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Hypertension is a highly prevalent chronic disease and the major risk factor for

cardiovascular diseases, the leading cause of death worldwide. Hypertension is

characterized by an increased vascular tone determined by the contractile state

of vascular smooth muscle cells that depends on intracellular calcium levels.

The interplay of ion channels determine VSMCs membrane potential and thus

intracellular calcium that controls the degree of contraction, vascular tone and

blood pressure. Changes in ion channels expression and function have been

linked to hypertension, but the mechanisms andmolecular entities involved are

not completely clear. Furthermore, the literature shows discrepancies regarding

the contribution of different ion channels to hypertension probably due to

differences both in the vascular preparation and in the model of hypertension

employed. Animal models are essential to study this multifactorial disease but it

is also critical to know their characteristics to interpret properly the results

obtained. In this review we summarize previous studies, using the hypertensive

mouse (BPH) and its normotensive control (BPN), focused on the identified

changes in the expression and function of different families of ion channels. We

will focus on L-type voltage-dependent Ca2+ channels (Cav1.2), canonical

transient receptor potential channels and four different classes of K+

channels: voltage-activated (Kv), large conductance Ca2+-activated (BK),

inward rectifiers (Kir) and ATP-sensitive (KATP) K
+ channels. We will describe

the role of these channels in hypertension andwewill discuss the importance of

integrating individual changes in a global context to understand the complex

interplay of ion channels in hypertension.
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Introduction

Hypertension is one of the most frequent chronic diseases worldwide, affecting more

than 30% of the total adult population with an incidence increasing globally. It is the

major preventable risk factor for cardiovascular diseases, which are the leading cause of

premature death and disability in the western countries (Mills et al., 2020). Essential
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hypertension accounts for 95% of human hypertension and is a

heterogeneous condition of unknown etiology resulting from the

complex interaction of multiple genetic and environmental

factors that involves multiple organs and systems (Messerli

et al., 2007). In any case, it is characterized by an increased

vascular tone that leads to an increase in the total arterial

peripheral resistance (Joseph et al., 2013).

Ion channels and vascular tone

Vascular tone depends on the integrated contractile

response of VSMCs to many vasodilator and

vasoconstrictor stimuli. The level of contraction determines

the diameter and the resistance of the blood vessel. However,

independently of the stimuli, contraction is ultimately

dependent on an increase in the intracellular calcium

concentration [Ca2+]i and the activation of Ca2+/

Calmodulin-dependent myosin light chain kinase (Jackson,

2000). The major pathways for this increase are the influx

through voltage-dependent Ca2+ channels (VDCCs) and non-

selective cation channels at the plasma membrane, or the Ca2+

release from intracellular stores. However, global [Ca2+]i is

mainly determined by the open probability VDCCs, which is

controlled by membrane potential (VM) (Figure 1).

Consequently, any factor that modulate VM have a direct

impact on global [Ca2+]i, contraction, vascular resistance

and blood pressure (Nelson et al., 1990; Nelson & Quayle,

1995; Cox & Rusch, 2002; Ledoux et al., 2006). On the other

hand, local Ca2+ transients tightly regulate VM modulating the

activity of Ca2+-dependent K+ channels (Figure 1). Cav1.2 are

the main VDCCs of VSMCs. Their spontaneous activity at

resting VM produce local Ca2+ transients named “Ca2+

sparklets” (Santana et al., 2008) that activate ryanodine

receptors (RyR) in the sarcoplasmic reticulum (SR) leading

to the release of Ca2+ and the production of a larger local

transients named “Ca2+ sparks”. In VSMCs, Ca2+ sparks have a

local spatial spread with minimal direct impact in global

[Ca2+]i but big effect on VM by activating BK channels,

generating spontaneous transient outward currents (STOCs)

and leading to a hyperpolarization that keeps Cav1.2 open

probability low (Jaggar et al., 1998; Wellman & Nelson, 2003).

Vascular remodeling in hypertension

Chronic hypertension leads to structural and molecular

changes in small arteries and arterioles in response to the

elevated intraluminal pressure (Lehoux et al., 2006; Anwar

et al., 2012). Among these changes, VSMCs undergo an

“electrical remodeling” thereby changes in the expression of

ion channels generate a disease-specific expression profile that

FIGURE 1
Ion channels modulate VM [Ca2+]i and vascular tone. Vascular tone depends on [Ca2+]i which is mainly determined by the VM dependent activity
of Cav1.2. Depolarization activates Cav1.2, increases Ca2+ influx and [Ca2+]i leading to vasoconstriction. On the contrary hyperpolarization leads to
closure of Cav1.2 channels and ultimately to vasodilation.
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contribute to set an increased vascular tone. In this remodeling,

changes contributing to increase [Ca2+]i coexist with adaptive

responses aimed to counteract the pro-hypertensive changes

(Joseph et al., 2013). The relationships between hypertension

and VSMCs ion channel are complex, and their classification as

cause or consequence of the altered vascular tone is not always

clear.

VSMC depolarization at rest is a common feature

described in several experimental models of hypertension

(Nelson & Quayle, 1995; Cox & Rusch, 2002; Joseph et al.,

2013). Downregulation of K+ channels together with increased

Cav1.2 function and increased compensatory overexpression

of BK channels has been proposed as a possible mechanism

(Cox & Rusch, 2002). However, the underlying molecular

mechanisms are poorly defined. The large diversity of ion

channels present in VSMCs, the existence of vascular-bed

specific patterns of expression and the use of different

species and experimental models have made difficult

this characterization (Coetzee et al., 1999; Harder, 1983;

Sobey, 2001; Tajada et al., 2012; Tykocki et al., 2017).

Genetic model of essential
hypertension: Schlager BPH mice

As a complex, multifactorial and systemic disease that

involves multiple organs as systems, an important challenge is

the use of an adequate model that emulates all of the components

that contribute to the phenotype of essential hypertension. There

are genetic and non-genetic models (Jama et al., 2021) but here

we will focus on a mouse model of genetic hypertension: the

Schlager BPH mice.

These mice were obtained by the phenotypic selection of the

natural variants with higher pressures after crossbreeding of eight

different strains. This approach established three inbred lines

sharing genetic background with low (BPL), high (PBH) and

normal (BPN) blood pressure (Schlager, 1974). This model

shares many features with human hypertension, some of them

common to another genetic model, the spontaneously

hypertensive rat (SHR, Friese et al., 2005). BPH mice show a

mild elevated BP from as young as 6 weeks and with the maximal

divergence at 21 weeks. They also show increased heart rate,

lower body weight and a reduced lifespan when compared to

BPN mice (Schlager and Sides, 1997; Jackson et al., 2019).

Numerous evidences point to a predominantly neurogenic

mechanism of hypertension, with increased activity of the

sympathetic nervous system, which in the kidney will lead to

enhanced renin synthesis (Jackson et al., 2013, 2019; Gueguen

et al., 2019). BPH mice also present global metabolic

abnormalities, enhanced oxidative stress and alterations in

elements of the mitochondrial electron transport chain, which

could be relevant to metabolism and ROS production (Friese

et al., 2005).

The characteristics of this model, and particularly the

existence of a control strain with a similar genetic background

(the BPN strain), makes BPH an attractive model to study

essential hypertension.

Vascular remodeling in schlager BPH
mice

Hypertension is usually associated in resistance vessels with

an inward eutrophic remodeling where the same number of cells

reorganize themselves around a smaller diameter (Mulvany,

2002). However, in BPH mice, the mesenteric vessels show

outward hypertrophic remodeling, with larger lumen size and

wall thickness because of an increased VSMCs size (Moreno-

Domínguez et al., 2009). This could be due to an exposure to

increase flow because of the reduction of parallel-connected

vessels (rarefaction), as high flow leads to hypertrophy

(Mulvany, 2002). In fact, outward hypertrophy remodeling

has been described in rat mesenteric arteries exposed to high

flow in vitro (Buus et al., 2001).

Depolarization of VSMCs is a hallmark of hypertension

reported in different models and vascular beds and it has

been associated with an enhanced myogenic tone in arteries

from hypertensive animals (Harder et al., 1983; Harder et al.,

1985; Cox & Rusch, 2002). Mesenteric VSMCs from BPH show

depolarized resting VM values, and mesenteric arteries exhibit

higher myogenic tone than BPN (Moreno-Domínguez et al.,

2009; Tajada et al., 2012). The electrical remodeling responsible

of resetting resting VM is complex and it has been

comprehensively analyzed in mesenteric arteries of BPH mice.

This remodeling is the focus of this review (Figure 2).

K+ channels remodeling

K+ channels are key players in setting resting VM. Their

activation hyperpolarize VSMCs, decreasing the open probability

of VDCCs and Ca2+ entry, promoting vasodilation. On the

contrary, the closure of K+ channels depolarizes VSMCs,

opens VDCCs, increases Ca2+ influx and promotes

vasoconstriction. Therefore, a plausible hypothesis to explain

VSMCs depolarization in hypertension postulates the existence

of a decreased expression of K+ channels. In fact, since the

pioneering studies reporting an abnormally low permeability

of the plasmamembrane to K+ ions in VSMCs of cerebral arteries

from hypertensive animals (Harder et al., 1983), a loss of resting

K+ efflux resulting in depolarization is a common finding in

VSMCs from different vascular beds (as mesenteric or cremaster

arteries) under high BP (Sonkusare et al., 2006). Several types of

K+ channels have been described in VSMCs, and their

contribution to the hypertensive VSMCs has been

characterized in different preparations.
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Voltage-dependent K+ (Kv) channels are activated by

membrane depolarization in the range of resting VM values

(around -35 to -45 mV) providing a negative feedback to

depolarization (Jackson, 2018). Thus through their

contribution to regulation of VM they have a major influence

on VDCCs activation and vascular tone. Among Kv channels,

members of the Kv1, Kv2 and Kv7 subfamilies are particularly

important regulating VM in VSMCs. Decreased functional

expression of Kv1 (Tobin et al., 2009), Kv2 (Amberg &

Santana, 2006) and Kv7 (Jepps et al., 2011) are among the

FIGURE 2
Ion channels differences between mesenteric BPN and BPH VSMCs. Smaller K+ currents in BPH cells lead to a depolarized resting VM.
Kv2.1 currents are smaller because of the “de novo” expression of the Kv6.3 subunit. Kir, KATP and BK channels functional expression is smaller, and BK
have a decreased sensitivity to Ca2+ due to the decreased expression of the BKβ1 subunit. BPH VSMCs also have a higher expression of TRPC3 and a
different composition of the TRPC3/TRPC6 heterotetramers. Larger TRPC currents contribute to the depolarized resting VM. Surprisingly,
Cav1.2 expression and total Ca2+ currents are smaller in BPH, but the different expression of β subunits generate clusters of channels that produce
higher Ca2+ sparklets and induce larger RyRCa2+ sparks. However, these larger sparks do not induce larger STOCs, due to the reduced Ca2+ sensitivity
of BK channels, jeopardizing the “Ca2+ break”. Ca2+ (red dots), K+ (green dots) and Na2+ (grey dots) ions.
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most common changes described in hypertension (Jackson, 2018;

Nieves-Cintrón et al., 2018).

In BPH mesenteric VSMCs, both mRNA expression studies

and electrophysiological recordings indicate that members of the

Kv1 and Kv2 subfamilies (mainly Kv1.1, Kv1.2, Kv1.5, Kv1.6 and

Kv2.1) are principal contributors to Kv currents (Moreno-

Domínguez et al., 2009) in agreement with data from other

preparations (Fountain et al., 2004; Plane et al., 2005; Amberg &

Santana, 2006). However, while no differences in mRNA

expression levels for Kv1 and Kv2 channels were observed

between BPN and BPH VSMCs, a significant decrease of the

contribution of Kv2 currents to total Kv currents was described in

BPH cells. This change could be explained by the de novo

expression of Kv6.3 channels. Kv6.3 channels do not form

functional channels but co-assemble with Kv2 subunits to

produce heterotetrameric channels with different kinetics and

pharmacological properties, including a decrease in the current

amplitude (Salinas et al., 1997; Vega-Saenz De Miera, 2004).

Both Kv1 and Kv2 currents modulate resting VM in VSMCs,

but no differences in their contribution between BPN and BPH

were observed, suggesting that changes in Kv channels do not

explain the depolarization of BPH mesenteric VSMCs (Moreno-

Domínguez et al., 2009).

Inward rectifying K+ channels (Kir and KATP) allow greater

inward than outward K+ currents, and are active at more negative

voltage than Kv channels (Nelson & Quayle, 1995; Bichet et al.,

2003). In addition to VM, the external K+ concentration modulates

Kir activity, and the small increases of K+ occurring during muscle

activation, promotes Kir activation and then, vasodilation to increase

muscle blood flow. They have been found in VSMCs from different

resistance vessels (cerebral, renal interlobular andmesenteric arteries

as well as cremaster and renal afferent arterioles) and it has been

described that their blockade leads to depolarization and increased

vascular tone (Tykocki et al., 2017). On the other hand, KATP

channels are inhibited by intracellular ATP, linking cellular

metabolism to VM (Tykocki et al., 2017). Under normal ATP

concentration, their activity should be low but they are open due

to phosphorylation through the basal activity of protein kinase A

(Ko et al., 2008). KATP channels are functional hetero-octomers

composed of four pore-forming subunits (Kir 6.1 or Kir 6.2) and

four regulatory subunits (the sulfonylurea receptors, SURx) that

confer sensitivity to ATP. Kir6.1 and SUR2 are the predominant

subunits in VSMCs (Hibino et al., 2010). A number of evidences

suggest a reduced expression and function of Kir and KATP channels

in hypertension although some discrepancy can be found in the

literature (Sobey, 2001; Tykocki et al., 2017).

In VSMCs from BPH mesenteric arteries, there is a

decreased mRNA expression of the most abundant Kir

(Kir2.1, Ki4.1) and KATP channels (Kir6.1 and Sur2). There

is also a significant decrease of both Kir and KATP current

amplitudes. KATP currents are larger than Kir in BPN cells and

are more downregulated in BPH VSMCs (Tajada et al., 2012).

Both, Kir and KATP channels contribute to set the resting VM,

and their contribution was significantly smaller in BPH cells.

However, when exploring the contribution of Kir and KATP

remodeling to set vascular tone in BPH arteries, only the

changes in KATP were clearly relevant. These data suggest that

changes in KATP channels in resistance arteries could be the

principal determinant of VSMCs depolarization in

hypertension (Tajada et al., 2012).

Large-conductance Ca2+-activated channels (BK) are the

most abundant K+ channels in VSMCs and have been described

in all vascular beds studied from large vessels to arterioles. BK

channels exhibit a large unitary conductance and since they are

activated by increases in [Ca2+]i and/or VM (Nelson & Quayle,

1995; Joseph et al., 2013) they play a central role in the regulation

of vascular tone acting as a negative feedback mechanism. BK

channels are comprised of four pore-forming α-subunits that

coassemble with none to four regulatory β-subunits. Four β-
subunits isoforms have been described, being β1 the main

isoform in VSMCs that confers enhanced Ca2+ sensitivity to

BK channels (Brenner et al., 2000; Ledoux et al., 2006). Recently a

new regulatory subunit that increases voltage sensitivity to BK

channels has been described, the γ-subunits (Evanson et al., 2014;
Gonzalez-Perez & Lingle, 2019). Due to their close proximity to

the SR, local Ca2+ transients elicited by Ca2+ release from RyR

stimulate BK channels opening and the K+ efflux that limits

vasoconstriction (Jaggar et al., 1998; Wellman & Nelson, 2003).

Related to the expression and function of BK in hypertension

contradictory changes have been reported. Enhanced BK currents

have been found in arteries form hypertensive rats, explained as a

protective mechanism to limit vasoconstriction (Sobey, 2001; Cox &

Rusch, 2002). However, reduced BK currents, with lower Ca2+

sensitivity, have also been described in other works (Amberg

et al., 2003; Amberg & Santana, 2003), and the β1-knockout
mouse has a hypertensive phenotype (Brenner et al., 2000).

In VSMCs from BPH mesenteric arteries, mRNA expression

of BKα and β1 subunits is significantly downregulated.

Accordingly, BK currents are smaller and exhibit a decreased

sensitivity to Ca2+, so that the frequency and amplitude of STOCs

are decreased (Moreno-Domínguez et al., 2009). Therefore, BK

remodeling impairs the negative feedback elicited by STOCs on

VM and contributes significantly to the hypertensive phenotype.

Non-selective cation channels
remodeling

Non-selective cation channels of the TRP family have also

been identified as important players in the regulation of vascular

tone, either modulating membrane potential or providing a Ca2+

entry pathway independent of the activation of VDCCs (Albert &

Large, 2006; Earley & Brayden, 2015). Among TRP channels,

several members of the canonical TRP (TRPC) family have been

proposed as the molecular constituents of the receptor-operated

channels that link the PLC-DAG signaling cascade to the
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activation of VDCCs. Agonist binding to GPCRs stimulates PLC

leading to DAG production that directly activates TRPC3/6/

7 channels leading to cell depolarization (Hofmann et al., 1999).

In VSMCs only TRPC3 and TRPC6 have been found (Earley &

Brayden, 2015).

Numerous observations associate altered expression of

TRPC3 and TRPC6 channels with hypertension in animal

models. Several studies reported an increased expression of

TRPC3 (Liu et al., 2009; Chen et al., 2010; Noorani et al.,

2011) or TRPC6 channels (Zulian et al., 2010; Linde et al.,

2012) which correlate with enhanced agonists-induced Ca2+

influx and contraction. Unexpectedly, TRPC6 knockout mice

showed a hypertensive phenotype, which was explained by the

compensatory upregulation of TRPC3 channels (Dietrich et al.,

2005).

VSMCs from BPN mesenteric arteries express TRPC3 and

TRPC6 channels and BPH VSMCs showed a larger expression

of TRPC3 channels. Pharmacological dissection shows that

BPH cells have larger non-selective cationic currents with

higher contribution of TRPC3. BPH have a higher

expression of TRPC3 in the membrane as homo- or

heterotetramers with TRPC6, while TRPC6 homomultimers

predominate in BPN. The larger expression of TRPC3 in BPH

determines differences in the TRPC3/C6 proportion and

assembly that favors cell depolarization in hypertension

(Álvarez-Miguel et al., 2017). The increased

TRPC3 expression determines an increased cation

permeability at rest, contributing to the membrane

depolarization of BPH cells.

Ca2+ channels remodeling

Cav1.2 are the principal voltage-dependent Ca2+ channels

and the primary Ca2+ influx pathway in VSMCs. These channels

open by depolarization and close by hyperpolarization playing a

central role in regulation of vascular tone by VM. Cav1.2 currents

activate at relatively positive potentials (at -30 to -40 mV), have

high single channel conductance and show slow voltage-

dependent inactivation (Tykocki et al., 2017). They are

multimeric complexes comprised of the pore-forming

α1 subunit and three auxiliary subunits (β, α2δ and γ)
arranged in 1:1:1:1 stoichiometry. The α1 subunit confers

most of the functional properties to Cav1.2 channels,

including voltage sensing, Ca2+ permeability and inhibition by

channel blockers. The auxiliary subunits enhance channel

expression and modulate biophysical and physiological

properties (Catterall, 2000).

Upregulation of Cav1.2 is a generally accepted feature of

hypertension that has been described in different animal models

and arteries following elevated BP and/or VSMCs depolarization

(Lozinskaya & Cox, 1997; Simard et al., 1998; Pratt et al., 2002;

Pesic et al., 2004; Sonkusare et al., 2006). In contrast, VSMCs

obtained from BPH mesenteric arteries showed a markedly

decrease in whole cell Cav1.2 currents, with a lower mRNA

and protein expression of the pore forming α1 subunit when

compared with BPN cells (Tajada et al., 2013).

The influx of Ca2+ through single or clustered

Cav1.2 channels can be optically detected as “Ca2+ sparklets”

(Santana et al., 2008). While their amplitude was similar in BPN

and BPH cells, they exhibited a higher frequency and higher

density in BPH VSMCs. In spite of having smaller whole

currents, the differences of “Ca2+ sparklets” indicate a more

efficient clustering of Cav1.2 channels in BPH (Tajada et al.,

2013; Dixon et al., 2022) that can be explained in part by the

different composition of the Cav1.2 auxiliary subunits.

Expression and functional studies both in native cells and in

heterologous expression systems indicate that changes in the

clustering (and hence the local activity and Ca2+ signaling

through Cav1.2 channels) are consequence of the different

composition of Cav1.2 channel complexes. In BPN, the

Cav1.2 complexes are mainly α1/α2δ1/β3, while in BPH they

are α1/α2δ1/β2. Cav1.2β subunits have been involved in the

trafficking and membrane expression of Cav1.2 in VSMCs

(Murakami et al., 2003; Dolphin, 2009), and in the regulation

of the size and the density of Cav1.2 clusters at the plasma

membrane (Kobrinsky et al., 2009). The β2 subunit in

Cav1.2 complexes favors the formation of larger channel

clusters with increased activity, in spite of the reduction in the

total Cav1.2 currents. In the BPH cells, this higher Ca2+ sparklets

activity triggers an increased Ca2+ release from SR, but these

larger sparks do not produce larger STOCs (Tajada et al., 2013)

(Figure 2). As described above, in BPH VSMCs, Ca2+ sparks are

uncoupled from BK channel activation due to lower expression of

the β1 subunit of BK (Moreno-Domínguez et al., 2009). The

complex remodeling of Ca2+ and BK channels contribute to

generate a hypertensive phenotype by increasing the basal

activity of Ca2+ channels and impairing the negative feedback

mechanisms that rely on the Ca2+-dependent activation of BKs.

Conclusions and future perspectives

Hypertension is a complex and heterogeneous disease of

unknown etiology. Blood pressure control involves many organs

and systems, and in most of the cases, dysregulation is the result

of many changes that contribute in a little percentage to the final

output (Padmanabhan & Dominiczak, 2021). Actually, from a

mechanistic perspective, probably there are as many types of

hypertension as there are hypertensive patients. Thus, the study

of the mechanisms is very dependent on model, and it is of

paramount importance to contextualize all changes associated

with the hypertensive phenotype to weigh their functional

relevance and their possible use as therapeutic targets.

In this regard, the BPH mice is a genetic phenotypic-driven

model of mild hypertension that resembles a polygenic disease
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where no single genetic defect can explain the development of the

disease (Lerman et al., 2005). In this model, the normotensive

control shares a similar genotypic background, improving the

strength of comparisons of the physiological changes related with

the hypertensive phenotype. This is a clear advantage against

other models, like the SHR rats, which do not seem to share the

genetic background of the Wistar-Kyoto rats used as controls

(Zhang-James et al., 2013).

The changes of VSMCs ion channels that associate with

hypertension either contribute to increase vascular tone or

behave as compensatory mechanisms to soften such increase.

Although it is hard to state undoubtedly, an in depth

characterization of the physiology of BPH and BPN can be

used to dissect both types of changes, and the knowledge of

their functional interplay is relevant to understand the role of a

particular channel as a possible therapeutic target. For instance,

in the case of K+ channels, while the reduced functional

expression of BK channels in BPH mice contributes to

maintain the hypertensive phenotype, the “de novo”

expression of Kv6.3 subunits represents a compensatory

mechanism directed to maintain a similar contribution of Kv

currents to resting Vm (Moreno-Domínguez et al., 2009).

So far, VSMCs ion channels in the BPH model have been

mainly studied in the mesenteric artery and that has been the

focus of this review. Some of the changes described in this model,

as the decreased activity of BK channels, have also been found in

humans (Yang et al., 2013; Cheng et al., 2016) and in other

models of hypertension (Tykocki et al., 2017). However, the

comprehensive study of most of the expressed channels in this

particular vessel has demonstrated the importance of having a

global portrait of all the individual changes to interpret properly

their complex interplay. Among the changes observed it is worth

mentioning the different assembly of pore-forming subunits and

the spatial organization of the ion channels, where we can find

the paradox of higher local activity with a global downregulated

expression due to the cooperative activity of clustered ion

channels.

Obviously, the understanding of the role of ion channels in

mesenteric VSMCs is just the tip of the iceberg to understand

the BPH phenotype. Other vessels, other cells from the vessel

wall and other organs and systems need to be studied. The

phenotypic similarities to human essential hypertension and

the existence of a normotensive (BPN) control strain make the

BPH mice an excellent model to engage in the challenge of

quantifying the little effects of the many changes associated

with hypertension.
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