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Computational physiological models continue to increase in complexity,

however, the task of efficiently calibrating the model to available clinical

data remains a significant challenge. One part of this challenge is associated

with long calibration times, which present a barrier for the routine application of

model-based prediction in clinical practice. Another aspect of this challenge is

the limited available data for the unique calibration of complex models.

Therefore, to calibrate a patient-specific model, it may be beneficial to verify

that task-specific model predictions have acceptable uncertainty, rather than

requiring all parameters to be uniquely identified. We have developed a pipeline

that reduces the set of fitting parameters to make them structurally identifiable

and to improve the efficiency of a subsequent Markov Chain Monte Carlo

(MCMC) analysis. MCMC was used to find the optimal parameter values and to

determine the confidence interval of a task-specific prediction. This approach

was demonstrated on numerical experiments where a lumped parameter

model of the cardiovascular system was calibrated to brachial artery cuff

pressure, echocardiogram volume measurements, and synthetic cerebral

blood flow data that approximates what can be obtained from 4D-flow MRI

data. This pipeline provides a cerebral arterial pressure prediction that may be

useful for determining the risk of hemorrhagic stroke. For a set of three patients,

this pipeline successfully reduced the parameter set of a cardiovascular system

model from 12 parameters to 8–10 structurally identifiable parameters. This

enabled a significant (>4 ×) efficiency improvement in determining confidence

intervals on predictions of pressure compared to performing a naive MCMC

analysis with the full parameter set. This demonstrates the potential that the

proposed pipeline has in helping address one of the key challenges preventing

clinical application of such models. Additionally, for each patient, the MCMC

approach yielded a 95% confidence interval on systolic blood pressure

prediction in the middle cerebral artery smaller than ±10mmHg (±1.3 kPa).

The proposed pipeline exploits available high-performance computing

parallelism to allow straightforward automation for general models and

arbitrary data sets, enabling automated calibration of a parameter set that is

specific to the available clinical data with minimal user interaction.
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1 Introduction

Projects such as the Virtual Physiological Human initiative

(Hunter et al., 2010) and the Physiome Project (Hunter et al.,

2005) aim to create integrated whole-body models of human

physiology that account for cellular, tissue, organ, and system

level mechanisms. For these models to be clinically viable, they

need to be efficiently calibrated to patient data. This calibration

enables the creation of patient-specific models that can be used at

the bedside. These models have the potential to aid in diagnosis

and prognosis, and to optimise treatment strategies.

Calibration of models to patient data involves the

optimisation of a large number of parameters, which is

impractical as a manual task. Moreover, state-of-the-art

automatic calibration techniques require a number of

model executions that scales poorly with the number of

model parameters. Thus, to perform this calibration task,

parallel model executions and a large number of

computational resources are required. This paper aims to

create an automatic pipeline for identifying model

parameters with parallelised methods suitable for high-

performance computing (HPC). As a first use case, we

demonstrate this pipeline on an in silico lumped parameter

cardiovascular system model. This case was selected as it can

be extended to include coupling of multiple organs in terms of

oxygen and metabolic demands to help start to develop

integrated models of human physiology.

Cardiovascular system (CVS) modelling has been developing

for decades with a steady increase in complexity, but more work

is required to ensure models can be calibrated to clinically

available data. Ursino and coworkers (Ursino, 1998; Ursino

and Magosso, 2000; Ursino and Magosso, 2003; Albanese

et al., 2016) created pioneering lumped parameter models of

the CVS. These models required various assumptions for

parameters in the heart, circulatory system, and pulmonary

system to produce a qualitatively accurate model. Blanco and

coworkers developed various anatomically detailed models of the

CVS that solved one-dimensional Navier-Stokes equations for

the vessel flow dynamics (Blanco and Feijóo, 2013; Blanco et al.,

2014; Blanco et al., 2015). Blanco et al. also showed that although

simplified models of the CVS can be sufficient for the study of

systemic indices of the overall circulation, more detailed models

are required to analyse intricate circulatory system dynamics,

particularly in the case of disease. Safaei et al. (2018) developed a

218 compartment closed-loop model of the circulatory system

using a similar bond-graph (BG) approach as the one detailed in

the present work. However, model calibration was performed

manually or semi-automatically via ad hoc methodologies in all

of these studies.

When calibrating a model, it is important to verify that the

model has not been overfitted to the available data, and therefore,

can be used for prediction of unobserved variables (For a reader

accustomed to control theory, the “prediction”mentioned in this

work is equivalent to unobserved state estimation). This work

discusses structural identifiability, practical identifiability, and

core predictions, three different but related approaches for

ensuring a calibrated model is reliable. Structural and practical

identifiability (Raue et al., 2009; Miao et al., 2011) are focused on

ensuring the identified parameter set is unique. In turn, core

predictions (Cedersund and Roll, 2009; Cedersund, 2012) focuses

on the uncertainty bound of the model’s task-specific predictions.

In the current literature, it is a less well explored approach but

heavily inspires this work.

A model is structurally identifiable with respect to the

measured data if it has one unique optimal parameter set.

Specifically, a parameter is structurally unidentifiable if

changing the parameter does not necessarily alter the

discrepancy between the model output and the measurements

because the change in the parameter can be compensated by

modifying other parameters (Wieland et al., 2021). The model is

structurally unidentifiable if it has any structurally unidentifiable

parameters. Importantly, structural identifiability is only

dependent on the structure of the equations and which states

are measured, and does not depend on the value or the noise of

the measurements. Practical identifiability, has multiple

definitions. The definition used by Raue et al. (2009) can be

briefly explained by explaining what it means for a parameter to

be practically unidentifiable. It means that there is a manifold in

the parameter space where the parameter posterior distribution is

constant, so a finite confidence interval does not exist. As in the

structural case, a model is only practically identifiable if all of its

parameters are practically identifiable. In the case of practical

identifiability, the parameter posterior distribution depends on

the measurement data uncertainty as well as the model structure.

A core prediction is a uniquely identified model property that

must be fulfilled for the model structure to explain the data

(Cedersund, 2012). Often, this core prediction can be a model

output which is crucial to the intended use of the model and its

associated uncertainty. For a core prediction to be satisfied, the

uncertainties of the calibrated parameters must enable a unique

prediction to be made with a finite confidence interval. In this

work, as described in the work by Cedersund and Roll (2009),

Cedersund (2012), for the calibration process to be acceptable, we

additionally require that the core prediction uncertainty is within

an acceptable bound. This extension allows a researcher or

clinician to take into account external factors when deciding if

a prediction uncertainty is acceptable. For example, an acceptable

uncertainty may depend on where the minimum and maximum
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of the confidence intervals lie with respect to clinical thresholds

for treatment indications, the risk of possible treatments, the risk

of performing an invasive measurement, and other factors that

depend on the state of the patient. Importantly, it may also

depend on whether the uncertainty is too large to confirm a

diagnosis or disease classification. Using core predictions to

verify that a model has been adequately calibrated for the

scenario of interest has the advantage of not necessarily

requiring uniquely identified parameters (Eydgahi et al., 2013).

Therefore, it reduces the constraints on the parameter

identification process, making it easier to calibrate a model

that can provide task-specific predictions.

The complexity of multi-scale physiological models can

create highly nonlinear relationships between model

parameters and the desired outputs, which presents challenges

for the analysis of global identifiability andmodel calibration. It is

especially difficult to calibrate complex models to data in a way

that allows general use of the model. This is the aim of practical

identifiability approaches that focus on ensuring that the cost

function is sensitive to every parameter in all regions of

parameter space (Raue et al., 2009; Simpson et al., 2020). In

contrast, the current work follows the idea that to ease the fitting

of parameters, a model should be calibrated in a way that is

specific to the desired task of the model (Villaverde and Banga,

2014). Therefore, if the uncertainty of the task-specific prediction

is within user-defined bounds, the model is deemed to be

acceptably calibrated.

Many approaches have been developed that can be used for

the calculation of task-specific predictions and their

uncertainties. Monte Carlo analysis for parameter

identification is a Bayesian approach that calculates posterior

parameter distributions. These distributions can then be used to

determine parameter correlations, identifiability, and they can be

sampled to estimate prediction uncertainty. However, naive

Monte Carlo Analysis scales poorly with increasing numbers

of parameters (Gilks and Roberts, 2020). In the last few decades,

advances in MCMC (Geyer, 1992) have allowed Bayesian

approaches to parameter identification, and inverse problems

in general, to become very efficient (Villaverde and Banga, 2014).

Thus, more computationally expensive models and models with

more free parameters are able to be used with MCMC. There has

been extensive work on improving MCMC even further for

models with large numbers of parameters. Hug et al. (2013)

demonstrated an MCMC method that can be efficiently used to

calculate prediction uncertainties from a model with hundreds of

parameters. Vanlier et al. (2012) used a profile likelihood

approach to remove structurally unidentifiable parameters,

followed by an MCMC approach that can run efficiently on

the reduced system. The profile likelihood method is an approach

that should not be left out in the discussion of identifiability. Raue

et al. (2009) developed a very effective profile likelihood approach

for analysing parameter identifiability that can be more efficient

than MCMC in certain applications (Simpson et al., 2020), and

has been shown to be more effective than popular Fisher

information based approaches (Wieland et al., 2021). MCMC,

however, allows the calculation of prediction uncertainties, and

therefore is more suitable for the task-specific application

detailed in our work. MCMC can also be easily adapted to

new proposal steps, prior distributions, and various types of

regularisation to make the calibration process more task specific

(Gupta et al., 2020).

This paper describes a pipeline for automatic calibration of

general cardiovascular system models to a patient-specific set of

clinical data. This pipeline improves the efficiency of typical

MCMC approaches, and therefore improves on the clinical

usability of these techniques. Numerical experiments are

conducted where we apply the pipeline to a specific lumped

parameter cardiovascular system model with different sets of

clinical data to obtain a clinically informative cerebral pressure

prediction. The paper outline is as follows. Section 2.1 describes

the parameter identification pipeline used for model calibration.

Section 2.2 introduces the lumped parameter cardiovascular

system model, the implementation details, and the clinical

measurement data used for calibration. The calibration results

for three patients are shown in Section 3, and we discuss the

advantages, limitations, and future work in Section 4.

2 Materials and methods

2.1 Automated calibration pipeline

The parameter identification task is stated as finding the

model parameters θ � [θ1, . . . , θnθ] such that the model

predictions best match a set of target measurements ẑ �
[ẑ1 . . . , ẑnz] in terms of the weighted sum of squared

differences, i.e.,

θ � arg min
~θ∈Θ

∑nz
i�1

fi
~θ( ) − ẑi

σ i
⎛⎝ ⎞⎠2⎛⎝ ⎞⎠ (1)

whereΘ ⊂ Rnθ is the set of parameters in the physiological range,

σ � [σ1, . . . , σnz] is the measurement standard deviation, and f �
[f1 . . . , fnz] is the proposed cardiovascular model that predicts

estimates, z, of the target measurements.

In order to determine the prediction uncertainties, we elect to

use an MCMC approach. However, MCMC can require long run

times to reach convergence. Therefore, to enhance efficiency of

the MCMC analysis, the pipeline involves first conducting a

sensitivity analysis of f with respect to θ to reduce the parameter

set and to ensure local structural identifiability. This is followed

by the use of MCMC to analyse the prediction uncertainty. This

process of improving the run time of the MCMC analysis

improves the clinical usability of the calibration process. The

algorithm for this process is shown at the end of this section in

Algorithm 1. The steps of the pipeline are:
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1) Solve one instance of Eq. 1.

2) Determine the parameters structural identifiability with a

sensitivity analysis.

3) Fix the parameters that are not structurally identifiable.

4) Repeat steps 1–3 until the model is structurally identifiable.

5) Run MCMC on the model with reduced dimension.

6) Sample the parameter posterior distributions and run the

model to obtain prediction uncertainties.

2.1.1 Sensitivity analysis/structural identifiability
This section details the sensitivity analysis approach that is

used to reduce the parameter set by fixing structurally

unidentifiable parameters (see Algorithm 1, lines 1–20). The

sensitivity analysis method (Brun et al., 2001) is used to analyse

the local sensitivities of the model to characterise the local

structural identifiability.

First, an in-house genetic algorithm is used to find an

approximate solution to Eq. 1. This gives the locally optimal

parameter vector, θ*. Second, first-order finite differences are

used to calculate a sensitivity matrix, S ∈ Rnz×nθ , as

Skl � zfk θp( )
zθl

θpl
σk

(no implied summation), (2)

where fk are the model outputs. The second term in Eq. 2

normalises the sensitivity matrix with respect to the best fit

parameter values and the measurement standard deviation.

The parameter importance of each parameter, δl, which is a

measure of parameter l’s influence on all of the outputs, is then

calculated with

δl �
�������
1
nz

∑nz
k�1

S2kl

√√
. (3)

To analyse the collinearity of the parameters, first, each

column of S is normalised by its corresponding parameter

importance to give

~Skl � Skl
δl

��
nz

√ (no implied summation). (4)

Then, Ŝ
ij ∈ Rnz×2 is defined as the matrix with two columns

equal to the i’th and j’th columns of ~S. Following this, N ij ∈ R2×2

can be calculated,

N ij � Ŝ
ij( )T

Ŝ
ij
. (5)

The smallest eigenvalue, (μij), of Nij is then calculated, which

allows the calculation of the collinearity metric between

parameters i and j, as

γij �
1���
μij

√ . (6)

This collinearity metric is simply called the collinearity

throughout this paper. The collinearity for each parameter is

compared to the collinearity threshold (see Algorithm 1, line

10) to determine structural unidentifiability. Also, the

collinearity and parameter importance are determined for

the parameters with respect to the core predictions, as well

as the observable outputs. These values are compared against

the parameter importance and collinearity thresholds to check

if the parameters can be safely fixed without significantly

reducing the prediction uncertainties. For pairs of

parameters that have collinearity greater than the threshold,

the parameter with the lowest importance is removed from the

set of parameters to be identified and it is held fixed at an

approximate physiological value. In addition, if there is a

parameter with importance below the parameter importance

threshold, that parameter is also fixed. The process of fitting

parameters then removing the ones that are structurally

unidentifiable is repeated until all parameters satisfy the

chosen thresholds for collinearity and parameter importance.

The parameter importance and collinearity thresholds are user

defined values. However, the values of ti = 0.1, and tc = 10 used

in this work seem to be effective for multiple applications. The

threshold on prediction uncertainty will be clinician and task

dependent. Therefore, determining whether the uncertainty is

acceptable is not included in this pipeline.

2.1.2 Quantifying uncertainties in model
predictions

After removing the structural unidentifiabilities in the

model, MCMC is used to determine parameter posterior

distributions. The posterior distributions are then sampled

and the forward simulation is solved to give the distribution

and uncertainties of the core predictions. These

uncertainties are available to be analysed by a researcher

or clinician to give a task-specific assurance of acceptable

model calibration. To take advantage of well-validated,

parallel MCMC software, we chose to use emcee

(Foreman-Mackey et al., 2013), a software for MCMC that

is designed to run efficiently with minimal user interaction.

The ensemble sampler of emcee was used for the analysis,

with 32 parallel chains of 5,000 steps. A burn-in of

2,500 steps was used to discard steps dependant on the

initial parameter values. The MCMC chain convergence

was confirmed with the Geweke test (Geweke, 1992),

where the p-values from the Z-test were greater than 0.05.

Running the MCMC algorithm with the full parameter set

for 100 h resulted in the Geweke test failing, demonstrating

that using MCMC without parameter set reduction is less

tractable than the proposed approach.

The OpenCOR software (Garny and Hunter, 2015) which

uses the CVODES solver (Serban andHindmash, 2005), was used

for solving the model system of ODE’s. If CVODES failed to run
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during a simulation, the parameter set was rejected in both the

genetic algorithm and MCMC.

Algorithm 1. Automatic Calibration Algorithm. Notation:

genetic_algorithmΘ searches an estimate of parameters θ ∈ Θ;
ϵi is the ith vector of the canonic basis; Θ/spanQ is the quotient

space of Θ by spanQ, i.e., it is the reduced space after fixing the

parameters related to the canonic vectors inQ; δi is the parameter

importance related to θi; γij is the collinearity between parameters

θi and θj; δ
p
i is the parameter importance with respect to the core

predictions; γpij is the collinearity of the parameters with respect

to the core predictions;ϕ is the empty set; ti, tc, and tu are the

thresholds related to the parameter importance, parameter

collinearity, and prediction uncertainty, respectively; θdist is

the vector of parameter posterior distributions; θsample
dist is a

matrix of parameter vectors sampled from the posterior

distribution; θinit is a matrix of parameter vectors for

initialising the MCMC chains; N is the normal distribution;

σinit is the standard deviation of the random noise applied to

initialise θinit for MCMC (σinit = 0.01θ in this paper); fpred are the

output predictions of the model.

2.2 Application to a cardiovascular system
model

This section briefly describes the CVSmodel that we calibrate

in the numerical experiments of our pipeline. It also details the

patient data that we use for calibration.

2.2.1 Cardiovascular system model
Figure 1 shows the modular CVS model we have designed to

be applicable for modelling different cardiovascular events in

health and disease. Lumped parameter BG models are

selected here for their ease of use, computational

efficiency, and ability to be modularised to create arbitrary

topology circulatory system models for specific clinical

applications.

The arterial system is designed to be modular and adaptable.

An in-house software (Argus and Maso Talou, 2022) generates a

combined model of modular BG sections from the definition of a

network of arterial vessels. The arterial network used in this

paper is shown in Appendix Figure A1 (Supplementary Data

Sheet 2). The modules for vessels, heart chambers, and valves are

also described in the Appendix.

2.2.2 Pipeline application
For the parameter reduction step of the pipeline, the

parameter importance was set to a low value of ti = 0.1 to

ensure only the very low importance parameters would be

removed. The collinearity threshold was set to tc = 10, which

agreed with Brun et al. (2001), who found that the critical

threshold for collinearity is between 5 and 20. For this

application, a core prediction of the pressure in the middle

cerebral artery was chosen as the location for cerebral

pressure prediction. Once the parameter posterior

distributions were determined, 100 parameter values were

randomly sampled from the final parameter distribution, and

the model was simulated for each sample to give a distribution of

the core pressure prediction.

In the software developed for this paper, the prior distributions

have a default setting to be uniform between pre-defined, non-negative

physiological ranges. However, they are modifiable to allow

more accurate priors if more information is known. The

pre-defined physiological parameter ranges used in this paper are

available from https://github.com/FinbarArgus/circulatory_autogen/

blob/automatic_parameter_id_paper_release/resources/physiological_

params_for_id.csv and the units, physiological values for all fixed

parameters, and the references for parameter values are available from

https://github.com/FinbarArgus/circulatory_autogen/blob/automatic_

parameter_id_paper_release/resources/physiological_parameters.csv.

2.2.3 Clinical data
To demonstrate the application of the framework to

experimental data, echocardiographic measurements for three

patients with normal systolic function were used for calibration

of the CVS model (see Table 1). Minimum and maximum atrial

and left ventricular volumes over one cardiac cycle were

calculated by tracing the endocardial border on apical

echocardiographic images, according to standard clinical

guidelines (Lang et al., 2015). Non-invasive systolic and

diastolic pressures, as well as an estimate of mean arterial

pressure derived from suprasystolic pressure waveforms (Lin

et al., 2012) were obtained with a sphygmomanometer (BP+,

Uscom, Sydney, Australia) on the upper arm. Ethical approval

for this study was granted by the Health and Disability Ethics

Committee of New Zealand (reference 17/NTB/46), and written,

informed consent was obtained from each participant.
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To be able to estimate accurate uncertainties of our core

predictions, the uncertainties of our measurements must be taken

into account. For this, we use the coefficient of variation (CV) for

repeated inter-observer measurements from the literature. We use

inter-observer variability from each reference to maximise the

sources of error that we take into account. Table 2 details the

CV values that are used to calculate a standard deviation for each

patient. The CV is related to the measurement standard error (σ) as

CV � RC%

2.77
� σ

ẑ
(7)

where RC% is the repeatability coefficient as a percent of the

mean/measurement value and ẑ is the measurement value.

To approximate the cerebral blood flow that will be acquired

in the future, mean flow values at the terminals of our model were

obtained from the ADAN-218 model (Blanco et al., 2015). The

flows at the arm, leg, and trunk terminals are included as

synthetic measurements from ADAN to give the fitting

process an approximate target flow for each region. Matching

a patients flow in these inferior regions is assumed to be less

important for predicting cerebral haemodynamics. Therefore,

their CV are set to large values to reduce the influence of their

synthetic flow measurements on the fitting process.

The measurements in Table 2 are the ẑ measurements used as

the ground truth for fitting the model. Each measurement also

has a σi calculated from the CV in Table 2 that influences the

minimisation in Eq. 1 for both the genetic algorithm and the

MCMC analysis. The term inside the outer bracket of Eq. 1 is the

cost function for the genetic algorithm, and the likelihood for

MCMC is −0.5 times the cost function. A simple schematic of the

FIGURE 1
Schematic of the circulatory system model. RA, right atrium, RV, right ventricle, LA, left atrium, LV, left ventricle, trv, tricuspid valve, puv,
pulmonary valve, miv, mitral valve, aov, aortic valve, par: pulmonary artery, pvn: pulmonary vein, vub, venous upper body, svc, superior vena cava, vlb,
venous lower body, ivc, inferior vena cava, v, flow boundary condition, p pressure boundary condition.

TABLE 1 Baseline patient characteristics including age, sex (M = male, F = female), height, weight, and resting systolic (sys.) and diastolic (dia.) blood
pressure (BP).

Id Age (years) Sex Height (m) Weight (kg) BP (sys./dia.
MmHg [kPa])

Patient 1 45 M 1.70 79 112/73 [14.9/9.9]

Patient 2 34 F 1.67 89 137/80 [18.3/10.7]

Patient 3 49 F 1.67 100 114/77 [15.2/10.3]
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full pipeline is shown in Figure 2. The physiological parameter

ranges mentioned in Section 2.2.2 are used as parameter limits

for the genetic algorithm and as the limits on the uniform prior

for the MCMC analysis.

3 Results

The pipeline described in Algorithm 1 was applied to

measurements from three patients, described in Section 2.2.3,

to analyse the suitability of the proposed automated approach for

obtaining a cerebral arterial pressure prediction with its

corresponding uncertainty. Figures 3, 4 show the percentage

error and the error normalised by the measurement standard

deviation for optimal model outputs compared with the

measurements. The approach provided fitting error for each

output within ±2 σ for Patients 1 and 3, and within ±3 σ for

all but one output of Patient 2. Figures 3, 4 show results for

Patient 1, and the figures in the Supplementary Material show

results for Patients 2 and 3. The large error in the flow in the

trunk terminal (vTR) (see Figure 3) shows that the error between

model output and measurement is heavily dependent on the

measurement standard deviation. The plots for each of the three

patients and for all of the outputs are provided in the

Supplementary Material. The fitting errors for each patient are

reasonably consistent, thus showing robust applicability to the

different data sets (see Table 3).

The parameter distributions from the MCMC method

revealed that all parameters were clearly practically identifiable

for Patient 1 (see Figure 5), whereas for Patient 3 ElvA was

practically unidentifiable for the chosen parameter range (see

Figure 6).

An advantage of our approach is that, as in Figure 6, even if

one of the parameters is not practically identifiable (i.e., there

is a flat region in its posterior distribution), the calibrated

model may still be sufficient for estimating the core

predictions (see Figures 7, 8). Our analyses show that

prediction uncertainties attributed to parameter estimation

can be automatically generated for this CVS model. If the

uncertainty for Patient 3’s core prediction is acceptable to the

clinician, then this approach provides a task-specific

acceptable model calibration, even though it has practically

unidentifiable parameters. In Section 4, we discuss the need to

improve this uncertainty estimation to account for the error

between the model and the data, therefore providing a better

representation of the uncertainty of the prediction and

making the uncertainty more interpretable for a clinician.

4 Discussion

The proposed methodology is focused on improving the

clinical viability of model calibration approaches for

predicting non-observed quantities of the CVS. An

approach that can be used clinically must be efficient,

robust, and require minimal user input. We aim to improve

the efficiency of MCMC calibration processes by using

methods such as parallel genetic algorithms and emcee that

are computationally efficient for HPC use and by reducing the

parameter set to make it structurally identifiable before

TABLE 2 Coefficient of variation (CV) for each measurement, with data sources. *1: taken from 3D RC%, *2: variability between measurements
separated by 24 h, *3: estimated as average of max(pBRL) and min(pBRL), *4: assumed to be the same as for MC, *5: non-crucial flow rates are
assumed to have a high CV.

Measurement Description CV Source

max (qla) max left atrium volume 21.3% Letnes et al. (2021)

min (qla) min left atrium volume 23.5%*1 Letnes et al. (2021)

max (qlv) max left ventricle volume 12.6% Zhao et al. (2021)

min (qlv) min left ventricle volume 19.4% Zhao et al. (2021)

max (qra) max right atrium volume 10.0% Van Der Zwaan et al. (2011)

max(pBRL) max brachial pressure 1.5%*2 Abellán-Huerta et al. (2018)

min(pBRL) min brachial pressure 4.0%*2 Abellán-Huerta et al. (2018)

mean(pBRL) mean brachial pressure 2.25%*3 Abellán-Huerta et al. (2018)

mean(vLERT) mean leg terminal flow 30.0%*5 Assumed large

mean(vBRRT) mean brachial terminal flow 30.0%*5 Assumed large

mean(vPCRT) mean posterior cerebral terminal flow 8.0%*4 Wen et al. (2019)

mean(vECRT) mean external carotid terminal flow 8.0%*4 Wen et al. (2019)

mean(vMCRT) mean middle cerebral terminal flow 8.0% Wen et al. (2019)

mean(vACRT) mean anterior cerebral terminal flow 8.0%*4 Wen et al. (2019)

mean(vTRT) mean trunk flow 50.0%*5 Assumed large
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running MCMC. Additionally, both the in-house genetic

algorithm and emcee (Foreman-Mackey et al., 2013) are

designed to minimise required user input. The robustness

of the approach is demonstrated by showing that each of the

patients have middle cerebral artery peak pressure prediction

uncertainties within ±10 mmHg (±1.3 kPa) (see Figures 7, 8

for Patients 1 and 3).

We have demonstrated the application of this approach to

three patients with differing sets of available data (see Table 3). A

set of structurally identifiable parameters was obtained for each

set of data, demonstrating the robustness of the approach to

varying availability of data. This is crucial for clinical application,

as patients often have differing sets of measured data, due to

availability of equipment, time constraints, and the inability to

take certain measurements for certain patients.

4.1 Model reduction

The choice of setting parameters to fixed values to enhance

structural identifiability could fictitiously decrease the estimated

prediction uncertainty. In the current work, we assumed that this

decrease in uncertainty was negligible. In future, rather than

simply fixing parameters, more advanced model reduction steps

could be applied to ensure that the model being used has a

minimal number of parameters that are more identifiable. Any

step made to reduce model complexity, in order to increase

structural identifiability, has the risk of decreasing model

accuracy as a result of the simplified dynamics. The reduction

of free parameters is a compromise between providing sufficient

model fidelity, and having parameters that are structurally

identifiable. We argue that an approach such as ours that

FIGURE 2
Schematic detailing the pipeline for required data, the calibration process, and the calculation of the pressure prediction distribution.
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simply removes functional relations between model

parameters by fixing some of the parameters may be all

that is necessary for calculating realistic prediction

uncertainties in many situations.

When a model has collinearities, fixing a parameter does not

locally reduce the fidelity of the model. Instead, it only collapses a

collinear relationship, so the free parameter affects the outputs in

a way that both parameters could affect the outputs previously. It

FIGURE 3
Percentage error between optimal model outputs (fi(θ)) and measured data (ẑi) from the parameter identification pipeline for Patient 1
(normalised by ẑi). qla: left atrium volume, qlv: left ventricle volume, qra: right atrium volume, pBRL : left brachial pressure, vLERT : right leg terminal flow,
vBRRT : right brachial terminal flow, vPCRT : right posterior cerebral terminal flow, vECRT : right external carotid terminal flow, vMCRT : right middle cerebral
terminal flow, vACRT : right anterior cerebral terminal flow, vTRT : trunk terminal flow.

FIGURE 4
Normalised error between optimal model outputs (fi(θ)) and measured data (ẑi) from the parameter identification pipeline for Patient 1
(normalised by σi). qla: left atrium volume, qlv: left ventricle volume, qra: right atrium volume, pBRL : left brachial pressure, vLERT : right leg terminal flow,
vBRRT : right brachial terminal flow, vPCRT : right posterior cerebral terminal flow, vECRT : right external carotid terminal flow, vMCRT : right middle cerebral
terminal flow, vACRT : right anterior cerebral terminal flow, vTRT : trunk terminal flow.
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should be noted that this may reduce the fidelity of the model,

due to no longer incorporating potential nonlinear global

dynamics of the fixed parameter. However, if we assume that

the local collinear behaviour approximately represents the global

behaviour, fixing all structurally unidentifiable parameter does

not reduce model fidelity for fitting to data. However, reducing

the parameter set further has the risk of significantly reducing

model fidelity and causing the prediction uncertainties to be

fictitiously reduced. Therefore, we have chosen not to reduce the

parameter set once it is structurally identifiable, meaning that we

do not use the prediction uncertainty to further reduce the

model.

The assumption that the local structural identifiability

represents the global structural identifiability is a shortcoming

of this model that can be improved in future work, such as by

implementing a global structural identifiability method (Dobre

et al., 2010; Joubert et al., 2020).

The approach in this study is designed to be efficient for large

models with many parameters. MCMC can be burdensome when

used with a large number of parameters, and this is particularly

inefficient when the parameters have collinearities. The

parameter set reduction obtained from the sensitivity analysis

reduces the MCMC expense, resulting in a more tractable

problem. Running without parameter reduction takes longer

than 100 h, as demonstrated by the model with a full

parameter set failing the Geweke test after 100 h of MCMC

simulation. Therefore, the approach detailed in this paper is more

clinically viable, in terms of efficiency, than naively running

MCMC on the full parameter set. The profile likelihood approach

(Raue et al., 2009) could instead be used to show practical

identifiability, as other works in the literature have reported

greater efficiency compared to MCMC (Simpson et al., 2020).

However, the speed-up would be diminished or reversed when

using slower non-gradient based optimisation methods, such as

the genetic algorithm created in this work, because the profile

likelihood approach requires many optimisation runs. The

OpenCOR software (Garny and Hunter, 2015) used here uses

the CVODES solver (Serban andHindmash, 2005), which has the

ability to calculate sensitivities with automatic differentiation

(although this is not currently available through OpenCOR),

therefore, faster gradient based optimisation methods could be

used in the future. Access to the gradients would also improve the

efficiency of the structural identifiability analysis, as the

calculation of sensitivities using finite differences would not be

necessary. This may also allow efficient time-dependent

sensitivity analysis, as presented in Joubert et al. (2020).

Multiple groups have worked on reducing circulatory system

models in a way that retains accurate prediction of the pressure

wave. Epstein et al. (2015) showed that a 55 compartment arterial

system can be reduced to 21 compartments with less than 2%

average relative error. By additionally incorporating

parameter identification in their reduction framework,

Fossan et al. (2018) showed that to capture important

features of the aortic waveform in a 1D blood flow model

of the circulatory system, only minimal descriptions of the

limbs and cerebral circulation were required. The present

study uses a model with fixed topology. However, while

conducting the current study we have developed a model

generation software (Argus and Maso Talou, 2022) so that we

now have a framework to begin to incorporate similar model

reduction steps as (Epstein et al., 2015; Fossan et al., 2018) to

automatically reduce the topology of the model.

TABLE 3 Parameter estimates and standard deviations, error of the
model output versus the measured data, and the core prediction
values with confidence intervals. The (fixed) parameters were set to
physiological values as they were not structurally identifiable. N/A
indicates measurements that were not obtained for that patient.

Patient 1 Patient 2 Patient 3

Parameters

qsbv [ml] 1041 ± 45 1204 ± 59 1013 ± 55

ELVa [MPa/m3] 341 ± 59 219 ± 46 308 ± 105

ERVa [MPa/m3] 73.3 (fixed) 73.3 (fixed) 73.3 (fixed)

Rpar [MPa.s/m3] 10.7 (fixed) 10.7 (fixed) 10.7 (fixed)

RLET [MPa.s/m3] 2078 ± 498 2,227 ± 656 1090 (fixed)

RBRT[MPa.s/m3] 7178 ± 1405 8709 ± 976 7349 ± 1413

RACT[MPa.s/m3] 6954 ± 627 8289 ± 657 7234 ± 619

RECT[MPa.s/m3] 4164 ± 363 4960 ± 411 4362 ± 382

RMCT[MPa.s/m3] 4452 ± 396 5,307 ± 467 4650 ± 370

RPCT[MPa.s/m3] 19192 ± 1698 23146 ± 1956 20100 ± 1778

RTRT[MPa.s/m3] 880 (fixed) 938 ± 334 1335 ± 319

CV [m3/MPa] 0.5 (fixed) 0.5 (fixed) 0.5 (fixed)

Output Error

max (qla) 30.5% 55.4% 29.8%

min (qla) 3.93% N/A 14.7%

max (qlv) 14.2% 21.1% N/A

min (qlv) 3.1% 7.8% N/A

max (qra) 14.7% 21.9% 17.4%

max(pBRR) 1.34% 0.23% 2.6%

min(pBRR) 5.54% 9.11% 3.7%

mean(pBRR) 4.03% 11.1% 4.6%

mean(vLERT) 25.4% 14.1% 13.9%

mean(vBRRT) 0.38% 2.4% 3.6%

mean(vPCRT) 0.49% 2.8% 0.6%

mean(vECRT) 0.93% 2.7% 0.02%

mean(vMCRT) 0.65% 3.6% 0.7%

mean(vACRT) 0.84% 3.7% 1.0%

mean(vTRT) 65.3% 60.0% 75.9%

Prediction

max(pMCR)[kPa] 14.515.313.7 16.717.416.1 14.315.513.0

min(pMCR)[kPa] 8.89.38.4 10.811.410.3 9.49.99.0

mean(pMCR)[kPa] 11.111.510.6 13.213.712.7 11.512.011.1
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4.2 Core predictions

An important part of our approach is the idea that the use of

core predictions (Cedersund, 2012) enhances the task specificity

of the approach in comparison to typical parameter identification

approaches. A demonstration of this is presented in the

cornerplots (Foreman-Mackey, 2016) in Figure 6, where ElvA

has a reasonably flat region in parameter space, indicating that it

may be practically unidentifiable. This unidentifiability is likely

due to the unavailability of qlv measurements for Patient 3. Even

with this supposed practical unidentifiability, our method

provides pressure predictions with small uncertainty, as seen

in Figure 8. Although the unidentifiability of ElvA causes a slightly

larger uncertainty during systole, if the uncertainty is within

clinically acceptable limits, then we claim that the model is

acceptably calibrated. Therefore, a model can be clinically

useful even though it may have practically unidentifiable

parameters. A core prediction with a user defined uncertainty

is a task-specific metric that is typically less stringent than

identifiability approaches that look at flatness of the parameter

posterior distributions. Core predictions focus on what is of

interest for application, i.e. the uncertainty of the desired

FIGURE 5
A subset of parameter distributions for Patient 1. qsbv: stressed blood volume, ElvA: left ventricle maximum elastance, RACT : anterior cerebral
terminal resistance, RPCT : posterior cerebral terminal resistance.
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prediction. Of course, the actual prediction uncertainty should

also account for model approximation errors due to the model

equations only being an approximation of the physiology.

The uncertainty estimate of the core prediction has been

assumed to be unaffected by fixing structurally unidentifiable

parameters. Cedersund and Roll (2009) stated that if the

parameter space is reduced by fixing parameters, a reliable

core prediction can no longer be obtained. We argue that

unless you calculate and propagate the uncertainty of every

parameter in the model, which is intractable for all but the

simplest of models, any realistic approach to calculating a core

prediction can only provide an approximation. In our approach,

by ensuring that the fixed parameters do not significantly affect

the core prediction, we can approximate its uncertainty due to

parameter uncertainties.

Determining the uncertainties of core predictions provides

users with valuable knowledge about how confidently they

should treat the predictions. This fully automated approach is

designed so that, if used clinically, it can indicate a degree of

confidence on a core prediction with minimal input from the

clinician. On the other hand, the MCMC distributions can inform

a researcher about the parameters that may be less sensitive

(i.e., present plateaus in the parameter posterior distributions)

with respect to the cost function, and therefore provide

FIGURE 6
A subset of parameter distributions for Patient 3. qsbv: stressed blood volume, ElvA: left ventricle maximum elastance, RECT : external carotid
terminal resistance, RTRT : trunk terminal resistance.
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information about practical unidentifiability. Consequently, even

though this pipeline does not use practical identifiablity analysis to

verify that the model calibration can be trusted, the parameter

posterior distributions are available for visualisation by an

interested party (see Figures 5, 6). These distributions can

indicate whether parameters are unidentifiable, suggest whether

the model could be reduced in a certain manner, or inform where

more data is required to reduce parameter uncertainties.

4.3 Limitations and future work

Paun et al. (2020) describes an approach to use Gaussian

processes to account for the uncertainty due to a mismatch

between model outputs and measurements, which will be

investigated when advancing the current approach. Due to

not accounting for this so-called model mismatch, the

uncertainty displayed in this study is a lower bound. The

crucial information obtained is the size of the prediction

uncertainty that is due to the parameter estimation process,

i.e., it gives a task-specific alternative to practical identifiability

approaches.

A significant limitation of the MCMC approach is that the

choice of prior distributions can be important for accurate

parameter estimation (Lambert et al., 2005), and thus for

accurate predictions. We chose to assign uniform parameter

distributions between manually-defined physiological

parameter ranges that represent normal physiology. This

approach has the advantage of being simple, and requires

minimal user input. However, the use of uniform priors may

hinder the convergence of the MCMC chains to their true

posterior distributions. For the present relatively simple

application, this was not a problem. However, in future

clinical applications, parameter priors could be defined using

sub-population data that more closely represents each specific

patient to be analysed. For example, an older patient may have a

higher prior distribution range for their terminal resistance

compared to a younger patient, due to the known effect of

arterial wall thickening with age. Such an age-dependent prior

could be obtained from population studies.

Currently, this pipeline uses in silico data from the ADAN

model to approximate mean flow measurements that can be

obtained from 4D-flow MRI. This enabled the testing and

refinement of the approach in the absence of suitable in-vivo

data. One potential problem due to this use of synthetic data for

the cerebral blood flow, is that it may not be compatible with the

clinical echocardiographic measurements. However, as shown by

our fitting to the data (see Table 3) and the successful Geweke

convergence test, any potential discrepancies did not hinder

convergence of the genetic algorithm or the MCMC approach.

Additionally, we used ADAN flow values to approximate the flow

in the arms, legs, and trunk, but in the future, flowmeasurements

could be used for these locations. Identification of the terminal

compliances, terminal moments of inertia, and venous

resistances will be investigated in the future, when we fit the

model to the dynamic brachial pressure and left ventricle volume

curves.

In this work, the large chain lengths (5,000 steps ×

32 walkers) required to reach convergence of the MCMC

method resulted in calibration run-times of approximately

24 h on 16 Intel Xeon 3.0 GHz cores. Gaussian processes and

surrogate models, as in Paun et al. (2020), can be used in future

work to significantly reduce run-times to provide tractable in-

clinic analyses.

The pipeline detailed in this work has been designed with the

aim of creating a calibration process that can be used in

FIGURE 7
Patient 1: Mean, standard deviation, and 95% confidence
interval for the right middle cerebral artery pressure predictions
(pMCR) sampled from the MCMC posterior parameter distributions
(100 samples).

FIGURE 8
Patient 3: Mean, standard deviation, and 95% confidence
interval for the middle cerebral artery pressure predictions (pMCR)
sampled from the MCMC posterior parameter distributions
(100 samples).
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conjunction with automated image processing tools, and our

automatic model generation software. This will enable a pipeline

from a magnetic resonance angiography (MRA) image, to a

segmented and labelled vessel network, to a calibrated model

of a patient’s haemodynamics, and finally to trusted circulatory

pressure predictions.

5 Conclusion

This study details a task-specific approach to parameter

identification that relaxes the constraints of having to have

each parameter be practically identifiable. Instead, the

pipeline calculates the prediction uncertainties, so that a

researcher or clinician can decide whether they are within

acceptable bounds. A sensitivity analysis is used to account for

functional relationships between collinear parameters, in

order to decrease the number of free parameters, and hence

improve the efficiency of a subsequent MCMC analysis. The

prediction uncertainty is then calculated by sampling from the

parameter posterior distributions. This approach allows

computationally efficient calibration of complex models to

improve the clinical applicability of circulatory system

modelling.

This approach has been applied to the calibration of a CVS

model to clinically available cardiac ultrasound and synthetic

cerebral blood flow data. We have shown that, for each patient,

the model can be efficiently calibrated to give middle cerebral

artery peak pressure prediction uncertainties within ±10 mmHg

(±1.3 kPa).

Calibrating complex models to data is generally very

difficult in the clinical setting. This approach provides

advancements in the methods for clinical model calibration

without compromising the accuracy for the intended

clinical task.
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