIGURE 5
The normalized Tes when external modulation is applied on
the localized target and non-target nodes. The horizontal red bar
represents the median, and the blue box represents the rang from
first to third quartile, respectively. The horizontal black lines
represent the upper and lower limits, and the red plus sign
represents outlier data.
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left temporal lobe. Targets identified by our method that were

effective in eliminating epilepsy were located at the surgical field

of each of the two patients.

3.3 The effectiveness of neuromodulation

The Tes is normalized relative to its minimum and maximum

values of each patient. The horizontal red bar represents the

median in Figure 5. The median of the Tes is 0.21 and 0.06 for

target and non-target nodes, respectively. The values of Tes on the

localized target nodes are significantly longer than the values on

non-target nodes (p < 0.01). The modulation on the localized

target nodes is more effective in suppressing seizure than non-

target ones. Outlier data indicate that modulation on some non-

target nodes is more (or less) efficient than modulation on other

nodes.

We remove the iEEG channels in the resected regions, and

reconstruct virtual resected networks for the non-seizure-free

patients. In the virtual resected network, the iEEG channels in

resected regions are removed. The connectivity matrix G is

calculated using other channels, which results in a smaller

matrix. The value of λ0 is set to 0.22 for the non-target of the

resected network, and λ1 = 1. The localized candidate targets for

neuromodulation are listed in Table 1. The mean distance

between the new targets and the surgical resected regions is

26.9 mm. The localized targets for Patient P4, P10, and P11 are

not changed before and after surgical resection. The mean

distance between the new localized targets and the resected

regions is 29.6 mm for patient P5-P9.

4 Discussion

Localizing the effective targets is the key to

neuromodulation therapy. The proposed approach

identified the node X1 of the MVAR model as optimal

target successfully, which is the designed node to drive the

model to oscillatory state. The network measures based on

correlation, causal effects, phase lag, and information entropy

were compared for reconstructing the network. The DTF-SA

method showed highest similarity between the reconstructed

network and the ground true. Our results could help other

study for choosing network measures. We choose the

Z6 model as the network node because of the relative low

computational cost. Other neural computation models could

also be adopted, such as Epileptor model (Proix et al., 2018).

The parameter λ0 of non-target node is the only parameter

need to be determined for the network except for connectivity

matrix. Our result show that the mean value of λ0 for non-

target nodes is good in most cases when analyzing the iEEG

dataset, and the value λ1 for target node is set to 1, which leads

that our proposed approach is easy to use.

Patient P1, P2, and P3 have undergone surgical resection, and

achieved good outcome. The epileptogenic tissues are assumed

inside the resected regions. Based on the patient-specific epileptic

network, all localized targets for those patients reside in the

resected regions. Those results indicate that our approach find

the target responsible for seizure generation. The localized targets

for patient P5-P9 also reside in the resected regions, which is

consistent with judgement of neurologist. The epilepsy is a brain

network disease. Resection of brain tissue changes the topology of

epileptic network, and seizure may start from other brain

location. Applying the external stimulation on a given node

will result in influence on whole network. In this context, we

believe the neuromodulation measure may lead to better

outcomes for those patients without seizure-free outcome. The

localized targets for patient P4, P10, and P11 are outside the

resected regions based on the epileptic network before surgery,

and the mean distance from the surgical resected regions is

22.4 mm. After removing the resected nodes, our approach

also localizes the targets on the same electrodes. This result

reflects that our proposed network is stable on localizing the

targets even with the virtual resection.

When applying inhibitory stimulation on the localized target

nodes, it can significantly delay the brain network from entering a

state of oscillation relative to the non-target nodes, as shown in

Figure 5. This demonstrates the effectiveness of the proposed

method for preventing epileptic seizures. Neuromodulation is

used as a non-destructive means of brain network regulation,

such as TMS, tFUS, which have different spatial resolutions

(Davis and Gaitanis, 2020; Lin et al., 2020; Zou et al., 2020).

Considering the applicability of our proposed method, the

number of targets selected for neuromodulation is 1. Selecting

2 or more targets for neuromodulation will have a more obvious

modulation effect, but it is not suitable for neuromodulation

methods with low spatial resolution, such as TMS.

Our method induces resting-state brain networks into

epilepsy via stimulation parameters. This approach differs

from current neuromodulation treatments. For example, tFUS

suppresses seizure by reducing the excitability of the nervous

system (Folloni et al., 2019; Lin et al., 2020; Zou et al., 2020).

However, in clinical surgery, the traditional method is to find the

epilepsy surgery area by evoking electrical stimulation.

Combined with the clinical surgical process, we select

parameters that can induce the brain network to enter the

epileptic state to determine the target of neuromodulation.

This choice ensures the practicality of our method.

Furthermore, this approach has limitations. The iEEG recording

is an invasive measure mainly for presurgical evaluation of DRE

patient. We have not applied this measure on scalp EEG recording.

The low coverage of the intracranial electrodes on the epileptogenic

zone may result in the inaccurate of constructing epileptic network,

which ultimately leads to poor localization of the targets. Validating

our method in the real application will further advance the

technology. On the one hand, the Z6 model is a noise-driven

Frontiers in Physiology frontiersin.org09

Liu and Li 10.3389/fphys.2022.1015838

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1015838


computational model that simulates epileptic seizures (Sinha et al.,

2017). Due to the randomness and uncertainty of noise, multiple

calculations are required to avoid accidental factors. The long

computational time is another limitation of our method. On the

other hand, we chose the Z6 model to simulate the dynamic process

of epileptic seizures. Other neural computational models can also

replace the Z6 model, such as the Epileptor model. Therefore it is

necessary to choose different and more suitable parameters to

simulate the process of neuromodulation.

5 Conclusion

The effective neuromodulation therapy is very important

for DRE patients with bad surgical outcome. The DTF with

surrogate analysis is more suitable for constructing patient’s

epileptic network using iEEG recording. Multi-unit

computational model can be used to simulate the seizure

dynamics, and evaluate the effects of external excitatory

and inhibitory stimulation. By using iEEG and

computational model, our study provided a new approach

to localize the optimal targets for the potential

neuromodulation of these patients.
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