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The predatory stink bug P. Lewisi shows potential for Integrated Pest

Management programs for controlling Lepidoptera pest insects in crops and

forests. The importance of this insect for biological control has stimulated

several studies into its biology and ecology. However, P. lewisi has little genetic

information available. In the present study, PacBio single-molecule real-time

(SMRT) sequencing and Illumina RNA-seq sequencing technologies were used

to reveal the full-length transcriptome profiling and tissue-specific expression

patterns of P. lewisi. A total of 12,997 high-quality transcripts with an average

length of 2,292 bp were obtained from different stages of P. lewisi using SMRT

sequencing. Among these, 12,101 were successfully annotated in seven public

databases. A total of 67 genes of cytochrome P450 monooxygenases,

43 carboxylesterase genes, and 18 glutathione S-transferase genes were

identified, most of which were obtained with full-length ORFs. Then, tissue-

specific expression patterns of 5th instar nymphs were analyzed using Illumina

sequencing. Several candidate genes related to detoxification of insecticides

and other xenobiotics as well as the degradation of odors, were identified in the

guts and antennae of P. lewisi. The current study offered in-depth knowledge to

understand the biology and ecology of this beneficial predator and related

species.
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1 Introduction

Picromerus lewisi (Hemiptera: Pentatomidae) is a predatory

stink bug widely distributed in China, Korea, Japan, and

Russia (Lin et al., 2000). P. lewisi is an excellent biological

control agent of major pest insects in crops and forests. It

often preys on insect pests, such as Lepidoptera larvae (Mu

et al., 2022). Biology and ecology, including taxonomy,

morphology, reproduction, predator behavior, and feeding

strategies of P. lewisi, have been studied (Tang et al., 2019;

Wang et al., 2019; Wang et al., 2020; Mu et al., 2022).

However, knowledge of the genomic and transcriptomic

data is required to fully in-depth understand the biology

and ecology of this cruicial pest.

Currently, P. lewisi has been mass-bred by factories and

released to manage pest insects in China. Guizhou has the

largest number of P. lewisi breeding centers in China, among

which the breeding center in Zunyi City is one center with

the largest capacity in China. However, more studies need to

be conducted to improve its control efficiency. This predator

might be exposed to insecticides in fields if used for pest

control. Information on insecticide toxicities against

predators and their mechanisms could help us to develop

successful pest management strategies based on better

compatibility between chemical and biological control

methods. Information about the candidate genes related to

insecticide detoxification allows us to investigate insecticide

toxification mechanisms against the predatory bugs. A

herbivory stink bug Halyomorpha halys was found to

possess one of the highest number of detoxification genes,

which might be due to its extreme generalist behavior

(Bansal and Michel 2018; Sparks et al., 2020). The

predatory stink bugs that exhibit omnivorous behavior

and feed on plants and arthropods might have high

detoxification adaptations and adopt more detoxifying

enzymes to manage secondary toxic compounds or

xenobiotics (Dumont et al., 2018). However,

comprehensive investigation of detoxification genes in

predatory stink bugs is still lacking.

Three key enzyme families comprising glutathione

S-transferases (GSTs), Carboxyl/choline esterases (CCEs), and

cytochrome P450 monooxygenases (CYPs) are linked with the

degradation of insecticdes and other xenobiotics in insects

(Oakeshott et al., 2010). CYPs comprise one of the largest

gene families in insects. A large diversity of insect CYP genes

are responsible for diverse adaptation to various habitats,

selective pressures and physiological processes. Insect CYPs

are distributed into four well-supported clades, CYP3, CYP4,

CYP2, and mitochondrial CYP (CYPmito) clans; members of

CYP3 clan are usually implicated in herbivore adaptation on

xenobiotics (Feyereisen 2012). Insect CCEs are typically

categorized into three classes: dietary/detoxification (DD),

hormone and pheromone processing (HPP), and neuro/

developmental (ND); DD and some HPP members are related

to the detoxification of xenobiotics while ND members are non-

catalytic proteins that have conserved functions on insect the

nervous system (Oakeshott et al., 2010). Insect GSTs can be

divided into seven classes: delta, epsilon, omega, sigma, theta,

zeta, and microsomal; the expansion of delta and epsilon GST

genes in insects are thought to be responsible for environmental

adaptations and insecticide detoxification (Enayati et al., 2005).

Here, we performed the first full-length transcriptome

analysis of P. lewisi using a third-generation single molecule-

real time (SMRT) sequencing technology. Then the second-

generation Illumina RNA-Seq sequencing technology was

adopted to analyze the gene expression patterns of different

tissues/parts of P. lewisi. In addition, we have thoroughly

examined three detoxification gene families. The full-length

transcripts and their tissue-specific expression patterns

identified in this study will help to in-depth understand the

functional genomics and adaptive evolution of this insect.

2 Materials and methods

2.1 Insects

P. lewisiwas supplied by the natural enemy breeding center at

Fenggang County of The Guizhou Tobacco Company Zunyi

Branch, Zunyi, Guizhou Province, China. Mythimna separata

larvae were used for rearing the bugs. TheM. separata colony was

reared on an artificial diet of corn leaf powder. The rearing

condition for both P. lewisi andM. separata is held on 27 ± 1 °C,

75 ± 5% RH, and a 16:8 (L:D) h photoperiod.

2.2 SMRT sequencing

RNA samples with different insect stages were extracted from

whole bodies of thirty 1st instar nymphs, thirty second instar

nymphs, twenty third instar nymphs, twenty fourth instar

nymphs, ten 5th instar nymphs, ten female adults and ten

male adults of P. lewisi, respectively, using TRIzol reagent

(Invitrogen, United States) according to the manufacturer’s

protocol. The mixed RNA sample with 3ug was used for

PacBio SMRT sequencing. The mRNA was reverse-transcribed

into cDNA using a SMARTer PCR cDNA Synthesis Kit (Takara

Bio United States, Inc, CA, United States). The generated cDNA

was then re-amplified using PCR. The Isoform Sequencing (Iso-

Seq) library was prepared according to the Iso-Seq protocol using

the SMRTbell™ Template Prep Kit (Pacific Biosciences, CA,

United States). The qualified library was sequenced on a PacBio

Sequel II platform using Sequel™ Sequencing Kit 2.0 (Pacific

Biosciences, CA, United States).

The raw sequencing reads were processed using the

SMRTlink 6.0 software (http://www.pacb.com/products-and-
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services/analyticalsofware/smrt-analysis/) to obtain sub-reads.

Reads of insert (RoIs) were extracted from the subreads

via self-correction. Then RoIs were classified into full-

length non-chimeric (FLNC) reads, full-length chimeric

reads, and non-full length reads, based on the

identification of the 5′ and 3′ adapters used in the library

preparation as well as the poly(A) tail. The FLNC reads

containing 5′ and 3’ adapters and poly(A) tails were clustered
to generate complete unigenes using the CD-HIT program

(Fu et al., 2012). Raw data of the P. lewisi full-length

transcriptome were available from the NCBI Short Read

Archive (SRA) database (BioProject number:

PRJNA863048).

All unigenes were de novo annotated against NR (National

Center for Biotechnology Information [NCBI] non-redundant

protein sequences), NT (NCBI nucleotide sequences), KEGG

(Kyoto Encyclopedia of Genes and Genomes), Swiss-prot, GO

(Gene Ontology), KOG (euKaryotic Ortholog Groups), and Pfam

(Protein family) databases.

2.3 Illumina sequencing

Total RNA samples were extracted from different tissues or

body parts of 100 fifth-instar nymphs, including guts (G), salivary

glands (SG), antennae (A), legs (L), and heads without antennae and

salivary glands (H). Nymphs of P. lewisi were starved for at least 6 h

before extraction of RNA samples. Each tissue sample has three

independent biological replicates. RNA amount and integrity were

assessed using the RNA Nano 6000 Assay Kit in the Bioanalyzer

2,100 system (Agilent Technologies, United States). RNA sequencing

(RNA-seq) was performed using illumina NovaSeq 6000 (illumina,

United States) at Novogene Bioinformatics Technology Co., China.

Each library was generated with 150 bp paired-end reads and

approximately 20 million sequence reads.

Raw illumina data were filtered to remove reads containing

adapter or poly-N, and low-quality reads through in-house perl

script. The paired-end clean reads were mapped to the

constructed Iso-Seq transcriptome database using bowtie2

(Langmead and Salzberg 2012). The raw reads of all RNA-seq

libraries were deposited in the NCBI SRA (BioProject number:

PRJNA862669).

2.4 Identification of metabolizing enzyme
genes

CYP, CCE and GST genes were first screened via keyword

search on the annotation table of P. lewisi transcriptome. The

annotated detoxification protein sequences of two bugs, H. halys

(Sparks et al., 2020) and Rhodnius prolixus (Traverso et al., 2017),

were used for BLAST queries against the P. lewisi transcriptome

to identify any missed genes. Subfamily identification for P. lewisi

gene families was conducted using phylogenetic trees, based on

the sequence alignment with annotated detoxification protein

sequences from H. halys and R. prolixus by applying MEGA

version 6 software (Tamura et al., 2013), using the maximum-

likelihood method of the Jones-Taylor-Thornton (JTT) model

and a bootstrap analysis with 1,000 replicates.

TABLE 1 Full-length transcriptomic analysis information.

Category Number

Reads of inserts 756,599

Read bases of inserts 1,522,128,253

Mean read length of inserts 2,011

Mean read quality of inserts 1

Mean number of passes 49.74

Non-chimeric full-length reads 498,143

non full-length reads 225,723

Chimeric full-length reads 32,733

Total length (bp) of unigene 29,789,075

Unigene sequence number 12,997

Mean length (bp) of unigenes 2,291.99623

N50 (bp) of unigenes 2,876

GC% of unigenes 35.82

TABLE 2 Numbers of CYP genes annotated in Picromerus lewisi and other bugs.

Clan Predatory bugs Hematophagous bugs Herbivory bugs

Picromerus
lewisi

Orius
laevigatus

Cyrtorhinus
lividipennis

Rhodnius
prolixus

Triatoma
infestans

Halyomorpha
halys

Murgantia
histrionica

CYP2 5 6 5 7 1 6 7

CYP3 42 34 27 55 65 87 43

CYP4 14 13 21 49 22 45 30

CYPmito 6 5 4 8 6 6 6

Total 67 58 57 119 94 141 86

Note: Numbers of CYP, genes annotated in other bugs were reported by Bailey et al. (2022) (Orius laevigatus), Liu et al. (2017) (Cyrtorhinus lividipennis), Traverso et al. (2017) (Rhodnius

prolixus and Triatoma infestans), Sparks et al. (2020) (Halyomorpha halys) and Sparks et al. (2020) (Murgantia histrionica).
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2.5 Differential expression analysis

Differential expression analysis was performed using the

DESeq2 R 1.20.0 package (Love et al., 2014). The FPKM

(fragments per kb per million fragments) method was used to

calculate unigene expression (Trapnell et al., 2010). The resulting

p-values (P_adj) were adjusted using Benjamini and Hochberg’s

approach to control the false discovery rate. Differentially

expressed genes (DEGs) were determined by setting | log2

(fold) | > 1 and adjusted p-value (P_adj) value <0.05. The
heatmaps were constructed based on Log10 (FPKM +1) values

among different tissues.

2.6 Quantitative real-time PCR validation
of RNA-seq data

Eighteen genes were selected for data validation using qRT-

PCR assay on an ABI Prism 7300 (Applied Biosystems, Foster

City, CA) using SYBR Premix Ex Taq (Takara Biotechnology

Corporation Co. Ltd., Dalian, China). Primers for qRT-PCR were

presented in Supplemerntary Table S1. Three biological

replicates and three technical replications were performed.

The gene Pl_EF1A were selected for the candidate reference

gene. The relative expression levels of the eighteen selected genes

were calculated by the 2−ΔΔCt method (Livak and Schmittgen

2001). The qRT-PCR data were statistically analyzed by one-way

analysis of variance followed by Tukey’s multiple comparison test

of significance using SPSS software (version 22.0, IBM Corp,

Armonk, United States).

3 Results

3.1 Construction of a full-length
transcriptome

A full-length transcriptome was sequenced from amixed RNA

sample of different stages of P. lewisi using SMRT technology. A

total of 756,599 reads of inserts (RoIs) based on polymerase read

fragment lengths >50bp, a predicted consensus accuracy >0.8, and
full passes >0 were obtained (Table 1). The mean read length of

insert, mean read quality of insect and mean number of passes

were 2,011 bp, 1.00, and 49.74, respectively (Table 1). In addition,

487,143 sequences (49.8%) were identified as full-length non-

chimeric reads from RoIs. Based on the iterative clustering,

polishing, and redundant removing, 12,997 high-quality

unigenes with a mean length of 2,292 bp were generated (Table 1).

About 93.1 % of the 12,997 high-quality transcripts were

annotated in at least one database. The blast alignment analysis

showed that 85.5% of homologous transcripts were best matched

to proteins from the herbivory stink bugH. halys (Supplementary

Figure S1).

3.2 Construction of RNA-seq libraries

Through Illumina sequencing, 15 RNA-seq libraries were

constructed from three repeats of five tissues or parts, G, H, A, L,

TABLE 3 Tissue-specific expression patterns of CYP genes of
Picromerus lewisi via RNA-seq.
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and SG, of P. lewisi 5th-instar nymphs. More than 64.8 million

reads in each sample were generated, resulting in the Q30 value

higher than 92% in each sample after trimming and filtering

(Supplementary File S1). To investigate the expression patterns

of genes in P. lewisi, the Illumina clean reads were mapped to the

SMRT full-length cDNA library. More than 78% of clean reads

from each tissue library were mapped. A pearson correlation

revealed distinct clustering of samples by tissue (Supplementary

Figure S2). Pairwise comparisons among the five tissues were

performed to identify the differentially expressed unigenes

(DEGs). A smaller difference existed between guts and

salivary glands (3,161 DEGs) and among heads, antennae, and

legs (2,273~2,652 DEGs) (SuplementaryTable S3).

3.3 Identification of genes encoding
metabolizing enzymes

3.3.1 CYPs
In the full-length transcriptome of P. lewisi, 67 transcripts were

annotated as CYPs, 64 of which were full-length transcripts with

open reading frames (ORF) (Supplementary Table S4). After the

BLAST searches against NCBI databases, 42, 14, 5, and 6 transcripts

were identified and grouped into CYP3, CYP4, CYP2, and CYPmito

clans, respectively (Table 2). The number of CYP genes in P. lewisi

was much higher than the other two predatory bugs, Orius

laevigatus and Cyrtorhinus lividipennis, but less than those from

H. halys, R. prolixus, and Triatoma infestans (Table 2).

Phylogenetic trees were subsequently constructed to identify

different CYP families, using the annotated CYP genes of H. halys

(Sparks et al., 2020), R. prolixus (Schama et al., 2016), and C.

lividipennis (Liu et al., 2017). According to phylogenetic

relatedness to other named CYPs, all genes identified were

assigned names. The CYP3 clan showed the largest expansion of

P450s (42 genes) in the P. lewisi transcriptome, including 16 genes of

three CYP6 families (CYP6LV, CYP6LT and CYP6LU) and 26 genes

of 6 novel families (CYP395, CYP3092, CYP3225, CYP3226,

CYP3227, and CY3231) (Table 3; Figure 1). CYP6LV (13/42) was

the most abundant CYP3 family in P. lewisi. The CYP4 clan

contained 11 CYP4 family genes and three genes of two novel

families (CYP3222 and CYP3224) (Table 3; Figure 2).

CYP3222 and CYP3224 were exclusive for pentatomids, while

other new families of the CYP4 clan, such as CYP3093 expanded

in R. prolixus are absent in P. lewisi. The CYP2 clan contained one

FIGURE 1
Phylogenetic tree of the CYP3 clan genes of Picromerus lewisi (Pl),Halyomorpha halys (Hl) (Sparks et al., 2020), Rhodnius prolixus (Rp) (Schama
et al., 2016; Traverso et al., 2017) and Cyrtorhinus lividipennis (Cl) (Liu et al., 2017), constructed by the maximum likelihood method with the JTT
model.
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gene for each CYP15, CYP18, CYP303, CYP306, and CYP307

(Table 3; Figure 3). Although CYP305 was not detected in the P.

lewisi full-length transcriptome, it was found in the Illumina libraries

(Figure 3). The mitochondrial clan contains two orthologs of

CYP301A1 and one gene of each CYP301B1, CYP314A1,

CYP315A1, and CYP3221 subfamilies (Table 3; Figure 3).

CYP302 that was absent in the full-length transcriptome was

identified in the Illumina libraries of P. lewisi (Figure 3).

3.3.2 CCEs
A total of 43 putative CCE transcripts were found after

annotating the full-length transcriptome, among which

36 transcripts with full length were identified (Table 4;

Supplementary Table S4). Based on the BLAST searches

against NCBI databases and the phylogeny tree analysis

using the identified CCEs of H. halys (Sparks et al., 2020)

and R. prolixus (Schama et al., 2016; Bailey et al., 2022), 33 and

10 CCEs of P. lewisiwere identified and sorted into the HPP and

ND classes, respectively (Table 5; Figure 4). DD class members

were absent in P. lewisi. The ND class in P. lewisi contains two

catalytic acetylcholinesterases (AChE-1 and AChE-2) and non-

catalytic members such as glutactin, glioactin, neuroligin, and

neurotactin (Table 5). The HPP class expanded in P. lewisi

compared to the other predatory bugs, O. laevigatus and C.

lividipennis (Table 4).

3.3.3 GSTs
In P. lewisi, 18 putative GST genes with full length were found

(Table 6). Based on the phylogenetic analysis, six GST classes were

identified in P. lewisi, including nine sigma members, three theta

members, 2 Ω members, two microsomal members, one delta

member, and one zeta member (Table 7; Figure 5). Epsilon GST

genes were absent in P. lewisi. The sigma class was expanded to P.

lewisi and other bug species (Table 6).

3.4 Tissue-specific expression profiles

Tissue-specific expression patterns from RNA-seq libraries

by Illumina sequencing were analyzed to identify degrading

FIGURE 2
Phylogenetic tree of the CYP4 clan genes of Picromerus lewisi (Pl),Halyomorpha halys (Hl) (Sparks et al., 2020), Rhodnius prolixus (Rp) (Schama
et al., 2016; Traverso et al., 2017) and Cyrtorhinus lividipennis (Cl) (Liu et al., 2017), constructed by the maximum likelihood method with the JTT
model.

Frontiers in Physiology frontiersin.org06

Li et al. 10.3389/fphys.2022.1016582

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1016582


genes enriched in guts and antennae of P. lewisi, which could be

likely involved in xenobiotics detoxification and odorant

processing.

A heatmap based on FPKM values of CYPs in guts, antennae,

heads, legs, and salivary glands was shown in Table 3. Compared

to heads, 21 CYP3 genes and 7 CYP4 genes were significantly

FIGURE 3
Phylogenetic tree of the CYP2 clan and CYPmito genes of Picromerus lewisi (Pl),Halyomorpha halys (Hl) (Sparks et al., 2020), Rhodnius prolixus
(Rp) (Schama et al., 2016; Traverso et al., 2017) andCyrtorhinus lividipennis (Cl) (Liu et al., 2017), constructed by themaximum likelihoodmethodwith
the JTT model.

TABLE 4 Numbers of CCE genes annotated in Picromerus lewisi and other bugs.

s Picromerus lewisi Orius laevigatus Cyrtorhinus
lividipennis

Rhodnius prolixus Halyomorpha halys

Detoxification/Dietary 0 0 0 0 0

Pheromone/hormone 33 16 12 40 55

Neuro/Developmental (total) 10 16 14 12 21

Clade H—Glutactin 5 1 2 2 2

Clade J—AChE 2 2 2 2 2

Clade K—Gliotactins 1 3 1 1 1

Clade L—Neuroligins 1 8 7 13 9

Clade M—Neurotactins 1 1 1 2 4

Unknown Function 0 1 1 1 3

Total CCEs 43 32 26 61 76*

Note: Numbers of CCE, genes in other bugs were reported by Bailey et al. (2022) (Orius laevigatus), Liu et al. (2017) (Cyrtorhinus lividipennis), Traverso et al. (2017) (Rhodnius prolixus) and

Sparks et al. (2020) (Halyomorpha halys). *The number of CCE, genes in H. halys was revised to 76 after deleting 6 alternative splicing variants based on Sparks et al. (2020).
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TABLE 5 Tissue-specific expression patterns of CCE genes of Picromerus lewisi via RNA-seq.
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upregulated in guts, with log2 (fold) > 1 and P_adj <0.05
(Table 3). In addition, six CYPs genes (Pl_CYP3226A1,

Pl_CYP6LV5, Pl_CYP3092D1, Pl_CYP6LV16, Pl_CYP4HB8

and Pl_CYP301A1v2) were significantly enriched in antennae,

compared to heads (Table 3).

As shown in Table 5, 15 HPP CCE genes were significantly

enriched in guts when compared to heads, whereas two HPP

CCEs (PlewCCE09 and PlewCCE23) and PlewNeurotactin were

significantly upregulated in antennae, compared to heads

(Table 5). Most ND class genes were enriched in heads (Table 5).

FIGURE 4
Phylogenetic tree of the CCE genes of Picromerus lewisi (Pl), Halyomorpha halys (Hl) (Sparks et al., 2020) and Rhodnius prolixus (Rp) (Schama
et al., 2016; Traverso et al., 2017), constructed by the maximum likelihood method with the JTT model. Two Drosophila melanogaster (Dm) dietary/
detoxification (DD) class genes and fourNilaparvata lugens (Nl) DD class geneswere added into the tree, in order to showing the absent of DD class in
Heteroptera. Expasion of the hormone and pheromone processing (HPP) class in bugs were shown in the tree.

TABLE 6 Numbers of GST genes annotated in Picromerus lewisi and other bugs.

Class Picromerus lewisi Orius laevigatus Cyrtorhinus
lividipennis

Rhodnius prolixus Triatoma infestans Halyomorpha halys

Delta 1 1 5 1 1 2

Epsilon 0 0 0 0 0 0

Omega 2 2 1 1 0 3

Sigma 9 16 8 7 9 19

Theta 3 1 1 3 2 3

Zeta 1 1 1 1 0 1

Microsomal 2 3 2 1 2 5

Total 18 24 18 15 14 33

Note: Numbers of GST, genes in other bugs were reported by Bailey et al. (2022) (Orius laevigatus), Liu et al. (2017) (Cyrtorhinus lividipennis), Traverso et al. (2017) (Rhodnius prolixus and

Triatoma infestans) and Sparks et al. (2020) (Halyomorpha halys).
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Amongst the 18 full-length GSTs, eight members exhibited

higher expression levels in guts than heads, including one delta,

2Ω, and five sigma members (Table 7). Only one GST gene

(PlewGSTs6) was specifically enriched in antennae, compared to

heads (Table 7).

To validate the DEGs identified through RNA-seq

sequencing, eighteen genes were selected for qRT-PCR

analysis (Figure 6). For all genes, the real-time PCR results

were consistent with the expression profiles determined from

RNA-Seq data. Among them, five CYPs (Pl_CYP3227B4,

Pl_CYP3225B1, Pl_CYP4HA1, Pl_CYP4GY2, and

Pl_CYP4HB8), two CCEs (PlewCCE28 and PlewCCE24) and

two GSTs (PlewGSTs9 and PlewGSTs3) were significantly

upregulated in guts, compared to heads. Five genes

(Pl_CYP4HB8, PlewCCE23, PlewCCE09, Pl_CYP3226A1 and

PlewGSTs6) were enriched in antennae, compared to heads.

4 Discussion

SMRT sequencing can provide a new comprehension of full-

length sequences, greatly facilitating the transcriptome research

of species lacking high-quality reference genomes and improving

genome annotation. To date, only a few full-length transcriptome

analyses have been reported in insects, such as Dendroctonus

ponderosae (Keeling et al., 2012), Chouioia cunea (Pan et al.,

2019), Sogatella furcifera (Chen et al., 2020), Aphis aurantii

(Hong et al., 2020), Rhynchophorus ferrugineus (Yang H et al.,

2020), Bactrocera dorsalis (Ouyang et al., 2021), Spodoptera

frugiperda (Yang et al., 2021), Diabrotica virgifera (Zhao et al.,

2021). There are still no published reference genomes for

predatory stink bugs. The present study provided a valuable

genetic resource for further studies on the functional

genomics and adaptive evolution of the predatory stink

bugs and the close related herbivory stink bugs. To exhibit

the advantages of gene discovery using SMRT sequencing,

three major detoxification enzyme families were

comprehensively investigated. A total of 67 CYPs, 43 CCEs,

and 18 GSTs were identified from full-length transcriptome

data of P. lewisi, most of which were obtained with full-length

ORFs. Almost all of these genes of P. lewisi were grouped with

their orthologues of H. halys in phylogenetic trees, supporting

that predatory stink bugs evolved from the phytophagous

stink bugs (Li et al., 2017; Liu et al., 2019).

TABLE 7 Tissue-specific expression patterns of GST genes of Picromerus lewisi via RNA-seq.
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Combined with Illumina sequencing, tissue-specific

expression patterns of these metabolizing enzyme genes were

analyzed to identify candidate degrading genes responding to

xenobiotics and odorants. The insect gut is a key digestive organ

that helps in the digestion and detoxification of xenobiotics and

food. In P. lewisi, 30 CYPs, 15 CCEs, and eight GSTs exhibited

significant upregulated expression levels in guts than heads,

mainly expanded in the CYP3 clan and the CCE HPP class,

supporting that most members of these classes were proposed to

play important roles in xenobiotic detoxification.

Members of the CYP3 clan are usually implicated in

herbivore adaptation to plant hosts and insecticides, mainly

represented by CYP6 and CYP9 families (Feyereisen

2012). CYP9 members were absent in P. lewisi, consistent

with the lack of CYP9 class in Hemiptera (Bailey et al., 2022).

CYP6 is the most abundant CYP3 family in P. lewisi, among

which subfamily CYP6LV is specificially expanded in P.

lewisi and H. halys (Sparks et al., 2020). We observed that

50% (21/42) of CYP3 genes, 75% (12/16) of CYP6 genes and

69.2% (9/13) of CYP6LV genes of P. lewisi were enriched in

the guts, compared to heads. Our observation suggested that

members of the CYP3 clans represented by CYP6LV

subfamily were the primary detoxifying gene group in the

predatory stink bugs.

Some CYP4 members in insects were also reported to be

involved in insecticide resistance and detoxification (Dulbecco

et al., 2022). Our observation that 50% (7/14) of CYP4 genes, 80%

(4/5) of CYP4H genes and 50% (3/6) of CYP4G genes in P. lewisi

were upregulated in the guts, compared to heads, indicated that

many CYP4 genes represented by CYP4H and CYP4G

subfamilies might also be related to xenobiotic detoxification

in P. lewisi.

Many genes belonging to the so-called dietary/detoxification

(DD) class of CCEs have been have been involved in dietary/

detoxification function. However, DD class members were absent

in P. lewisi, consistent with recent studies in hematophagous

bugs, predatory O. laevigatus, and herbivory Pentatomidae bugs

(Bailey et al., 2022). In pentatomids, the HPP class harbors large

expansions, which might have a role in detoxification. Our

observation that about 50% (15/33) of HPP genes in P. lewisi

were upregulated in the guts, compared to heads, supported such

hypothesis.

In insects, delta and epsilon classes of GSTs were reported to

be insecticide resistance and detoxification (Enayati et al., 2005).

FIGURE 5
Phylogenetic tree of the GST genes of Picromerus lewisi (Pl),Halyomorpha halys (Hl) (Sparks et al., 2020), Rhodnius prolixus (Rp) (Schama et al.,
2016; Traverso et al., 2017) and Cyrtorhinus lividipennis (Cl) (Liu et al., 2017), constructed by the maximum likelihood method with the JTT model.
Expasion of the sigma class in bugs were shown in the tree.
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Epsilon genes were absent in P. lewisi, which is consistent

with studies in other hemipteran species (Friedman 2011;

Bailey et al., 2022). Only one delta gene was found in P.

lewisi, with the highest expression level in guts among all of

detoxification genes (Figure 6), indicating that this gene

might be very important in detoxification function of the

predatory stink bug. The expansion of the sigma class was

found in P. lewisi, which is consistent with other studies

reported in several hemipteran species, including T.

infestans, Myzus persicae, H. halys, Murgantia histrionica,

and O. laevigatus (Bailey et al., 2022). The sigma class has

also been proved to be involved in the detoxification of

insecticides in hemipteran and other species (Yamamoto

et al., 2007; Gawande et al., 2014; Balakrishnan et al.,

2019; Hassan et al., 2019; Yang Y et al., 2020; Liu et al.,

2022). Our observation that 55.6% (5/9) of sigma GST genes

in P. lewisi were upregulated in the guts, compared to heads,

suggested that the sigma class of GSTs might also be related

to xenobiotic detoxification in P. lewisi.

Some researchers hypothesized that these zoophytophagous

predators should be more resistant to insecticides than strict

predators, which might improve their ecosystem services in

IPM programs (Dumont et al., 2018). P. lewisi, O. laevigatus,

and C. lividipennis are zoophytophagous predators that

sometimes feed plants. To adapt to new environments and

consume more prey species, P. lewisi may require more

detoxifying genes. Therefore P. lewisi contained more

detoxification genes than O. laevigatus and C. lividipennis.

However, several studies proved that some insecticides

exhibited high toxicities or sub-lethal effects against

predatory stink bugs (de Castro et al., 2014; Martinez et al.,

2018; Santos Junior et al., 2020; Silva et al., 2020; Batista et al.,

2022). The bugs might adopt different sets of detoxification

genes to cope with insecticides and other xenobiotics from host

plants and preys. Therefore the comprehensive study of

insecticide toxification and its mechanism in P. lewisi needs

to be further investigated, which will help improve its bio-

control efficiency based on IPM strategies.

FIGURE 6
Relative expression levels of eighteen genes in guts, antennae and heads of Picromerus lewisi through qRT-PCR. Histograms represent relative
expression ratios (means ± SE of three biological replicates), by setting the maximal one of all CT values to one using the 2−ΔΔCt method. Different
letters above histograms indicate statistically significant differences among different tissues/parts (p < 0.05).
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In the present study, several detoxification genes were

identified to be enriched in antennae of P. lewisi, indicating

that they might be odorant-degrading enzyme (ODE) genes.

ODEs are a key player in insect olfaction dynamics. They play

pivotal roles in the inactive metabolism of exogenous odorants

and in the recovery of sensitivity in the olfactory system to detect

new odorants (Chertemps and Maïbèche 2021). CYPs, CCEs and

GSTs are known as three major ODE families in insects. To date,

many detoxification enzymes involved in odorant degradation in

insects have been identified, such as ApolPDE in Antheraea

polyphemus (Vogt and Riddiford 1981), EST-6 in Drosophila

melanogaster (Mane et al., 1983; Chertemps et al., 2015),

SlitCXE7 and SlitCXE10 in S. littoralis (Durand et al., 2010;

Durand et al., 2011), SexiCXE4 and SexiCXE14 in S. exigua (He

et al., 2014; He et al., 2015), CYP345E2 in Dendroctonus

ponderosae (Keeling et al., 2013), CYP4L4 in S. litura (Feng

et al., 2017), GST-msolf1 in Manduca sexta (Rogers et al., 1999),

GST-pxcs1 in Papilio xuthus (Ono et al., 2005), GmolGSTD1 in

Grapholita molesta (Li et al., 2018), and SzeaGSTd1 in Sitophilus

zeamais (Xia et al., 2022). The predatory stink bugs depend on

their antennae to perceive a diversity of airborne chemical

cues, including prey odorants, plant volatiles, sex

pheromones, and scents from stink bugs, to find palatable

preys, preferable host plants, and conspecific partners, and to

avoid interspecific competition and natural enemies. These

insects respond quickly to environmental cues, mainly

relying on the termination of odorant signals from the

olfactory sensilla (Chertemps and Maïbèche 2021).

Therefore, identifying potential odorant-degrading genes

in the predatory stink bugs may assist future research on

their olfactory functions and the enhancement of predatory

biocontrol efficiency.

Besides detoxification and odor degradation, insect CYP

members in other insect species are also involved in the

metabolism of endogenous compounds such as lipids,

ecdysteroids and pheromones, and in the last step of cuticular

hydrocarbon biosynthesis (Qiu et al., 2012). However, further

studies are required to confirm that increased CYP genes in stink

bugs might be involved in the synthesis or metabolism of specific

stink smell chemicals (Sparks et al., 2020).

In addition, CYP6BQ9 was mostly expressed in Tribolium

castaneum brains and conferred deltamethrin resistance,

suggesting that CYPs specifically expressed in insect heads

probably have detoxifying functions (Zhu et al., 2010). The

central nervous system, particularly the brain, should be

considered a target tissue to uncover more insect P450s

involved in insecticide resistance because most insecticides are

neurotoxins (Zhu et al., 2010). Several CYPs and other

metabolizing genes of P. lewisi were overexpressed in the

head, which needs further studies to investigate their functions.

5 Conclusion

This is the first report of a comprehensive characterization

of the global transcriptome of P. lewisi. In the current study,

the sequencing strategy combined PacBio SMRT with

Illumina RNA-Seq was proved to exhibit good performance

for gene identification, using three detoxification enzyme

superfamlies as an example. A total of 67 genes of CYPs,

43 CCEs, and 18 GSTs were identified, most of which were

obtained with full-length ORFs. More than 50 candidate

xenobiotic detoxification genes enriched in the guts of P.

lewisi and several candidate ODE genes upregulated in the

antennae were identified based on tissue-specific

transcriptomic analysis. The results presented here provide

basic information for studying the predatory stink bugs’

adaptation mechanism to environmental factors.
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